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Abstract An overview is provided of the various meth-

ods for analyzing biosensing data, with emphasis on

information visualization approaches such as multidimen-

sional projection techniques. Emphasis is placed on the

importance of data analysis methods, with a description of

traditional techniques, including the advantages and limi-

tations of linear and non-linear methods to generate layouts

that emphasize similarity/dissimilarity relationships among

data instances. Particularly important are recent methods

that allow processing high-dimensional data, thus taking

full advantage of the capabilities of modern equipment. In

this area, now referred to as e-science, the choice of

appropriate data analysis methods is crucial to enhance the

sensitivity and selectivity of sensors and biosensors. Two

types of systems deserving attention in this context are

electronic noses and electronic tongues, which are made of

sensor arrays whose electrical or electrochemical responses

are combined to provide ‘‘finger print’’ information for

aromas and tastes. Examples will also be given of

unprecedented detection of tropical diseases, made possible

with the use of multidimensional projection techniques.

Furthermore, ways of using these techniques along with

other information visualization methods to optimize bio-

sensors will be discussed.

1 Introduction

The generation and availability of so much information in

electronic media, including scientific data, has sparked

research and development of computational and statistical

tools to handle such information, within a new scientific

paradigm of data-driven scientific discovery—in some

situations referred to as e-science [1]. E-science refers to a

computationally intensive science, typically making use of

highly distributed computer networks or a science dealing

with large amounts of data for which grid computing is

used. Working within the e-science paradigm normally

involves cloud computing and parallel processing, required

to handle the massive amounts of data. In a broader setting,

it may refer to the application of modern computational

methods of data mining, data visualization, information

retrieval and other technologies for knowledge generation

from data.

For sensing and biosensing, which have become ubiq-

uitous in modern systems in our society, state-of-the-art

technologies lead to massive amounts of data of various

natures. Sensors and biosensors may be based on principles

of detection exploring electrical, electrochemical, optical,

spectroscopic properties, to name just a few [2]. In bio-

sensing, in particular, dealing with biological systems and

even in vivo experiments poses additional challenges

owing to the variability of biological samples. In investi-

gating sensor configurations, hundreds if not thousands of

measurements may be performed to characterize a set of
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biological samples, and a single measurement may actually

consist of a spectrum of values. Therefore, in studying a

single biosensing system they face many instances of the

problem of pattern recognition from data, in which the goal

is to identify the capability of discriminating samples,

given their characterizing output by one or multiple sensor

configurations.

In recent years a number of data analysis methods have

been employed, with many issues of sensors design and

discrimination of similar samples being dealt with methods

and approaches from chemometrics [3], which is the sci-

ence dedicated to data-driven discovery approaches applied

to chemical systems. In this context, the methods possibly

most relevant for sensing stem from multivariate data

analysis (see a review on biosensors in Lindholm-Sethson

et al. [4]). Typical data analysis covers both exploratory

techniques such as principal component analysis (PCA)

and cluster analysis for discrimination; as well as super-

vised techniques such as linear discriminant analysis

(LDA), soft independent modeling of class analogy

(SIMCA) or Partial Least Squares Discriminant Analysis

(PLSDA) for classification [5]. In particular, the need of

handling data from many sensor configurations simulta-

neously drives an interest on exploratory approaches that

can help users to interactively identify the solutions that

deserve further investigation. These will possibly require

additional analysis with traditional supervised pattern rec-

ognition techniques, which is the central topic in this

review.

In contrast to most reviews on biosensors (see [6, 7]),

here we shall not dwell upon the materials for the sensing

units or on the principles of detection. We shall rather

concentrate on data analysis methods, particularly the

exploratory data visualization techniques recently intro-

duced in biosensing [8]. This review is organized as fol-

lows. Section 2 brings a brief introduction to the main

concepts and methods of information visualization. The

increasing trend toward the usage of a wider variety of data

analysis methods is highlighted in Sect. 3, while the spe-

cific use of information visualization for sensing and bio-

sensing appears in Sect. 4. Section 5 closes the paper with

conclusions and outlook.

2 Exploratory Data Visualization: Concepts

and Methods

The amount of data generated in different fields over the

last decades has grown so substantially that data analysis

represents now a major challenge. Technologies to store

and retrieve data are well established and increasingly

affordable, but our interpretation capacity is limited. In

order to reduce the gap between data collection and data

exploration, display and interpretation, use can be made of

data mining and data visualization. Visual analytic tech-

niques are attractive for complex data analysis because

they generate interactive visual representations that

potentially benefit from the human visual channel to speed-

up interpretation of complex (large and/or high-dimen-

sional) data [9].

Visualization methods and techniques are usually cate-

gorized into two fields: scientific visualization (SciVis) and

information visualization (InfoVis) [10] (sometimes closely

related with multivariate, or multidimensional data visu-

alization, known from statistics). SciVis visual representa-

tions are built upon data representing objects and concepts

associated with real or simulated physical phenomena, such

as weather simulations or computer tomography scans.

Resulting data are spatial and embedded in 1D, 2D or 3D

spaces (as the objects they represent), and usually the

visualization model is a straightforward representation of

the geometry of the underlying objects. InfoVis represen-

tations are built from abstract entities that do not neces-

sarily have a physical or geometric representation, such

as census data or web pages returned from a user query.

Typically, the data instances are multidimensional,

describing entities that consist of multiple measurements or

attributes, not necessarily of a spatial nature. While spatial

objects may be associated with abstract attributes, abstract

objects can also be associated with spatial attributes (e.g.,

demographics data are commonly associated with a 2D

spatial location, or cartographic maps may display abstract

entities). Therefore, the distinction between these fields is

blurred. From an end user perspective, a major difference is

that abstract visualizations can be more difficult to inter-

pret, as they do not rely on familiar object representations.

Techniques applied in biosensing are typically from

InfoVis, since the output of sensor measurements is data in

a high-dimensional space, e.g., spectrum of values. Fig-

ure 1 shows a representation of the pipeline for mapping

data into abstract visual representations, or the visual

mapping pipeline, as described by Card et al. [9]. Raw data

are transformed and organized into data tables, from which

graphical representations are derived by means of visual

mappings. Such graphical representations are then dis-

played to users who can interact with them as a means of

exploring the underlying data. In this process, new data

transformations or new visual mappings may be required.

There is a wide range of visualization techniques—or

visual mappings—targeted at multidimensional data, most

of which adopt the overall approach of mapping each data

instance to a graphical marker, which may be a single

pixel, or a line or an icon. Detailed reviews of InfoVis

techniques may be found elsewhere [10, 11]. In the fol-

lowing we focus initially on a specific class of techniques,

known as multidimensional projections, which are proving
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promising to create visual representations of biosensing

data that afford exploratory analysis.

The goal of multidimensional projection techniques is to

convey global similarity relationships amongst high-

dimensional data instances by generating a two-dimen-

sional embedding of the data. A projection technique maps

each data element to a visual marker placed on a plane, so

that markers depicting similar instances are placed close,

whereas those depicting dissimilar instances are placed

apart from each other. It requires a measure of similarity/

dissimilarity to be defined, usually approximated by some

distance function defined in the high-dimensional data

space. Such techniques are closely related with dimen-

sionality reduction and multidimensional scaling (MDS)

[12] approaches, which are normally classified into linear

or non-linear techniques [13]. Examples of linear tech-

niques are Principal Component Analysis (PCA) [14] and

Classical Scaling [12]. Linear techniques may fail to

recover non-linear structures such as clusters of arbitrary

shapes or curved manifolds that may be present in the data.

If this is the case, non-linear dimension reduction tends to

provide superior performance in projecting the data on

lower-dimensional spaces.

A mathematical formulation of the projection problem

follows: let X = {x1, x2,…, xn} be the data set, and d(xi, xj)

a dissimilarity (distance) function defined between two

different instances. Let Y = {y1, y2,…, yn} be the set of

visual markers corresponding to X, and d(yi, yj) a distance

function amongst them. A projection technique is an

injective function f: X ? Y which seeks to make |d(xi,

xj) - d(f(xi),f(yj))| & 0, Vxi, xj [ X [15]. Different for-

mulations of the error function and different approaches to

its minimization result in several possible choices for the

mapping function f. The error function is as a measure of

the information lost in the projection procedure. If the

mapping is effective, perceived clusters of visual markers

indicate groups of highly correlated data instances (similar

content), and markers placed apart and in different clusters

can be related to dissimilar instances. In this review, we

shall comment upon visualizations created mainly with two

non-linear techniques, viz. Sammon’s Mapping [16] and

interactive document map (IDMAP) [17].

The error function minimized in Sammon’s Mapping is

given by

S ¼ 1
P

i\j dðxi; xjÞ
X ðdðyi; yjÞ � dðxi; xjÞÞ2

dðxi; xjÞ

where d is a measure of the dissimilarity between samples

xi and xj, and d is the distance among their projections yi

and yj onto a 2D plot.

For IDMAP, the error function is defined as

SIDMAP ¼ dðxi; xjÞ � dmin

dmax � dmin

� dðyi; yjÞ

where dmin and dmax are the minimum and maximum dis-

tances between the samples. It is based on a fast dimension

reduction strategy referred to as Fastmap [18], which is

employed to generate an initial placement of the data

points that is improved with the Force Scheme [15], a

strategy that mimics a placement approach based on sim-

ulating mass-spring models typically employed for drawing

graph models [19].

The quality of the low-dimensional embedding achieved

with a projection may depend on various factors, including

properties of the data and behavior of the distance function,

as well as user goals. Apart from very general guidelines or

recommendations, it is difficult to anticipate which tech-

nique will output the best projection of a given data set, or

which dissimilarity function better captures the relevant

data behavior. In fact, defining which is best from a set of

alternative layouts is itself a difficult research question.

Another issue is computational cost, as one wants to gen-

erate two-dimensional embeddings at interactive rates. A

recently published solution was shown capable to process

millions of instances within minutes [20], implying feasi-

bility to process very large datasets.

In order to illustrate how projections can be used, we

show in Fig. 2 an IDMAP projection of the Iris flower

dataset, available and described at the UCI Machine

Learning repository.1 This dataset is well-known to the

pattern recognition, machine learning and visualization

research communities, and widely employed to illustrate

usage and performance of classification and visualization

algorithms. It describes 150 Iris flower samples of three

different species: iris virginica, iris versicolour and iris

setosa, providing 50 samples from each class. Each sample

flower is described by four different measures, namely

sepal length, sepal width, petal length and petal width,

Fig. 1 Visual mapping pipeline: from data to visual abstractions and

user interaction. The raw data represented in the leftmost block
(source data) are transformed into tables that can be visualized with

distinct paradigms, referred to here as visual abstraction. The process

of view transformation is responsible for deciding the final format of

the graphical display to the end user. The bar at the bottom was

included to illustrate that the whole process can be interactive, with

the user choosing the methods to transform data, visualize the

mapping and even modify the views. Adapted from Ref. [9]

1 Available at the UCI Machine Learning Repository

(http://archive.ics.uci.edu/ml/).
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measured in centimeters. It is known that, based on these

four descriptive attributes, one class is linearly separable

from the other two, which are not themselves linearly

separable from each other (footnote 1).

Let us now comment on the projection in Fig. 2: in an

effective projection mapping, dissimilar data samples,

according to the values of their describing attributes, are

positioned farther apart than samples that are more similar,

which are positioned closer. Notice that, although the

projection visually resembles the scatterplots typically

employed to display the relationship between two data

attributes, it has a distinct interpretation, as no attribute is

being mapped to either the horizontal or vertical axes. The

placement of the data samples in the two-dimensional

space is relative and only indicates global proximity, or

similarity. In the projection view in Fig. 2, each circle

depicts a flower sample, with the color mapping flower

type. It has been computed considering the four descriptive

attributes simultaneously, using the Euclidean distance as

an approximation of dissimilarity. Observing the color

coded projection one notes that the setosa flowers are very

different from the virginica and versicolour, whereas these

latter two are not fully distinguishable, as some green and

red samples are actually very close, i.e., similar. One infers

that taking these four attributes to describe the samples

may cause some flowers to be mistakenly classified as

verginica or versicolour. So, other additional measures

would be needed in order to correctly identify all the

flowers. On the other hand, we also know the projection is

effective, in that it reveals information about the data set

that is known to be correct.

The previous example illustrates how a particular data

sample xi is described by multiple attributes, i.e., xi = {xi1,

xi2, …, xim}, that actually determine the global relation-

ships amongst data instances. A visualization such as the

previous one, obtained by projecting the data, does not

convey the contribution of the different attributes to an

observed behavior. One may resort to alternative high-

dimensional data visualizations to investigate the role of

attributes on data behavior. A particularly expressive

technique for this goal is parallel coordinates [21], which

again departs from the conventional approach of mapping

attributes to orthogonal coordinate axes of a Cartesian

plane, as in scatterplots. In parallel coordinates an axis is

associated with each data attribute and used to map its

range, but the axes are arranged in parallel on the plane. A

data instance is represented as a polyline that will cross the

attribute axes at the point determined by the value of the

corresponding attribute. This solution enables visualizing a

relatively large number of attributes on a single planar

representation, since—unlike scatterplots—it can display

more than two or three attributes simultaneously. It has

been shown useful to highlight patterns on the data and

functional dependencies amongst multiple data attributes,

particularly when data sets are not too large—otherwise

strong overlapping of lines can severely hamper user

interpretation [10]. Later on we shall discuss how this

technique has been applied, in connection with projection-

based visualizations, to optimize the performance of

biosensors.

Figure 3 shows a parallel coordinates visualization of

the Iris dataset. In this view, each polyline depicts a flower

sample, i.e., they correspond to the same circles shown in

Fig. 2. Again, line color identifies the flower’s type. The

four vertical axes map the range of values of the four

measurements. It is noted that sepal length and width are

not suitable attributes to differentiate the flowers, since

they show considerable overlap of the polylines repre-

senting flowers of different types. Therefore, it is not

possible to characterize the flower only with these mea-

surements. On the other hand, when inspecting the petal

attributes one observes that different flower types have

quite different measures, as indicated by the good separa-

tion of the crossing lines of different colors at the corre-

sponding axes. This plot allows one to infer that the setosa

flowers have petal length and width considerably smaller

than those of verginica and versicolour, on this particular

dataset, and thus it is possible to differentiate the setosa

Fig. 2 Projection of the Iris

flower dataset, in which each

circle represents an Iris flower

sample, and its color indicates

the type of the flower. One

observes that one type of flower

(Iris setosa) is easily

distinguished from the other

two, which in turn are not

clearly separable
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flowers from the other two. Not all samples of virginica and

versicolor can be distinguished, however, as there is some

degree of overlap, again confirming what we know about

the data.

3 Trends in the Use of Data Analysis Methods

The complexity inherent in biological, imaging and other

types of sensing data has motivated application of a variety

of statistical and computational methods, ranging from

artificial neural networks [22] to visualization techniques

[23, 24]. In a number of cases, the data are generated by a

wide range of sensing devices, obtained by an equally large

variety of sensor types. These may include electrical,

electrochemical or optical sensors, satellite images, traffic

(see for instance Medeiros et al. [25]) and spectroscopic

techniques. In problems that generate large amounts of

correlated data, as in the measurements in multiple brain

areas obtained over time with electrode arrays, it is

essential to employ sophisticated data-analysis methods.

This was discussed by Reed and Kaas [26], including the

challenges to analyze large-scale neuronal recording data.

The final goal in this type of exam is to relate stimulus

properties to the response of individual neurons and neu-

ronal networks. The authors mentioned as one of the

challenges the need to take into account the data depen-

dencies arising from the multi-electrode recordings and

consider the non-linear nature of dependency among the

variables of interest.

In addition to processing huge amounts of data, sensing

and biosensing systems also face the problems arising from

the so-called dimensionality curse [27]. These problems

may be addressed with feature selection methods [28]

coupled with data cleaning and fusion. For traffic events in

a major French city, Medeiros et al. [25] combined ana-

lytical methods with data management strategies to handle

spatio-temporal data. Feature selection is essential in many

data analysis problems, including biosensor optimization.

The work by Paulovich et al. [29], for instance, deals with

feature selection in the context of seeking to optimize

sensor performance (this is further discussed in Sect. 4).

Sensing is also crucial for real-time monitoring of fab-

rication processes in the high tech industry, as in the pro-

duction of semiconductor wafers. A major difficulty is to

develop control systems that can both handle a lot of data

in a short time period while simultaneously providing

adequate feedback. This issue was discussed by Yang and

Chen [30], who described optical emission spectroscopy as

a suitable, noninvasive monitoring method. The major

difficulty in using this spectroscopy method, however, is

the huge amount of information obtained. Real-time

detection of faults could be achieved by implementing a

model allowing direct matching of patterns characteristic

of good samples. Another example of control of fabricated

structures is directly related to biosensing, in that 3-D

microdomains were formed with photolithography com-

bined with laser excimer technology [31] to serve as

template for investigating cell growth. For microfluidic lab-

on-a-chip, which promises to revolutionize sensing and

biosensing, Yoon et al. [32] stated that full realization of

the advantages of these new systems depends on imple-

menting effective data-analysis methods. They exemplified

the importance of novel approaches by introducing a pat-

tern-mining method in the analysis of large-scale biological

data obtained from high-throughput biochip experiments.

Fig. 3 Parallel coordinates

visualization of the same Iris

flower data set depicted in

Fig. 2. Each polyline maps a

flower sample, and its color
indicates the flower type. This

visualization shows that petal

measurements are more

effective to distinguish the

flower types than the sepal

measurements
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In the remainder of this section, we shall focus on two

topics associated with the processing of large amounts of

data, namely usage of multivariate analysis and data pro-

cessing in applications related to electronic noses and

tongues.

3.1 Multivariate Data Analysis

The use of computational methods has been advocated [33]

for drug discovery using libraries of drug candidates inte-

grated with data from biosensors based on surface plasmon

resonance. For sensing based on impedance spectroscopy,

Lindholm-Sethson et al. [34] showed the suitability of PCA

to analyze data collected over a range of frequencies, for

the PCA score plots could depict an objective overview of

the various interactions in a complex system. They provide

an indication of the presence of specific interactions that

cause grouping(s) in the data and also reveal the time

dependence of an interaction process and the relative size.

The same applied to the combination of multivariate

analysis and electrochemical impedance to study interac-

tions with a phospholipid monolayer [35]. Furthermore,

multivariate data analysis may be applied to complex

number matrix representations of the impedance spectros-

copy data [4], in the so-called complex number chemo-

metrics [3]. As confirmed later in our discussion in the

context of electronic tongues, Lindholm-Sethson et al. [4]

argued that ‘‘multifrequency impedance data are best

studied by taking all frequencies into account at once and

not by studying the frequency response at each frequency

separately’’.

In a review paper, Saurina [36] addresses recent

achievements in wine characterization using chemometric

analysis of physicochemical data, as identified from rep-

resentative papers published in the last decade. They

emphasize that data handled in wine characterization is

typically multivariate in nature, comprising a list or array

of values. Data thus obtained from suitable analytical

methods may be combined into a data matrix in which each

line refers to a wine sample, and each column describes a

measured variable. This data may be treated with chemo-

metric methods [37]. The authors listed PCA and cluster

analysis as complementary techniques often adopted in

exploratory studies; whereas LDA and SIMCA as tech-

niques for classifying wines into pre-established categories

or groups. Artificial Neural Networks and Partial Least

Squares Regression are sometimes employed for purposes

of identifying correlation, e.g., uncovering potential rela-

tionships of physicochemical variables with sensorial

attributes. They survey many contributions on wine char-

acterization, providing an extensive table that includes

information on the data analyzed and the chemometric

methods employed.

3.2 Electronic Tongues and Noses

Among the many systems employing multivariate data

analysis, particularly relevant for biosensing are those

related to electronic tongues and noses [38–56]. The latter

comprise arrays of chemical sensors, whose response

constitutes a taste or odor pattern, respectively. They rely

on the concept of global selectivity, according to which the

measurements yield a ‘‘finger print’’ of the liquid or vapor

under study. Several kinds of sensing elements and detec-

tion methods have been studied for e-noses and mainly

e-tongues [45, 51, 57–62], which allow applicability in

fields as food [57, 62–66], wines [67], water [68] and

pharmaceutical analysis [66]. The importance of the

e-tongues and e-noses to biosensing stems from the pos-

sible extension through the incorporation of sensing units

capable of molecular recognition [69–72].

The principles behind the combination of measurements

to establish patterns have been discussed in [47, 73]. The

latter authors mentioned the relevance of ‘‘soft’’ measuring

techniques, i.e., ones that collect multiple information

variables with low, partially overlapping, specificity. Since

the latest developments in the application of multivariate

data analysis to e-tongues have been reviewed in [38], and

the use of information visualization for systems based on

the e-tongue concept is described in the next section, we

shall turn to electronic noses. Wedge et al. [74] investi-

gated e-noses made with arrays of organic field-effect

transistors to detect airbone analytes in real time, with a

time-lag of only 4 s. Data processing made use of genetic

programming, which was proven adequate to deal with the

multiple parameters involved in the sensor arrays. Zhang

et al. [75] combined Fisher Discriminant Analysis (FDA)

[76] with Sammon’s mapping [16] to distinguish among

seven samples including fuels and drinks. Figure 4a shows

that Sammon’s mapping itself does not yield a reasonable

clustering of the data. This was attributed to fluctuations of

temperature, humidity and sample concentration, which

caused the data to be dispersed. However, when Sammon’s

mapping was used in conjunction with FDA, much better

distinction was attained, as shown in Fig. 4b.

Volatile compounds produced by bacteria from pro-

cessed poultry were identified upon treating the data from

an electronic nose with Sammon’s mapping and artificial

neural networks [77]. In a similar work, Byun et al. [78]

also employed Sammon’s mapping to assess the malodour

in pig slurry. For complex samples, such as those associ-

ated with distinct aromas, electronic noses and chemo-

metric analysis have been used in conjunction [79]. Neural

networks have also been combined with discrete wavelet

transform (DWT) to obtain calibration curves for the

simultaneous quantification of Cd2? and Pb2? in solution,

where the principle of detection was potentiometry [80].
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The variety of statistical and computational methods to

analyze data from e-noses is evident from inspecting recent

papers in the field, as is the case of e-noses used to char-

acterize several odors [81] and for discriminating volatile

organic compounds (VOCs) [82].

To summarize, the performance of e-tongues and

e-noses obviously depends on an adequate choice of

materials and film architectures for the sensing units, and

of suitable principles of detection. But a successful appli-

cation ultimately depends on the data analysis, which may

require a suite of tools for a single case. As emphasized by

Zhang et al. [75], the pattern recognition method has

become an important part of the e-nose technique.

4 Information Visualization Applied to Sensing

and Biosensing

The term ‘‘information visualization’’ has only recently

been associated with sensing and biosensing [8], though

many works discussed in Sect. 3 already employed some

form of visual representation. In this section we shall

demonstrate that employing sophisticated data treatment

techniques are also crucial for optimizing sensing and

biosensing performance. This is true for several aspects

akin to analytical tasks, from the choice of suitable sensing

units to the identification of features with higher distin-

guishing ability. For instance, applications that require

several sensors incur in a dramatic increase in the number

of possible parameter configurations [83]. Optimization

can be performed by comparing distinct detection methods.

Freitas et al. [84] showed aroma patterns could be better

distinguished by using gas sensor arrays (similar to an

e-nose) than with chromatography techniques. Figure 5

shows good separation of coffee samples according to the

geographic origin upon using Sammon’s mapping (a) and

PCA (b).

Computational methods are essential to correlate data

from sensors and human taste perception. For example,

Della Lucia et al. [85] found evidence that extrinsic or non-

sensory characteristics of food, such as brand names, affect

consumers’ choice. In another example, Ferreira et al. [86]

applied machine learning methods to correlate data from

electronic tongues to the human taste for coffee samples.

The concept of electronic tongue has been discussed also in

connection with chemometrical data analysis, considering

data from a multimicrobial biosensor chip [87]. In the

analysis of wines, for instance, in addition to electronic

tongues, research has been conducted to characterize wines

on the basis of compositional profiles. Saurina [36]

reviewed the potential descriptors of wine and its quality,

where information on the contents of low molecular

organic acids, volatile species, polyphenols, amino acids,

biogenic amines and inorganic species is processed with

several methods, including cluster analysis and PCA.

Artificial intelligence methods allowed the production of

noninvasive glucose monitors for diabetic human subjects

[88]. Sensing was performed by measuring the electric

current generated in the transport of glucose that interacted

with glucose oxidase in a hydrogel placed on the skin

surface. The glucose concentration in the blood could be

estimated with a combination of methods, involving the

theory of mixtures of experts (MOE) using a superposition

of multiple linear regressions and switching algorithm. In

the MOE method, the unknown coefficients were deter-

mined with the Expectation Maximization algorithm.

Visualization techniques are useful not only to assist the

biosensing tasks per se, but also in integrated systems

where sensing is coupled to other types of information. For

example, a platform of biosensing to detect tropical dis-

eases could be developed by integrating biosensors with

spatial technology, as in Saxena et al. [89] who applied

remote sensing and global positioning system (GPS) to

identify areas affected by malaria epidemics.

Fig. 4 a Plot of the data for multiple transistors using Sammon’s

mapping, for which it is clear the different liquids analyzed cannot be

distinguished. b For the FDA-MSM result, distinct clusters could be

identified. The liquids analyzed are listed in the insets. Reproduced
with permission from 75
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In the sensing field, where the identification of samples

is basically a classification task, the performance of the

sensing devices has improved with the aid of machine

learning and information visualization methods for treating

data. This is the case of e-tongues, discussed earlier, which

are being used in the analysis of liquids such as wines, fruit

juices, coffee, milk and beverages. Electrochemical mea-

surements and impedance spectroscopy are among the

most prominent principles of detection. Riul et al. [38, 90]

reported a very sensitive e-tongue based on impedance

spectroscopy and ultrathin films (nanometers in thickness)

deposited onto interdigitated electrodes, whose experi-

mental setup is given in Fig. 6a. Because a large number of

samples and measurements are needed to distinguish

between very similar samples, applying chemometric or

pattern recognition methods is inevitable. PCA is the most

popular tool to analyze e-tongue data. However, sophisti-

cated tools combining machine-learning and data mining

approaches and information visualization techniques have

been applied recently.

Information visualization introduces three main advan-

tages. The first and most obvious is the possibility of

treating the whole dataset rather than specific parts of the

data. For example, instead of applying PCA just to the

impedance value at particular frequencies, the whole

impedance vs. frequency curves can be processed auto-

matically. The second advantage is related to the ample

choice of projection techniques to map the data. In addition

to the linear techniques, such as PCA, non-linear methods

can be employed, as we shall comment upon below. The

third advantage is the possible optimization of sensing

performance that goes beyond exploiting the whole data,

for instance employing feature selection strategies to

maximize inter-cluster distances while minimizing intra-

cluster distances [29].

Moraes et al. [8] compared Sammon’s mapping and

IDMAP as strategies to plot impedance data from sensors

made with layer-by-layer (LbL) [91] films in order to

detect phytic acid in solution. The real and imaginary

components of the impedance were analyzed concomi-

tantly. Significantly, better distinction ability was achieved

with different projection techniques for the distinct sensing

units. While for the sensor made with LbL films of

poly(allylamine chloride) (PAH) alternated with polyvinyl

sulfonic acid (PVS) IDMAP proved more efficient, for the

unit with phytase layers alternated with PAH better results

were obtained with Sammon’s mapping. Figure 6b shows

the plot obtained with Sammon’s mapping after a data

standardization procedure. With the specific interaction

between phytic acid and phytase, one should expect a much

superior performance for the sensing unit containing LbL

films of phytase. That PAH/PVS LbL film efficiency to

detect phytic acid could be explained by a detailed analysis

of the whole curves, which was only possible with the

visualization methods. It should be stressed that the dis-

tinction performance achieved using linear PCA was much

worse.

The power of visualization methods has been combined

with an extended e-tongue technology [72, 92] to solve a

major problem in biosensing for clinical diagnosis of two

tropical diseases, namely Leishmaniasis and Chagas’ Dis-

ease caused by Trypanosoma cruzi. It so happens that even

in sophisticated immunoassays, many false positives occur

[93, 94]. Perinotto et al. [72] addressed this problem with

impedance spectroscopy measurements with a sensor array

containing four sensing units, two of which had immobi-

lized antigens with molecular recognition capability toward

anti-Leishmania and anti-T. Cruzi antibodies in LbL films.

A cartoon with the biosensing device (one sensing unit) is

given in Fig. 7, which also shows the capacitance versus

Fig. 5 a The patterns of nine coffees (Arabica—Brazil, Colombia,

Guatemala and Kenya (A and B); Robusta—Angola, Ivory Coast,

Uganda and Zaire) analyzed with an electronic sensor array appear

almost superimposed in a Sammon’s mapping plot. b Good

distinction was achieved when the data were plotted in a PCA

diagram, with the first two principal components characterizing the

Arabica and Robusta varieties. Reproduced with permission from Ref.

[84]
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frequency measurements for antibody solutions at

10-5 mg/mL for three of the sensing units. The latter were,

respectively, a bare electrode, an electrode containing 5

bilayers of PAMAM/PVS (poly(amidoamine) generation 4

dendrimer/poly(vinyl sulfonic acid)), which is a non-spe-

cific sensor, and an electrode containing 5 bilayers of

PAMAM/proteoliposome (biosensor). The biosensor

clearly presents a distinct response for solutions containing

antibodies. Even for the mixture of antibodies, the capac-

itance curve was practically the same as that for the posi-

tive anti-L. amazonensis IgGs. The latter reveals specific

interactions occur upon immersion of the electrode in the

mixture solution, with only the positive anti-L. amazon-

ensis antibodies binding to the electrode.

By applying PCA to data such as those in Fig. 7, it was

possible to distinguish between the samples made with a

buffer to which various concentrations of antibodies were

added [72]. However, when all the ‘‘real’’ samples made

with blood serum of infected animals were included full

distinction could not be reached, encouraging investigation

of other projection techniques. By way of illustration we

show in Figs. 8 and 9 visualizations of the impedance

spectroscopy data obtained with one sensor (the bare

electrode) for all the samples. Not surprisingly, with the

lack of specificity in interaction with the analytes (anti-

bodies), the distinction is rather poor. But a visual

inspection of Fig. 9 already shows that a non-linear tech-

nique, namely Sammon’s mapping, offers a better response

than the PCA plot shown in Fig. 8.

The full distinction with Sammon’s mapping was

achieved upon employing the impedance data of the four

sensing units mentioned above. This is shown in Fig. 10.

Another evidence of the superiority of non-linear

methods for biosensing was obtained by plotting the data

from the four sensors with PCA, shown in Fig. 11. It is

observed the distinction is good, but not perfect, in contrast

to the Sammon’s Mapping plots. Other non-linear tech-

niques, IDMAP included, were also considered, but results

were inferior to those obtained with Sammon’s mapping.

At present, it is not clear why non-linear techniques have

performed better in biosensing data. We hypothesize that

the specific interactions between the materials in the

sensing units and the analytes, owing to molecular recog-

nition processes, may cause the electrical responses to

depend on the various parameters in a highly non-linear

fashion.

The IDMAP technique was also employed with light-

addressable potentiometric sensors (LAPS) as an efficient

tool to eliminate cross-talk between sensor units with mi-

crometric size produced by semiconductor technology [95].

In the LAPS described, the detection of penicillin G was

attained by monitoring the variation of ions in solution, at a

fixed photocurrent, for 16 points illuminated by infrared

light emitting diodes (IR-LEDs). Eight points were modi-

fied with a 6-bilayer LbL film of single-walled carbon

nanotubes (SWCN) and poly(amidoamine) dendrimer

(PAMAM). This film was deposited on the gate insulator of

the chip, and the enzyme penicillinase was adsorbed on the

top. The reaction of the penicillinase with penicillin G in

solution generates free H? ions on the electrode surface,

and the porous structure of the LbL facilitates its diffusion

to the chip surface. Due to the close proximity of the

modified and non-modified points of detection (especially

those adjacent each other) there was some influence of

neighboring points, i.e. cross-talk. Thus, a direct analysis of

the voltage versus time curves of the sensors (with con-

stant-current) reveals that both modified and unmodified

points have the same trend of responses. In the plot

obtained with the IDMAP projection, the modified and

unmodified sensors were clearly separated in two clusters.

Fig. 6 a Illustrative diagram of the experimental setup used in

impedance spectroscopy measurements for e-tongues. b Sammon’s

mapping plot of data with standardization for the electrical impedance

data obtained with the PAH/phytase sensing unit. The color

represents different samples of phytic acid, in addition to the buffer.

The axes are not labeled, as the relative distances give the degree of

dis(similarity) among the samples. Reproduced with permission from
Refs. [8, 38], respectively
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Moreover, the technique allowed the recognition and

grouping of different samples containing glucose, pure

buffer and penicillin G with three different concentrations.

Once again, the authors tried several projection methods

available in a free platform called PEx-Sensors (see below)

[29], and IDMAP provided the best classification results.

100 101 102 103 104 105
10-11

10-10

10-9

10-8

10-7

10-6

C
ap

ac
ita

nc
e 

(F
)

Frequency (Hz)

Bare Electrode

100 101 102 103 104 105
10-11

10-10

10-9

10-8

10-7

10-6

 C
ap

ac
ita

nc
e 

(F
)

Frequency (Hz)

PAMAM/PVS

100 101 102 103 104 105
10-11

10-10

10-9

10-8

10-7

10-6

C
ap

ac
ita

nc
e 

(F
)

Frequency (Hz)

PAMAM/Proteoliposome

Fig. 7 On the bottom left a schematic diagram is shown for the

sensing device, where a LbL film containing antigens in proteolipo-

somes is deposited onto an interdigitated electrode. The other panels

bring capacitance versus frequency curves for three electrodes

immersed into 10-5 mg/mL antibody solutions, as indicated. Note

that distinction between the samples is much superior with the

electrode containing a 5-bilayer LbL film of PAMAM/proteoliposome

(lower right). Reproduced with permission from Ref. [72]

Fig. 8 Projection using PCA of the electrical impedance data

obtained with the bare electrode for L. amazonensis and T. Cruzi
samples with different concentrations, as follows. Serum A contained

negative antibodies, serum B contained anti-Leishmania antibodies,

serum C contained anti-T. Cruzi antibodies. The other samples were

the buffer, and the so-called synthetic samples made with the buffer to

which anti-Leishmania, anti-T. Cruzi and negative antibodies were

added. The mixtures were synthetic samples with anti-Leishmania,

anti-T. Cruzi antibodies together. Reproduced with permission from
Ref. [92]
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With regard to the third advantage of information visu-

alization methods, one may mention the optimization of

biosensor performance using feature selection coupled

with visualizations obtained with projection techniques.

Paulovich et al. [29] used Parallel Coordinates (PC) visu-

alizations [21] of capacitance data of a PAH/PVS sensing

unit, obtained much in the same way as the aforementioned

measurements, for aqueous solutions containing the analyte

phytic acid to be detected. Owing to the lack of specific

interaction, the distinguishing ability of this sensing unit

was expected to be poor. Indeed, this seems to be the case

judging by the Parallel Coordinates plot in Fig. 12.

With such visualization and computation of the silhou-

ette coefficient [96] for each measured value at a particular

frequency, one may conceive ways to select frequencies

and enhance the distinguishing ability. The silhouette is a

metric for evaluating the quality of a data cluster that varies

between -1 and 1, where higher values indicate better

cluster quality. The silhouette coefficient is given by:

S ¼ 1

n

Xn

i¼1

ðbi � aiÞ
maxðai; biÞ

where ai is the average of the distances between the ith data

point and all other points of the same cluster, and bi is the

minimum distance between the ith data point and all other

points from the other clusters.

Choosing the most suitable frequencies for distinguish-

ing the sample amounts to feature selection, which can be

done quantitatively using the silhouette coefficients.

Paulovich et al. [29] employed a genetic algorithm to scan

the whole data space of cluster silhouettes and automati-

cally identify the best frequencies for distinction. Figure 13

depicts a parallel coordinates visualization for the 10 best

frequencies selected, where a better distinction capability

is readily observed in comparison with Fig. 12. The

improvement was confirmed with multidimensional pro-

jections of the data obtained using IDMAP [17]. The

importance of a systematic search for the features leading

to optimization is highlighted by the analysis of the sil-

houette coefficients in Fig. 13. While most of the fre-

quencies selected had high coefficients (represented by

blue color), one particular frequency was denoted by a red

box. This means this frequency, when considered in iso-

lation, does not lead to good distinction for the different

Fig. 9 Projection using

Sammon’s mapping of the same

samples in Fig. 8. Though data

points from different samples

are still mixed (circled in red),

the distinction is better than in

Fig. 8 where PCA was used.

Reproduced with permission
from Ref. [92]
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samples. However, used in conjunction with other fre-

quencies it improves the overall distinguishing ability of

the system.

4.1 Systems Available

Several visualization systems for data analysis are avail-

able, and a brief review of pros and cons of commercial

and freely available systems is given in [97]. For specific

applications, Nature Methods published a special issue on

methods to visualize biological data [98], including

genome sequences, macromolecular structures, phyloge-

netic trees, cells, and organisms. Specifically for data from

sensors and biosensors, to our best knowledge the only

system is the Projection Explorer Sensors (PEx-Sensors)

[29]. The PEx-Sensors platform was designed to handle

large datasets, such as those reported by Siqueira Jr. et al.

[95] who analyze multiple impedance versus frequency

curves from many sensors simultaneously. PEx-Sensors

implements several projection techniques that may be

tested in search for the most appropriate for a given

application. It also allows for obtaining parallel coordinate

Fig. 10 Projection using

Sammon’s mapping of the

capacitance data obtained with

four sensors for all the samples

shown in Fig. 8. All samples

can now be clearly separated.

Reproduced with permission
from Ref. [92]

Fig. 11 The same data in

Fig. 10, now projected with

PCA. In contrast to the

Sammon’s mapping plots, now

some samples could not be

distinguished (circled in red).

Reproduced with permission
from Ref. [92]
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plots of the data frequencies to help specialists understand

the responses of impedance spectroscopy data. It provides

modules to compare the similarity of different sensing

units, thus supporting analysis of reproducibility of nomi-

nally equal units, and a visual optimization module to

support the selection of frequency ranges that render more

discriminant sensors. The results reported in Ref. [29],

discussed above, were all obtained with PEx-Sensors.

Furthermore, the techniques implemented in the platform

are potentially applicable to other detection principles (i.e.

optical absorption and electrochemistry), and PEx-Sensors

is currently being adapted to work with practically any

kind of output data from sensors and biosensors. PEx-

Sensors is freely available for non-commercial use and

may be accessed at http://www.icmc.usp.br/*paulovic/

pexsensors/.

5 Conclusions and Perspectives

In this review paper we have advocated the use of com-

putational methods, especially from the information visu-

alization field, to treat the large amounts of data normally

generated in sensing and biosensing. We emphasized the

three main advantages of using information visualization,

namely: (i) possibility of treating whole datasets in a fast

way; (ii) choice of suitable projection techniques; (iii)

possibility of optimizing sensing performance upon com-

bining with other computational methods. One of our goals

was then to try and disseminate the importance of these

tools, not only out of necessity because treating a lot of

data manually is no longer feasible but also because many

new opportunities arise with data-intensive discovery. In

this context, the outlook for this area is extremely

Fig. 12 Visualization of capacitance data with a sensing unit made of

a PAH/PVS LbL film deposited onto an interdigitated gold electrode,

using the Parallel Coordinates technique. The x-axis is the frequency

and the y-axis gives normalized values for the capacitance. Note that

for some small concentrations of phytic acid (denoted by different

colors), there is overlap of the graphs. The little boxes on the top of

the figure represent the silhouette coefficient for each data attribute.

Blue boxes indicate frequencies that are useful for distinguishing the

samples whereas the opposite applies for the red boxes. Reproduced
with permission from Ref. [29]

Fig. 13 Visualization with

parallel coordinates of the same

data in Fig. 12, but now only

with 10 selected frequencies to

improve the distinguishing

ability. The boxes representing

the silhouette coefficients are

almost all blue, for an

optimization procedure was

performed. Reproduced with
permission from Ref. [29]
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promising. Since the information visualization methods,

such as those implemented in PEx-Sensors, are completely

generic, they may be applied to images, videos and text as

well. Associated with biosensing, in particular, one can

now envisage clinical diagnosis intelligent systems that

consider not only the data obtained with the biosensors and

imaging methods but also prior information about specific

patients and diseases. Much in the same way as expert

systems for diagnosis in general, the time has come to

integrate the knowledge acquired in biosensing into a

platform that takes advantage of the tremendous amount of

electronic information about any given topic relevant for

our society.
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(2010) Anal Chem 82:61–65

96. Tan P-N, Steinbach M, Kumar V (2005) Introduction to data

mining. Addison-Wesley Longman Publishing Co, Boston

97. Telea AC (2007) Data visualization: principles and practice.

A. K. Peters Ltd, Wellesley

98. O’Donoghue SI, Gavin A-C, Gehlenborg N, Goodsell DS, Hér-
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