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Abstract 

Gastrointestinal (GI) disorders, encompassing conditions like cancer and Crohn’s disease, pose a significant threat to 
public health. Endoscopic examinations have become crucial for diagnosing and treating these disorders efficiently. 
However, the subjective nature of manual evaluations by gastroenterologists can lead to potential errors in disease 
classification. In addition, the difficulty of diagnosing diseased tissues in GI and the high similarity between classes 
made the subject a difficult area. Automated classification systems that use artificial intelligence to solve these 
problems have gained traction. Automatic detection of diseases in medical images greatly benefits in the diagnosis of 
diseases and reduces the time of disease detection. In this study, we suggested a new architecture to enable research 
on computer-assisted diagnosis and automated disease detection in GI diseases. This architecture, called Spatial-
Attention ConvMixer (SAC), further developed the patch extraction technique used as the basis of the ConvMixer 
architecture with a spatial attention mechanism (SAM). The SAM enables the network to concentrate selectively on 
the most informative areas, assigning importance to each spatial location within the feature maps. We employ the 
Kvasir dataset to assess the accuracy of classifying GI illnesses using the SAC architecture. We compare our architec-
ture’s results with Vanilla ViT, Swin Transformer, ConvMixer, MLPMixer, ResNet50, and SqueezeNet models. Our SAC 
method gets 93.37% accuracy, while the other architectures get respectively 79.52%, 74.52%, 92.48%, 63.04%, 87.44%, 
and 85.59%. The proposed spatial attention block improves the accuracy of the ConvMixer architecture on the Kvasir, 
outperforming the state-of-the-art methods with an accuracy rate of 93.37%.
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Introduction
Gastrointestinal (GI) disorders are prevalent in the 
human digestive system and pose a significant threat 
to public health. These disorders include cancer, bleed-
ing, ulcer polyps, Crohn’s disease, and they are a seri-
ous concern in today’s world [1]. Esophageal, stomach 
and colorectal cancer are among the most commonly 
diagnosed and lethal types of cancer worldwide [2]. 
To diagnose and treat these disorders, endoscopic 

examinations have become a crucial diagnostic tool. 
Endoscopy, an efficient medical imaging technique, 
excels in identifying irregularities within the GI tract 
[3]. In addition to aiding in disease diagnosis, endos-
copy also helps to confirm findings and treat certain 
abnormalities [4]. Endoscopy is a minimally invasive 
operation that uses a flexible, thin, and elongated tube 
called an endoscope to visualize the internal organs of 
the patient. The endoscope is equipped with a camera 
and a light source to transmit images of the organs to a 
monitor, allowing for accurate diagnosis and treatment 
planning. Depending on the specific aim of the opera-
tion, the equipment used and the internal structures 
being examined, there are diverse types of endoscopy. 
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The endoscope can be inserted through the mouth and 
throat or via a small incision in the skin [5, 6].

The human GI system encounters a range of unu-
sual mucosal symptoms, spanning from minor issues 
to extremely severe illnesses. Thus, accurate and timely 
diagnosis is fairly important with efficient treatment 
and reducing mortality rates. Endoscopic evaluations 
play a very important role in identifying abnormalities 
in the human GI tract. Thanks to these evaluations, the 
severity and type of clinical features of GI disease are 
known and treatment methods are determined accord-
ing to appropriate diagnoses. However, endoscopic 
examination of the disease and classification of different 
symptoms are done by gastroenterologists. One of the 
important responsibilities of a gastroenterologist (GE) 
involves studying and analyzing images and videos of the 
GI system [7]. However, endoscopic examination of the 
disease and classification of different symptoms may dif-
fer from one GE to another, depending on the symptoms 
as a result of the analysis of GI tract images [8, 9]. These 
differences may cause errors in some cases, particularly 
regarding controversial directions of diagnostic videos 
and images obtained from endoscopic examinations. 
Such errors can lead to misdiagnosis of the disease. In 
this direction, various studies have been conducted on 
automatic classification systems for diagnosing GI tract-
related diseases from endoscopic images [10]. Automated 
classification of diseases presents a promising resolution 
by ensuring GEs have dependable and useful support in 
recognizing GI endoscopic images. This, in turn, reduces 
the occurrence of misdiagnoses and conserves valuable 
time for gastroenterologists. Consequently, the auto-
mated classification of GI illnesses remains a substantial 
area of research aimed at enhancing the precision of dis-
ease detection [11].

The utilization of artificial intelligence (AI)-based sys-
tems for the early detection of abnormalities in medi-
cal images has attracted great interest in recent years 
[12–14]. These systems typically employ techniques for 
feature selection, feature extraction, and classification of 
medical images, such as wavelet transform features [15], 
color features [16], texture features [17], point features 
[18], HOG features [19], and others, to extract relevant 
image features. Following feature selection and extrac-
tion, deep learning (DL) or machine learning (ML) based 
classifiers can be utilized to classify endoscopic images. 
Unlike traditional ML-based classifiers used for feature 
extraction, features are extracted automatically with DL. 
With this feature, DL and particularly convolutional neu-
ral networks (CNNs) offer very successful solutions for 
more accurate classification for medical imaging [20, 21]. 
Hence, techniques built upon CNNs have become the 

preferred and commonly utilized methods in the field of 
medical image examination.

In this study, a customized Spatial-Attention Conv-
Mixer (SAC) model is proposed for the classification of 
GI diseases from endoscopy images. The proposed SAC 
model presents a new DL model by combining the spa-
tial attention mechanism and ConvMixer architecture. 
In order to test the effectiveness of the proposed SAC 
model, extensive analyses were performed on the Kvasir 
dataset. The dataset contains high-resolution endoscopy 
images of various GI diseases and normal tissues. How-
ever, the sample imbalance in this dataset is a challenge 
that can directly affect the performance of deep learning 
methods. To overcome this challenge, our study adopts 
various data augmentation strategies to improve the per-
formance of DL methods and strengthen their gener-
alization capabilities. The principal contributions of this 
study can be outlined as follows:

1.	 In this study, a hybrid model is proposed that com-
bines the state-of-the-art ConvMixer architecture 
and the spatial attention mechanism. This proposed 
hybrid model is named as Spatial-Attention Conv-
Mixer (SAC) model.

2.	 In the proposed SAC model, the spatial attention 
mechanism before the depthwise convolution in 
ConvMixer, which provides the network to selec-
tively focus on the most informative regions in the 
input images. This mechanism improves the Con-
vMixer’s performance in capturing the relevant fea-
tures of GI diseases, thus enhancing its ability to 
diagnose and classify the diseases accurately. On the 
other hand, the ConvMixer architecture processes 
these regions to obtain strong features. In the final 
layer of the model, these features are used to produce 
the classification prediction.

3.	 To the best of our knowledge, the SAC model is the 
first attempt to implement a spatial attention mech-
anism to the ConvMixer architecture for medical 
image analysis, specifically in the context of GI dis-
eases. Our SAC model acquires state-of-the-art per-
formance on the Kvasir dataset, with an accuracy rate 
of 93.37%, outperforming the existing methods by a 
significant margin. Therefore, our SAC model offer a 
promising solution for the automatic diagnosis and 
classification of GI diseases, with potential applica-
tions in other medical image analysis tasks.

The structure of this paper is organized in the subse-
quent manner. Related works section provides an over-
arching review of recent research in our field. Materials 
and methods section  delves into the dataset employed, 
the SAC architecture, and the associated theoretical 
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underpinnings. Section  4 will address the conducted 
experiments and their outcomes. Ultimately, Sect.  5 
offers a comprehensive summary of our study.

Related works
In recent years, there have been numerous studies pro-
posing DL approaches for medical image analysis in the 
field of gastroenterology. One of the common objectives 
of these studies is to automate the diagnosis of GI diseases 
using endoscopic images, which can increase diagnos-
tic accuracy and decrease the workload of endoscopists. 
Recent studies of GI tract abnormalities with endoscopic 
images have shown that manual evaluation of multiple 
endoscopic images is laborious and requires expertise. In 
this direction, efficient intelligent DL, particularly CNN-
based architectures have been developed to assist gas-
troenterologists in their tasks. Thanks to these methods, 
correct treatment recommendations are shown by auto-
matically extracting the image features through convolu-
tions, processing and analyzing the image data. Also, the 
use of CNN-based methods showed better classification 
performance in feature extraction, making them cutting-
edge for deep learning applications. The efficient use of 
CNN has developed tasks related to image classification 
and recognition. Some of the studies using CNN in the 
literature are given below.

Poudel et al. [22] developed a powerful architecture for 
endoscopic image classification using a DL approach. The 
proposed architecture incorporates an efficient dilation 
in CNNs to preserve spatial details and prevent loss of 
information, which can result in the misclassification of 
similar-looking images and polyps. In addition, the paper 
introduces a regularization method called DropBlock 
to address the problem of overfitting and deal with arti-
facts and noise. The experiments demonstrate that the 
proposed architecture outperforms traditional architec-
tures and achieves an F1-score of 88% for Kvasir dataset 
and 93% for Colorectal dataset, indicating its potential 
to increase the accuracy of endoscopic colon disease 
classification. Amin et  al. [23] developed an automated 
method for detecting different types of stomach infec-
tions using a new deep semantic segmentation method. 
The method employs deeplabv3 as the backbone of the 
ResNet-50 method and correctly implements pixel-wise 
classification of the lesion regions, which are challenging 
due to their size, irregular shape and low contrast. The 
method reached up to 90% prediction values, demon-
strating its effectiveness in accurately classifying stomach 
infections and highlighting the potential of uncertainty-
aware deep CNNs for improving the diagnostic accuracy 
of GI infections. Srivastava et  al. [24] developed a focal 
modulation network (FocalConvNet) combined with 
light convolutional layers, for the classification of small 

intestinal lumen findings and anatomical landmarks. Fol-
lowing the experimental studies on Kvasir-Capsule, they 
obtained 63.73% classification accuracy. Liu et  al. [25] 
enhancements were made to a medical image segmenta-
tion technique that involves multi-scale feature memory, 
hybrid attention-driven residual atrous convolution and 
multi-receptive field fusion module. By applying the 
technique to the Kvasir dataset to assess its classification 
accuracy, they achieved an F1-score of 76.65% for polyp 
segmentation. Lonseko et al. [26] proposed a deep CNN 
for the classification of GI diseases on endoscopic images 
using an efficient spatial attention mechanism. In the 
experimental analyses performed on the Kvasir dataset, 
which consists of a multi-class structure, 93.19% classi-
fication accuracy and 92.8% F1-score values were found. 
Du et al. [27] developed a semi-supervised effective com-
parative learning classification architecture for esopha-
geal disease. With this architecture, 92.57% accuracy was 
achieved in experimental studies.

Along with the development of CNN-based methods, 
there are studies in the literature using transfer learning 
with pre-trained CNN architectures. Ahmed et  al. [28] 
developed a architecture for medical image classification 
using denoising CNNs (DnCNNs) and transfer learn-
ing with pre-trained CNNs. The architecture employs 
AlexNet, a well-known pre-trained CNN, as the classi-
fication model and DnCNNs as the pre-processing tool 
for the Kvasir dataset, which includes endoscopic images. 
The outcomes reveal that the DnCNNs attained a clas-
sification accuracy of 90.17%, surpassing several compa-
rable cutting-edge techniques. Kahsaygebreslassie et  al. 
[29] improved a DL approach for identifying and clas-
sifying different GI tract diseases in endoscopic images. 
The authors have fine-tuned two popular CNN meth-
ods, DenseNet121 and ResNet50, on the publicly avail-
able Kvasir dataset that contains GI endoscopic images 
belonging to eight different classes. The proposed mod-
els achieved an accuracy of 86.9% and 87.8% on the test 
set, respectively. Gupta et al. [30] introduced an approach 
aimed at automating the identification of GI tract dis-
eases using DL. They leverage the Kvasirv2 for their 
investigation and employ EfficientNetB7 and ResNet50 
techniques that have been pre-trained on ImageNet for 
feature extraction. In the categorization phase, they 
employ a Voting Classifier and report a peak accuracy of 
88.19%. Furthermore, the authors contrast the outcomes 
of Wildwood and Random Forest algorithms on the Kva-
sir, demonstrating the efficacy of their proposed meth-
odology. Yoshiok et al. [31] analyzed the performance of 
four different CNN methods (MobileNet V3, MobileNet 
V2, ResNet-50 and GoogleNet) in detecting esophagitis 
from endoscopic images in the Kvasir dataset. The study 
finds that GoogLeNet achieved the highest F1-score, 
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while MobileNet V3 estimated esophagitis more rightly 
than the other methods based on the average true posi-
tive rate. The accuracy values obtained for the mod-
els were 84.6% for GoogLeNet, 84.2% for MobileNet 
V3, 83.3% for ResNet-50, and 83% for MobileNet V2. 
Agrawal et al. [32] suggested a architecture consisting of 
VGG and InceptionV3 for the classification of GI system 
abnormalities with endoscopic images. Following the 
experimental studies on the Kvasir to test the suggested 
method, an F1-score value of 84.7% was obtained. Gam-
mulle et  al. [33] improved a architecture for automated 
endoscopy image classification based on the ResNet-50. 
F1-score value of 89.7% was found with the Kvasir data-
set used for the analysis of the classification accuracy of 
the architecture.

In addition to CNN-based methods, vision transformer 
(ViT)-based methods have been used in recent years. 
The ViT has brought about a significant transformation 
in the realm of DL. It employs attention mechanisms to 
enhance interpretability and efficiency across diverse 
domains, such as computer vision and natural language 
processing, marking a notable shift in the field. Some 
of the studies using these methods are as follows. Huo 
et al. [34] suggested a new DL network for medical image 
classification that combines the strengths of both self-
attention-based Transformers and CNNs. The suggested 
method employs a hierarchical multi-scale feature fusion 
network known as HiFuse, comprising three branches. 
This network proves proficient in extracting global and 
local features across diverse semantic scales. HiFuse fur-
ther integrates an adaptive hierarchical feature fusion 
block (referred to as the HFF block) to thoroughly merge 
semantic details across distinct scale features within 
each branch. The HiFuse Tiny, HiFuse Small, and HiFuse 
Base models attained accuracy rates of 84.85%, 85.00%, 
and 84.35%, respectively. Bai et al. [35] improved a ViT-
based architecture for the classification of wireless cap-
sule endoscopy images. They obtained 79.15% accuracy 
with the Kvasir-Capsule dataset utilized to evaluate the 
performance of the ViT-based architecture. Su et al. [36] 
proposed an image ViT-based feature pyramid network 
for polyp segmentation on endoscopy images. The per-
formance of the ViT-based feature pyramid network was 
tested with the Kvasir dataset and an average Dice coef-
ficient of 92.4% was obtained. Hosain et al. [37] used ViT 
to classify gastrointestinal diseases from curated colon 
images with wireless capsule endoscopy. They obtained 
an F1 score of 88.75% in experimental studies on a four-
class dataset with Esophagitis, Polyps, Ulcerative coli-
tis and healthy patients. Cao et  al. [38] introduced the 
Sparse Attention Bidirectional Transformer as a model 
designed to identify GI diseases. Utilizing ViT, this model 
integrates sparse attention mechanisms to address the 

intricate nature of diverse GI diseases. Through experi-
ments conducted on the HyperKvasir dataset, they 
observed an accuracy of 71.95% and an F1 score value of 
63.38%.

Materials and methods
Kvasir dataset
The Kvasir dataset [39] is a collection of high-quality GI 
endoscopy images, designed to enable research on com-
puter-aided diagnosis and automated disease detection in 
the GI tract. The dataset was gathered from endoscopic 
equipment used in hospitals under the Vestre Viken 
Health Trust in Norway, which serves a population of 
470.000 people. The images were annotated by medical 
experts from the Cancer Registry of Norway (CRN), an 
independent institution under Oslo University Hospital 
Trust, responsible for cancer screening programs to pre-
vent cancer deaths by detecting pre-cancerous lesions 
or cancers as early as possible. It includes images of sev-
eral different gastrointestinal diseases, including polyps, 
ulcers, and inflammation, as well as normal tissue. The 
dataset consists of over 8000 images with annotations for 
various lesions and diseases. The Kvasir has been widely 
recognized as a valuable resource for advancing research 
in the field of GI endoscopy. One of the strengths of the 
Kvasir is the high quality of the images. The images were 
acquired using high-definition endoscopes, which pro-
vide high-resolution images with fine details. The Kvasir 
is publicly available and has been used in several bench-
marking studies, enabling direct comparison of differ-
ent methods and models. The dataset consists of eight 
classes, including Ulcerative colitis, Dyed-lifted-polyps, 
Normal (cecum, z-line, pylorus), Esophagitis, Dyed-
resection-margins and Polyps. Sample images for each 
class in the Kvasir dataset are given in Fig. 1.

Data preprocessing
Data augmentation (DA) is a commonly used method 
in Computer vision (CV) that involves applying trans-
formations to the original images to create new images. 
These transformations can include rotations, transla-
tions, scaling, flipping, and other operations that can 
simulate real-world variations in the images. The primary 
objective of DA lies in expanding the size of the train-
ing dataset, thereby enhancing the performance of DL 
methods trained on these datasets. DA holds significant 
importance in CV as it plays a pivotal role in mitigating 
overfitting and enhancing the generalization capabilities 
of DL methods. Overfitting arises when a model becomes 
excessively attuned to the training data, rendering it 
incapable of generalizing to fresh, unseen data. Through 
the application of DA, we can generate new images that 
preserve the essential patterns and characteristics of the 
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original images but introduce variations that facilitate 
the acquisition of more robust features while mitigat-
ing overfitting. Furthermore, data augmentation proves 
invaluable in addressing class imbalance issues that fre-
quently plague numerous image datasets. By generating 
additional images for underrepresented categories, we 
can rectify the dataset’s imbalance and elevate the overall 
effectiveness of the method. Additionally, DA can opti-
mize the training process by diminishing the necessity 
for gathering new data, a task that can be both costly and 
time-intensive.

Before training our model, we preprocessed the Kvasir 
dataset by merging the three normal classes, namely nor-
mal (cecum, pylorus and z-line) and into one class called 
“normal.” This decision was made to simplify the classifi-
cation task by removing the need to distinguish between 
different parts of the gastrointestinal tract. However, this 
merging of classes resulted in a class imbalance problem, 
where the “normal” class had three times more images 
than the other classes. To address this class imbalance 
problem, we implemented two DA methods to five of 
the classes: polyps, esophagitis, dyed-resection-margins, 
dyed-lifted-polyps and ulcerative-colitis. Specifically, 
we mirrored and rotated these images by 180 degrees 
to create new images that could be used to balance the 
dataset. However, we did not apply these techniques to 
the “normal” class because it already had three times 
more images than the other classes due to the merging 
of the three normal classes. Additionally, we applied the 
random brightness to all six classes before the training 
process. One potential disadvantage of using the Kvasir 

dataset for training a model is the presence of text on 
the images. This issue may lead to increased difficulty in 
accurately classifying images and may hinder the perfor-
mance of the model. Thus, it is essential to acknowledge 
this limitation and consider strategies to minimize the 
effects of non-relevant text on the model’s performance 
during training.

Proposed spatial‑attention ConvMixer (SAC) model
Trockman et al. [40] argued that the source of high suc-
cess in models such as ViT, MLPMixer, and Swin Trans-
former may be processing images by patching them. In 
this direction, with the proposed ConvMixer architec-
ture, the input image is patched and powerful features 
that can achieve high performance are obtained. In this 
study, we propose a novel ConvMixer architecture that 
includes the spatial attention mechanism (SAM), which 
we call Spatial-Attention ConvMixer (SAC) to obtain 
stronger patches. The primary motivation behind SAC is 
to selectively focus on the most informative regions of 
the feature maps, enabling the network to identify the 
salient features more efficiently, leading to improved clas-
sification performance. The SAC model is given in Fig. 2. 
As seen in Fig. 2, patches were obtained from the image 
by patch embedding in the first stage of the SAC model. 
Patch Embedding is performed with a traditional convo-
lution operation, as in the original ConvMixer. As a result 
of this process, patch representation data of size 
N
p
×

N
p
× h is obtained. Between these patch representa-

tions there are significant points, while at some points 
partially unimportant regions such as the frame edges of 

Fig. 1  Sample images of classes in the Kvasir dataset [39]
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the image are represented. A selective approach to reveal 
important regions can enable ConvMixer layers to reveal 
more effective features. From this perspective, patch rep-
resentations are passed to the Spatial Attention (SA) 
module. Basically, the SA module weights patch repre-
sentations with pointwise convolution and sigmoid. As 
shown in "Spatial Attention Mechanism (SAM)" section, 
the sigmoid output is a weight matrix ranging from 0 to 
1. Element-wise multiplication is performed between 
these weight matrix and patch representations. This pro-
cess suppresses some insignificant details, while enhanc-
ing points that may be important. In this way, unlike the 
ConvMixer architecture, the SAC model strengthens the 
patch representations that may be important between 
patches. In the second stage of the proposed SAC model, 
the patch representations that pass through the SA mod-
ule and are weighted are transferred to the ConvMixer 
layers. Here, pointwise convolution and depthwise con-
volution are applied, respectively. At the end of each con-
volution process, Gaussian Error Linear Unit (GELU) 
and Batch Normalization (BatchNorm) layers are used. 
The layer details of the SAC architecture are shown in 
Table 1. As seen in Fig. 2; Table 1, in the last part of the 
SAC model, a 64 × 64 × 256 feature map obtained in 
ConvMixer layers is obtained. First of all, the global aver-
age pooling (GAP) layer was implemented to this feature 
map. Then, the classification prediction map was 
obtained with the fully connected layer and the softmax 
layer. As given in Table  1, the hyperparameters of the 

ConvMixer layer in the SAC model are 5 for the kernel 
size of the depthwise separable convolution and 256 for 
the filter number of the pointwise convolution. Finally, 
the ConvMixer layer has a depth of d = 8.

ConvMixer and SAM, which are involved in the design 
of the proposed SAC model, are discussed in detail in the 
subsections below.

ConvMixer
The ConvMixer (CM) is a simple convolutional archi-
tecture proposed as an alternative to the patch-based 
representation of Vision Transformers (ViT). The ViT 
achieves high performance through self-attention layers, 
but they have a quadratic runtime and require the use of 
patch embeddings. In contrast, the CM operates directly 
on patches as input and uses only standard convolutions 
for mixing steps. The CM protects resolution and equal 
size throughout the network and separates the mixing of 
channel and spatial dimensions [40].

The CM architecture outperforms both classical vision 
models such as ResNets and some corresponding MLP-
Mixer and ViT variants, even with additions intended to 
make those architectures more performant on smaller 
datasets. The method is based on the idea of mixing, 
where depthwise convolution (DC) is used to mix spatial 
locations and pointwise convolution (PC) to mix channel 
locations. The method is instantiated with four hyperpa-
rameters: the hidden dimension, depth, kernel size, and 
patch size. The architecture is named after its hidden 

Fig. 2  Proposed SAC model
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dimension and depth, like CM − h/d . The CM supports 
variable-sized inputs and is based on the idea of mixing, 
which is used in other architectures. These results sug-
gest that patch embeddings themselves may be a critical 
component of newer architectures like ViT.

The CM architecture consists of three stages as shown 
in Fig. 3. The first stage of this architecture consists of 
a patch embedding layer and repeated applications of 
a fully-convolutional block. The patch embeddings 
are applied as convolution with input channels, kernel 
size, stride and output channels. The Patch embedding 
transforms an n× n image into a feature map of size 
h× n/p× n/p , where p× p is the size of the patch and 
h is the number of filters used in the convolution layer 
[41]. Following the patch embedding layer, there’s the 
application of the GELU, succeeded by BatchNorm lay-
ers. The GELU activation function, like RELU, weights 
the inputs by magnitude rather than classifying them by 

their sign. It is a high-performance activation function. 
The second stage of the architecture is the CM block. 
This block is repeated for a predetermined number of 
depth times. The CM block consists of DC followed by 
PC, and each convolution is followed by an activation 
and post-activation BatchNorm. In this block, the DC 
is contained within the residual block. A residual block 
constitutes a structural unit wherein the outcome of 
the prior layer is combined with the output of a sub-
sequent layer. The DC used within the CM block filters 
each input channel independently. It is used to mix the 
spatial dimensions of the image. PC is a convolution 
operation that allows filtering using 1× 1 convolution 
to iterate over every single point or pixel in the image. 
It is used to mix information across the patches. Fol-
lowing numerous uses of this block, the GAP operation 
is executed to obtain a feature vector, subsequently fed 

Table 1  Summary of the SAC model

Levels Layers Stride Filter Kernel size Output

Input Input layer – – – 128, 128, 3

Patch embedding
Patch size: 2

Conv2D 2 256 2 64, 64, 256

Spatial attention PointWise Conv2D 1 1 1 64, 64, 1

Multiply – – – 64, 64, 256

ConvMixer layer
Depth: 8

DepthWise
Conv2D

1 – 5 64, 64, 256

GELU – – – 64, 64, 256

BatchNorm – – – 64, 64, 256

Add – – – 64, 64, 256

GELU – – – 64, 64, 256

BatchNorm – – – 64, 64, 256

PointWise Conv2D 1 256 1 64, 64, 256

Classification block GlobalAvgPool2D – – – 256

Dense – 6 – 6
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into a softmax classifier. This is the third stage of the 
CM architecture [40].

Spatial attention mechanism (SAM)
Spatial attention is a mechanism that has been com-
monly used in recent years to increase the performance 
of CNN architectures in various CV tasks [42]. It allows 
the architecture to selectively focus on specific regions of 
the input image by assigning higher weights to relevant 
features while downplaying the importance of irrelevant 
ones. The primary function of spatial attention is to cap-
ture the interdependencies between different regions of 
an image by emphasizing the important regions and sup-
pressing the less relevant ones. This is achieved through 
the use of a gating mechanism that generates a spatial 
map, which is multiplied by the input features to amplify 
or attenuate them [43]. This gating mechanism is typi-
cally implemented using a learnable parameter that is 
trained alongside the rest of the model. Spatial attention 
can be incorporated into different CNN methods, includ-
ing CNNs and transformers. In CNNs, spatial attention 
can be added as a separate module after the convolutional 
layers, while in transformers, it is typically included as 
part of the self-attention mechanism. The SAM is shown 
in Fig.  4. In this mechanism, a convolution layer with a 
kernel size of 1× 1 and a filter and sigmoid function are 
used to produce the final weights for each region on the 
feature map. Thanks to the 1× 1 convolution, the depth 
dimension of each point in the feature map is gathered at 
one point. Then, matrix weights are obtained by applying 
the sigmoid function to this convolution output. Finally, 
the output feature map was acquired by implementing 
the element-wise multiplication of the obtained weights 
with the input.

Results and discussion
Numerous experimental analyses have been conducted 
to thoroughly examine the performance of the SAC 
model. These empirical investigations are presented in 

this section. Following this, the section elaborates on 
hyperparameter settings. Subsequently, the SAC model 
is contrasted with studies in the Kvasir dataset literature 
and state-of-the-art models like ViT, Swin Transformer, 
ConvMixer, and MLPMixer. Finally, the SAC model 
behavior analysis was performed for the Kvasir dataset 
using GradCAM (Gradient-weighted Class Activation 
Mapping).

Settings of hyperparameters
We utilize a specific arrangement of hyperparameters to 
train our SAC architecture using the TensorFlow library 
within the Google Colab, which includes a Tesla T4 GPU 
and 2× Intel(R) Xeon(R) CPU @ 2.30  GHz paired with 
12GB of RAM, offering ample computational capability 
for our training requirements. Overall, we anticipate that 
the conjunction of hyperparameters, callbacks and opti-
mizers with TensorFlow in the Google Colab setting will 
facilitate achieving cutting-edge outcomes with our SAC 
architecture. Our hyperparameters encompass valida-
tion split, image size, batch size, learning rate (lr), weight 
decay, number of epochs, filters, depth, kernel size, 
and patch size. Specifically, the proposed SAC model is 
divided into 70% training, 15% testing, and 15% valida-
tion dataset. The images were trained with an image size 
of 128× 128 pixels and a batch size of 32. Additionally, 
we set the learning rate (lr) to 0.001, the weight decay 
to 0.0001, and performed training for 25 epochs. The 
architecture incorporates 256 filters, a depth of 8 with 
a patch size of 2 and a kernel size of 5. Additionally, To 
optimize the architecture and minimize the loss func-
tion, we utilize the AdamW [44] optimizer. Aside from 
the hyperparameters, we incorporate two distinct call-
backs to enhance the training procedure. The initial call-
back, ReduceLROnPlateau, functions to diminish the lr 
when the validation loss plateaus, preventing overfitting 
and ensuring stability in training. The subsequent call-
back, ModelCheckpoint, saves the model weights peri-
odically throughout training, enabling us to preserve the 
best model according to validation accuracy, ensuring its 
availability for subsequent use.

The proposed SAC model was evaluated on the Kvasir 
dataset. The assessment of the SAC model’s efficiency 
relied on evaluation metrics like F1-score (F1s), precision 
(Pr), recall (Re) and accuracy (Acc). These metrics offer 
an objective quantitative measure, crucial in appraising a 
architecture’s predictive efficacy and identifying potential 
enhancement areas. Each criterion offers a specific view-
point on the architecture’s performance, each with its 
particular strengths and drawbacks. Below, a comprehen-
sive elucidation of these metrics is provided.

The metric of Acc (Eq. 1) serves as a fundamental eval-
uation measure, determining the proportion of correct 

Input OutputSigmoidConv (filter=1,
kernel_size=1)

Spatial Attention M echanism 

Fig. 4  Spatial attention mechanism
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predictions derived from the architecture. It is computed 
by dividing the count of accurate predictions by the 
overall number of predictions. Nonetheless, when deal-
ing with imbalanced datasets, where the sample sizes 
in each class differ significantly, Acc can be misleading. 
The Pr (Eq. 2), a metric assessing the ratio of true posi-
tives (TP) among all positive predictions generated by 
the architecture, is calculated by dividing TP by the 
sum of false positives (FP) and TP. The Pr is particularly 
valuable in  situations where the cost of an FP is signifi-
cant. For example, in medical diagnosis, an FP can cause 
unnecessary tests and treatments, leading to additional 
expenses and discomfort for the patient. The Re (Eq. 3), 
a metric determining the ratio of TP within all the gen-
uine positive samples in the dataset, is computed by 
dividing TP by the total of false negatives (FN) and TP. 
The Re is particularly useful when the cost of an FN is 
high. For instance, in disease diagnosis, an FN can lead 
to a delay in treatment, resulting in more severe symp-
toms or even death. The F1s (Eq. 4), a measure combin-
ing the Pr and Re through a harmonic mean, serves as a 
crucial metric to balance these factors, especially when 
dealing with imbalanced classes. This score offers a uni-
fied measure capturing both the Pr and Re, making it a 
powerful assessment metric for evaluating overall model 
performance.

FN, FP, TP and TP values are obtained from the con-
fusion matrix. The confusion matrix of the SAC archi-
tecture is given in Fig.  5. Considering the confusion 
matrix in Fig. 5, it shows that 422 images from 450 Dyed-
lifted-polyps images were predicted correctly. Similarly, 
it appears that 427 from 450 Dyed-resection-margins 
images, 404 from 450 Esophagitis images, 431 from 450 
Normal images, 418 from 450 Polyps images, and 419 
images from 450 Ulcerative colitis images appear to be 
predicted correctly. In addition, the Pr, Re, and F1s values 
for each class with the proposed SAC model according to 
the confusion matrix are given in Table 2.

(1)Acc =
TN + TP

TN + FN + TP + FP
,

(2)Pr =
TP

TP + FP
,

(3)Re =
TP

TP + FN
,

(4)F1s = 2×
Pr × Re

Pr + Re
.

Experimental results
In this section, the SAC model is compared with state-
of-the-art methods such as ConvMixer [40], Vanilla ViT 
(VVT) [45], Swin Transformer [46], MLPMixer [47], 
ResNet50 [48] and SqueezeNet [49]. Then, considering 
the recent studies for the Kvasir dataset, the SAC model 
was analyzed. Then, the latest studies for the Kvasir data-
set and the SAC model were compared.

Table  3 presents the performance comparison of sev-
eral state-of-the-art DL architectures on the Kvasir data-
set in terms of Re, Pr, Acc and F1s. The objective is to 
classify these images into their respective classes using 
DL architectures. VVT achieved an Acc of 79.52%, Re of 
80.0%, Pr of 80.0%, and F1s of 80.0%. VVT is a popular 
transformer-based model that has shown perfect perfor-
mance in CV tasks. However, compared to other models 
such as ConvMixer and SAC, VVT has a lower accuracy 
on this dataset. One possible reason is that the Kvasir 
dataset is highly complex and diverse, and VVT might 
not be able to capture all the relevant features effec-
tively. The second model is the Swin Transformer, which 
achieved an Acc of 74.52%, Re of 75.0%, Pr of 75.0%, 
and F1s of 74.0%. Swin Transformer is a recently pro-
posed model that aims to address the limitations of the 
standard transformer architecture, such as high memory 
requirements and limited receptive fields. Despite its 
promising results on other datasets, Swin Transformer 
underperformed on the Kvasir dataset. This might be due 
to the fact that the Kvasir dataset has unique character-
istics that require more specialized models. ConvMixer 
achieved F1s of 92.0%, Acc of 92.48%, Pr of 93.0%, and Re 
of 92.0%. ConvMixer is a novel architecture that replaces 
the self-attention mechanism in transformers with con-
volutional layers. This allows the model to learn local 
features efficiently and capture spatial dependencies. As 
shown in the table, ConvMixer outperformed most of the 
other models, including VVT and Swin Transformer, on 
the Kvasir dataset. This suggests that ConvMixer is well-
suited for complex medical image classification tasks. 
The fourth model is MLPMixer, which achieved an Acc 
of 63.04%, Re of 63.0%, Pr of 67.0%, and F1s of 63.0%. 
MLPMixer is another novel architecture that replaces 
the self-attention mechanism in transformers with MLPs 
(multi-layer perceptrons). MLPs are widely used in tra-
ditional neural networks and are known for their abil-
ity to learn complex functions. However, MLPMixer did 
not perform well on the Kvasir dataset, suggesting that 
the self-attention mechanism might be better suited for 
this task. The fifth model is ResNet50, which achieved 
an Acc of 87.44%, Re of 87.0%, Pr of 88.0%, and F1s of 
87.0%. ResNet50 is a popular CNN that has been shown 
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to be effective in many CV tasks. However, on the Kva-
sir dataset, ResNet50 was outperformed by ConvMixer 
and SAC. This might be due to the fact that ResNet50 

is a relatively older model and might not be optimized 
for the unique characteristics of the Kvasir. SqueezeNet 
acquired an Acc of 85.59%, Re of 86.0%, Pr of 86.0%, and 
F1s of 86.0%. SqueezeNet is another CNN that aims to 
reduce the memory and computational requirements of 

Fig. 5  The multi-class confusion matrix of the proposed SAC model

Table 2  Class-based classification report for the proposed 
SAC model

Classes Pr (%) Re (%) F1s (%) Support

Dyed-lifted-polyps 94.62 93.78 94.20 450

Dyed-resection-margins 94.47 94.89 94.68 450

Esophagitis 95.96 89.78 92.77 450

Normal 84.02 95.78 89.52 450

Polyps 95.87 92.89 94.36 450

Ulcerative colitis 96.99 93.11 95.01 450

Overall Acc 93.37 2700

Macro Avg 93.66 93.37 93.42 2700

Weighted Avg 93.66 93.37 93.42 2700

Table 3  The performance comparison of several state-of-
the-art DL models on the Kvasir dataset

Bold indicates best result

Model Acc (%) F1s (%) Pr (%) Re (%) Parameters

Vanilla ViT 79.52 80.0 80.0 80.0 769,222

Swin Transformer 74.52 74.0 75.0 75.0 396.630

ConvMixer 92.48 92.0 93.0 92.0 593.158

MLPMixer 63.04 63.0 67.0 63.0 1.633.030

ResNet50 87.44 87.0 88.0 87.0 49.226.502

SqueezeNet 85.59 86.0 86.0 86.0 1.254.430

SAC (Ours) 93.37 93.42 93.66 93.37 593.415



Page 11 of 15Demirbaş et al. Health Information Science and Systems           (2024) 12:32 

DL methods. While SqueezeNet achieved good perfor-
mance on the Kvasir dataset. The proposed SAC model 
acquired the highest Acc of 93.37%, Re of 93.37%, Pr of 
93.66%, and F1s of 93.42% on the Kvasir dataset among 
all the methods compared in the table.

The proposed SAC model is a novel model that com-
bines the strengths of two different types of DL mod-
els, namely spatial attention and ConvMixer. The spatial 
attention is a mechanism that enables the method to 
selectively concentrate on particular regions of the image 
while ignoring irrelevant regions. This is achieved by 
assigning different weights to different regions of the 
image, based on their relevance to the task at hand. In the 
proposed SAC model, spatial attention is implemented to 
the input of the ConvMixer layers, allowing the method 
to focus on the most relevant features in the input 
images. The ConvMixer, on the other hand, is a recently 
proposed architecture that replaces the self-attention 
mechanism in transformers with convolutional layers. 
The ConvMixer is well-suited for image classification 
tasks, as it allows the model to learn local features effi-
ciently and capture spatial dependencies. In the proposed 
SAC model, ConvMixer layers are used as the main 
building blocks of the model, which allows it to extract 
relevant features from the input images. The combina-
tion of the spatial attention mechanism and ConvMixer 
in the proposed SAC model allows the model to effec-
tively learn both local and global features from the input 
images. This is particularly important for medical image 
classification tasks, as the relevant features might be 
distributed across different regions of the image. When 
the classification accuracies of the proposed SAC model 
and the ConvMixer architecture are compared, it is seen 
that the SAC model achieves 0.89% better accuracy. This 

increase in accuracy is due to the spatial attention mech-
anism added to the proposed model. With this result, it is 
clear that the spatial attention mechanism improves the 
performance of the SAC model by enabling it to focus on 
the most relevant regions of the image.

In addition, the number of trainable parameters for 
all models is given in Table 3. The proposed SAC model 
has 593.415 parameters, while ConvMixer has 593.158 
parameters. The spatial attention mechanism in the pro-
posed SAC model increased the number of trainable 
parameters by 257 and contributed 0.89% to the clas-
sification accuracy. On the other hand, the model with 
the lowest parameters is Swin transformer. However, the 
Swin transformer model obtained lower classification 
results than both the proposed SAC model and Conv-
Mixer. Among the other models, the highest trainable 
parameter was found with ResNet50 with 49 million.

A comparison of the classification accuracies obtained 
by various methods using the Kvasir dataset is presented 
in Table 4. The comparison between the SAC model and 
the existing methods was performed based on common 
evaluation metrics and identical data. As demonstrated 
in Table  4, the SAC architecture yielded a classifica-
tion Acc of 93.37%, outperforming the other methods. 
Of the other approaches evaluated, the method yield-
ing the closest performance to the SAC model was 
reported by Lonseko et al. [26] with a classification Acc 
of 93.19%. The SAC model surpassed this performance 
with a margin of 0.18%. The least successful approach 
in terms of classification accuracy was FocalConvNet, 
developed by Srivastava et al. [24], which achieved a clas-
sification Acc of 63.73%. When other studies using the 
Kvasir dataset are examined, the studies with a classifi-
cation Acc of less than 90% are as follows: Sandler et al. 

Table 4  Comparison results with studies using the Kvasir dataset in the literature

Bold indicates best result

Author Methods Dataset Acc (%)

Srivastava et al. [24] FocalConvNet Kvasir 63.73

Lonseko et al. [26] Deep CNN based SAM Kvasir 93.19

Sandler et al. [50] MobileNetV2 Kvasir 79.15

Pozdeev et al. [51] Custom CNN for two-stage classification Kvasir 88.00

Agrawal et al. [52] Combined VGG, ResNet50, InceptionV3, Xception, MobileNet Kvasir 83.8

Zhang et al. [53] Regression-based CNN Kvasir 88.6

Fonolla et al. [54] Multi-model classification Kvasir 90.20

Liu et al. [55] Transfer learning framework Kvasir 93.00

Wang et al. [56] Efficient channel attention (ECA) module Kvasir 92.81

Zhang et al. [57] Single shot MultiBox Detector for gastric polyps network Kvasir 90.4

Gjestang et al. [58] Teacher–student framework HyperKvasir 89.3

Gjestang et al. [58] Teacher–student framework Kvasir Capsule 69.5

SAC (Ours) Spatial-attention ConvMixer Kvasir 93.37
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[50] 79.15%, Pozdeev et al. [51] 88%, Agrawal et al. [52] 
83.8% and Zhang et al. [53] 88.6%. The studies that have 
been obtained by using Kvasir data and with a classifi-
cation result of more than 90% are as follows: Lonseko 
et  al. [26] 93.19%, Fonolla et  al. [54] 90.20%, Liu et  al. 
[55] 93%, Wang et  al. [56] 92.81% and Zhang et  al. [57] 
90.4%. When all the methods used for comparison in the 
literature are examined, the proposed SAC model shows 
higher classification performance than other methods.

GradCAM visualization of the proposed SAC model 
on the Kvasir Dataset
In this experimental study, we present GradCAM (Gra-
dient-weighted Class Activation Mapping) [59] visu-
alizations for each class in the dataset to provide further 
insight into how the proposed SAC model makes its pre-
dictions. GradCAM is a visualization technique that pro-
vides insights into how a CNN makes its predictions by 
highlighting the regions of the input image that are most 
important for the network’s decision. To create a Grad-
CAM representation, the gradient of the score for the tar-
get class is computed concerning the feature maps from 
the final convolutional layer. These gradients are then 
weighted by their importance to the output class, and the 
weighted gradients are summed to obtain the class acti-
vation map. This map is then overlaid onto the original 
input image to highlight the regions that are most impor-
tant for the network’s decision for a particular class. 
GradCAM proves valuable in interpreting CNN archi-
tectures as it provides insights into the decision-making 
process, aiding in pinpointing any potential biases or 
shortcomings within the architecture [59]. In this con-
text, we generated GradCAM visualizations for each class 
in the Kvasir dataset to gain insights into how the pro-
posed architecture is making its predictions. These visu-
alizations allowed us to identify the important regions of 
the image associated with each class and provided a more 
interpretable way of understanding the model’s behavior. 
The visualizations in Fig. 6 show that the SAC architec-
ture is able to identify the relevant regions in the input 
image with high accuracy. The regions highlighted by the 
GradCAM technique correspond well with the anatomi-
cal structures and pathologies present in the images. This 
suggests that the proposed architecture is able to capture 
the salient features of the input images, which are critical 
for accurate classification. Moreover, the visualizations 
also reveal the robustness of the proposed architecture to 
variations in image quality and lighting conditions. The 
architecture is able to identify the relevant regions in the 
input images even when they are of low quality or have 
poor lighting. This demonstrates that the proposed archi-
tecture is capable of generalizing well to new, unseen 
images. The GradCAM visualizations presented provide 

valuable insights into the inner workings of the proposed 
architecture. They demonstrate that the model is capa-
ble of accurate and robust classification and that it is able 
to identify the relevant regions in the input images with 
high accuracy. These findings have important implica-
tions for the medical field, where accurate and reliable 
classification of medical images is critical for effective 
diagnosis and treatment [59, 60].

Conclusions
This study aimed to improve and evaluate DL methods 
for automatic classification and detection of GI diseases 
using the Kvasir dataset. The dataset contains over 8000 
high-quality GI endoscopy images, including several dif-
ferent GI diseases and normal tissue, and has been com-
monly used in recent years for developing and evaluating 
DL methods. The high quality of the images, acquired 
using high-definition endoscopes and including anno-
tations for various lesions and diseases, is one of the 
strengths of the Kvasir dataset.

In order to improve the performance of DL methods 
on this dataset, several DA methods were employed, 
including random flipping, random rotation, and ran-
dom brightness. Furthermore, to address the class imbal-
ance problem resulting from the merging of three normal 
classes into one class, two DA methods were imple-
mented to five of the classes. This helped to increase the 
diversity of the training data and improved the generali-
zation performance of the methods.

The proposed model, called the Spatial-Attention 
ConvMixer (SAC), is a new DL method that incorpo-
rates both spatial attention and ConvMixer blocks. The 
SAM allows the network to selectively focus on the most 
informative regions of the input images by weighting the 
importance of each spatial location in the feature maps. 
This mechanism has been shown to be particularly effec-
tive for medical image analysis tasks, where the most 
informative regions of the images are often critical for 
accurate diagnosis and treatment planning. The Con-
vMixer blocks, on the other hand, provide a powerful 
feature extraction capability that allows the model to cap-
ture complex patterns and structures in the input images.

The SAC model achieved state-of-the-art results on 
the Kvasir, with an Acc of 93.37%, outperforming sev-
eral other DL methods, including the Vanilla ViT, Swin 
Transformer, ConvMixer, MLPMixer, ResNet50, and 
SqueezeNet. The SAC architecture also achieved high 
F1s, Pr, and Re scores, indicating that it is capable of 
accurately detecting and classifying different gastrointes-
tinal diseases.

The findings of this investigation establish the efficacy 
of the SAC model for automatic identification and clas-
sification of GI ailments using DL models on the Kvasir 
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dataset. Moreover, the incorporation of DA methods, 
including random flipping, rotation, and brightness, 
can substantially enhance the performance of DL meth-
ods, particularly in scenarios with class imbalance. 
Additionally, attention mechanisms, such as the spatial 
attention mechanism proposed in this study, can aid 
in improving the interpretability and precision of DL 
methods for medical image analysis tasks.

The SAC model can have several potential applica-
tions in clinical practice, such as assisting medical 
professionals in diagnosis and treatment planning for 
different gastrointestinal diseases. Moreover, the SAC-
architecture can be adapted and extended to other 
medical image analysis tasks, like the classification and 
detection of other types of cancers, and can potentially 
lead to the development of more accurate and reliable 
DL methods for medical image analysis.

Class Image GradCAM Visualization

Dyed-lifted-polyps

Dyed-resection-margins

Esophagitis

Polyps

Ulcerative colitis

Fig. 6  GradCam visualization for each class
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