
Huang et al. 
Health Information Science and Systems (2023) 11:48
https://doi.org/10.1007/s13755-023-00248-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were 
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Health Information Science 
and Systems

Federated machine learning for predicting 
acute kidney injury in critically ill patients: 
a multicenter study in Taiwan
Chun‑Te Huang1,2, Tsai‑Jung Wang2, Li‑Kuo Kuo3, Ming‑Ju Tsai4, Cong‑Tat Cia5, Dung‑Hung Chiang6, 
Po‑Jen Chang7, Inn‑Wen Chong4, Yi‑Shan Tsai8, Yuan‑Chia Chu9, Chia‑Jen Liu1, Cheng‑Hsu Chen10, 
Kai‑Chih Pai11* and Chieh‑Liang Wu12* 

Abstract 

Purpose: To address the contentious data sharing across hospitals, this study adopted a novel approach, federated 
learning (FL), to establish an aggregate model for acute kidney injury (AKI) prediction in critically ill patients in Taiwan.

Methods: This study used data from the Critical Care Database of Taichung Veterans General Hospital (TCVGH) from 
2015 to 2020 and electrical medical records of the intensive care units (ICUs) between 2018 and 2020 of four referral 
centers in different areas across Taiwan. AKI prediction models were trained and validated thereupon. An FL‑based 
prediction model across hospitals was then established.

Results: The study included 16,732 ICU admissions from the TCVGH and 38,424 ICU admissions from the other four 
hospitals. The complete model with 60 features and the parsimonious model with 21 features demonstrated com‑
parable accuracies using extreme gradient boosting, neural network (NN), and random forest, with an area under 
the receiver‑operating characteristic (AUROC) curve of approximately 0.90. The Shapley Additive Explanations plot 
demonstrated that the selected features were the key clinical components of AKI for critically ill patients. The AUROC 
curve of the established parsimonious model for external validation at the four hospitals ranged from 0.760 to 0.865. 
NN‑based FL slightly improved the model performance at the four centers.

Conclusion: A reliable prediction model for AKI in ICU patients was developed with a lead time of 24 h, and it per‑
formed better when the novel FL platform across hospitals was implemented.
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Introduction
 Acute kidney injury (AKI) is a potentially life-threaten-
ing clinical syndrome with no effective treatment other 
than supportive care and dialysis [1]. The prevalence of 
AKI is approximately 30–60% for critically ill patients 
within 7 days of admission to the intensive care unit 
(ICU) [2]. Moreover, AKI is associated with higher rates 
of in-hospital mortality and long-term chronic kidney 

disease. Therefore, timely diagnosis and early awareness 
of AKI are crucial for its management [3].

A practical and concise AKI prediction model may 
reduce the burden of preventable and treatable AKI 
events. Recently, the use of deep learning and machine 
learning techniques for predicting AKI in critically ill 
patients has been increasing [4–6]. However, practical, 
generalizable, externally validated, and robust prediction 
models are relatively uncommon [7]. To develop an unbi-
ased and generalized model, data from all target popula-
tions must be included.

A multicenter study is a potential solution for this 
issue. Currently, these multisite collaborations use cen-
tralized learning (CL), whereby data from different 
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locations are shared in a centralized location following 
inter-site agreements [8]. The most extensive multisite 
collaboration to establish an AKI prediction model using 
CL was conducted by Tomasev et al. [9] who used a data-
set of 703,782 patients from 172 inpatient and 1062 out-
patient sites of the United States Department of Veterans 
Affairs. However, such data centralization cannot always 
be accomplished because sharing data outside each insti-
tute poses privacy and safety challenges [10].

Federated learning (FL), a framework to deal with pos-
sible data leakage issues in multicenter studies, has been 
put forth and gained widespread attention in various 
therapeutic fields recently. FL trains prediction mod-
els across multiple databases without the need to share 
or access individual data points. That said, unlike CL, it 
requires no centralized data warehouse infrastructure 
[8, 11, 12]. This method not only tackles the difficulties 
in gathering raw data from various hospital sources, but 
also ensures that patient privacy is protected [11, 12]. 
While implementing a FL framework in the healthcare 
fields, a cloud-based platform was built, allowing each to 
independently train their models using their local data-
sets. These hospital-specific models were then uploaded 
to the platform, and parameter adjustments were made 
based on the training outcomes [11, 12]. This approach 
facilitated the creation of generalizable models, e.g., a 
model capable of predicting AKI, across different hos-
pital’s datasets while maintaining individual patient’s 
privacy.

Although researchers have focused on constructing 
appropriate machine-learning models for AKI prediction; 
however, the applications of most of their approaches are 
constrained by their data centralization nature. After an 
extensive literature search, it is found that few prior stud-
ies have successfully achieved an accurate model for AKI 
prediction based on decentralized medical data across 
different institutions. Accordingly, to address the afore-
mentioned disadvantage of CL, there is an urgent need 
to establish a machine-learning model for AKI prediction 
in the ICU and construct a FL platform to determine if an 
aggregated FL model can outperform a single institute-
trained model.

Methods
Ethics statement
This study was conducted in accordance with the ethi-
cal principles of the World Medical Association Decla-
ration of Helsinki and the International Conference on 
Harmonization Good Clinical Practice Guidelines. The 
Institutional Research Board (IRB) of Taichung Vet-
erans General Hospital (TCVGH) approved the study 
(TCVGH-IRB no. SE21473A) and waived the require-
ment for informed consent. The validation cohort at 

each hospital was approved by its own IRB (MMH-IRB 
No. 21MMHIS367e; KMUH-IRB No. E(I)-20,210,340; 
NCKUH-IRB No. A-ER-110-483; VGHTPE-IRB No. 
2021-12-004BC).

Dataset used to develop the AKI prediction model 
in critically ill patients
To build the machine-learning model for AKI prediction 
in critically ill patients, we extracted data from the critical 
care database of TCVGH, a medical center in the second 
largest metropolitan area in Taiwan, between 2015 and 
2020. The dataset included all the consecutive patients 
admitted to the adult ICU and encompassed the compre-
hensive information during the ICU admissions, includ-
ing 23 numerical and image data items, 339 features, and 
33,508 ICU events (e.g., patients’ demographics, past 
medical history, and ICU severity scoring indices…, etc.).

Electronic medical records of the consecutive adult 
ICU patients in four other referral medical centers at dif-
ferent locations in Taiwan, i.e., Mackay Memorial Hospi-
tal (Taipei city, Taiwan), Taipei Veterans General Hospital 
(Taipei city, Taiwan), National Cheng Kung University 
Hospital (Tainan city, Taiwan), and Kaohsiung Medi-
cal University Hospital (Kaohsiung city, Taiwan) during 
2018 to 2020 were utilized for the external validation and 
models training.

For patients who were repeatedly admitted to the ICUs, 
only the data of the first ICU admission are used. Exclu-
sion criteria were patients younger than 20 years of age, 
with end-stage renal disease (ESRD) and receiving renal 
replacement therapy, had AKI occurred before the index 
ICU admission, underwent first hemodialysis within 24 h 
of ICU admission, and stayed in the ICU less than 30 h 
(Supplemental Fig. 1).

AKI definition and labeling
AKI cases were labeled according to the Kidney Dis-
ease: Improving Global Outcomes (KDIGO) 2012 defini-
tion of AKI based on serum creatinine and urine output 
[13]. Briefly, KDIGO stage 1 AKI was characterized by 
increased serum creatinine to ≥ 0.3  mg/dL within 48  h, 
or an increase ≥ 1.5-times from the baseline value within 
7 days, or urine output < 0.5 mL/kg/h for ≥ 6 h. Baseline 
serum creatinine was defined as the lowest value before 
the index ICU admission for patients transferred from 
the ward or the first available value for patients admit-
ted directly from the emergency department, excluding 
serum creatinine values ≥ 4  mg/dL. Using the KDIGO 
criteria and their corresponding definitions for AKI 
severity, AKI was categorized as all-stage (KDIGO stages 
1, 2, and 3), moderate and severe (KDIGO stages 2 and 
3), and severe (KDIGO stage 3).
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Model development and evaluation
The TCVGH-AKI prediction model (Fig. 1A) was devel-
oped according to the transparent reporting of a multi-
variable prediction model for individual prognosis or 
diagnosis guidelines [14]. The study design used a 6-h 
feature window beginning from 24  h before the AKI 
event and a random 6-h feature window beginning 
from 30  h after ICU admission of non-AKI patients for 
machine learning (Supplemental Fig.  2). Sixty features 
were selected for model training, including age, vital 
signs, laboratory test results, and medications (Supple-
ment Table 1). The details of the definition of the feature 
are provided in Supplement Table  2. Missing data were 
imputed with the mean for age, vital signs, and laboratory 

test results. Medications were input as categorical data, 
with 0 indicating no prescription and 1 indicating admin-
istration during the previous 7-day window. The missing 
proportion of the selected features in the TCVGH cohort 
is shown in Supplement Table 4. We applied four differ-
ent machine learning models, eXtreme gradient boosting 
(XGBoost), neural network, random forest, and logistic 
regression, to the training cohort and performed five-
fold cross-validation to build the initial prediction model. 
The rationale behind selecting these four algorithms is 
as follows: XGBoost: It efficiently handles missing data, 
incorporates regularization, and captures both linear and 
non-linear relationships [15]; Neural network: Particu-
larly in deep learning, it automatically learns intricate 

Fig. 1 Illustration of the data workflow for model development, external validation, federated learning, and temporal validation. A Taichung Veter‑
ans General Hospital (TCVGH) model development. B External validation of the TCVGH model among four other hospitals. C Building the federated 
learning platform and creating the aggregated model. D Temporal validation of the aggregated model among the five hospitals
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patterns from diverse data sources, making them adept at 
predicting AKI onset using varied predictors [16]; Ran-
dom forest: Functioning as an ensemble learner, it excels 
with large datasets, estimates missing values, and ranks 
variable importance [17]. In ICU data analysis it identi-
fies critical AKI predictors that require vigilant moni-
toring. Logistic regression: Simple and interpretable, 
logistic regression calculates outcome probabilities. It is a 
valuable baseline model for binary AKI prediction, espe-
cially in clinical contexts. These four algorithms achieve 
a balance between simplicity and complexity, as well as 
between interpretability and performance. By comparing 
their performances, we aimed to identify the best model 
that balances accuracy and clinical interpretability for 
predicting AKI in ICU patients.

Model performance was evaluated using the area 
under the receiver-operating characteristic (AUROC) 
curve, calibration, and decision curve analysis [18, 19]. 
The Shapley Additive Explanations (SHAP) values were 
used to analyze the feature importance. The Platt scal-
ing method was used for model calibration. We used the 
least absolute shrinkage and selection operator method 
to develop a parsimonious model with fewer features to 
improve its generalizability to other hospitals.

External validation of the model
To ensure data privacy and consistency across different 
medical centers, TCVGH established a protocol for data 
cleaning and feature definition and provided a program-
ming code package for alliance hospitals to process their 
data. These included automatic data cleaning, missing 
data imputation, and applying four parsimonious predic-
tion model algorithms for external validation at the each 
of the other four hospitals. The characteristics of the AKI 
versus non-AKI groups and the missing proportion of 
selected features of the 2018–2020 cohort of five medi-
cal centers are provided in Supplement Tables  5 and 6, 
respectively.

Development of an aggregated FL model
We developed an FL platform across the five hospitals: 
Taichung Veterans General Hospital (TCVGH), Mac-
kay Memorial Hospital (MMH), Taipei Veterans Gen-
eral Hospital (TVGH), National Cheng Kung University 
Hospital (NCKU) and Kaohsiung Medical University 
Hospital (KMUH) (Fig.  1B). The 2018 to 2019 datasets 
of the five hospitals were used to develop an FL-based 
aggregated model. To fairly compare the performances of 
the aggregated FL and the parsimonious TCVGH mod-
els, they were tested using the individual hospital’s 2020 
dataset. The same features used in the TCVGH parsimo-
nious model were selected for training the FL model. At 
each participating hospital, the dataset was split into 80% 

for model training and 20% for internal validation using 
a neural network. The number of participating hospitals, 
K, was set to five, and network connectivity among the 
hospitals was confirmed before initiating FL. The number 
of federated rounds was set to 30, with two local train-
ing epochs per round at each hospital. The batch size 
was set to 32, and the number of local training iterations 
depended on the dataset size at each hospital. Using the 
Adam optimizer, the learning rate was set to 1 ×  10−2 
for both local learning and FL. Each hospital selected 
the best local model during the FL process by tracking 
its performance among the internal validation cohort. 
After each FL round, the central server determined the 
best-aggregated model based on the average validation 
scores from each hospital. When the FL was completed, 
the final best-aggregated model was evaluated among the 
temporal validation cohort at each hospital.

Statistical analysis
The demographic and clinical characteristics of patients 
with and without AKI are presented as medians with 
interquartile ranges for continuous variables and as num-
bers (n) and proportions (%) for categorical variables. We 
used the Mann–Whitney U test to examine differences 
between groups for continuous data and the chi-square 
test for categorical data. P < 0.05 indicated statistical sig-
nificance. All data processing and statistical analyses 
were performed using Python version 3.10.2.

Results
Derivation cohort description
The TCVGH cohort consisted of 13,861 ICU admis-
sions from 2015 to 2019; 30.9% of the cohort had AKI 
and a 64.8% were male. Table  1  compares the demo-
graphic data of the AKI and non-AKI groups. Patients 
in the AKI group were older (70 years vs. 63 years) and 
had higher Acute Physiology and Chronic Health Evalu-
ation II scores (26 vs. 20), higher Sequential Organ Fail-
ure Assessment scores (8 vs. 6), and a higher rate of 
vasopressor use (46.1% vs. 22.6%). In the AKI group, 
30.2% received hemodialysis for the first time during ICU 
admission. The AKI group had poorer outcomes than 
the non-AKI group, including longer hospital stays (13.8 
days vs. 4.3 days) and higher in-hospital mortality rates 
(41.0% vs. 6.2%). The 2020 TCVGH data were not used 
during model development to prevent overfitting, and 
their demographics had distributions similar to those of 
the derivation cohort.

Specifically, the severity of AKI is also documented 
in Supplement Table  10. Notably, around 30% of AKI 
patients are in the most severe stage requiring dialysis, 
indicating the critical nature of their condition and the 
potential need for intensive interventions such as dialysis. 
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These scores, indices, and additional data emphasize the 
depth of the information captured in our study, providing 
a comprehensive understanding of the patients’ health 
status and the criticality of the disease.

Performance of the full and parsimonious models
Sixty features were initially selected to construct the 
full model. The performances of the four classifiers 
within the full and parsimonious models are shown in 
Table  2. In the full models, XGBoost, neural network, 

and random forest performed better than logistic regres-
sion, with an AUROC curve value of 0.905 to 0.928, accu-
racy of 0.839 to 0.867, and precision of 0.692 to 0.769. 
After applying the least absolute shrinkage and selec-
tion operator for feature selection, the final 21 features 
(Supplemental Table  7) were included to develop the 
parsimonious model. The performance of the XGBoost, 
neural network, and random forest classifiers with the 
parsimonious model revealed a similar AUROC curve 
value (0.911–0.917) compared to the full model (Table 2; 

Table 1 Characteristics of the AKI and non-AKI groups of the TCVGH derivation and internal validation cohorts

Data are presented as median (interquartile range) or number (%). AKI acute kidney injury, ALT alanine aminotransferase, APACHE II acute physiology and chronic 
health evaluation II, AST aspartate aminotransferase, BMI Body Mass Index, BUN blood urea nitrogen, CCI Charlson Comorbidity Index, ICU intensive care unit, NSAID 
COX non-steroid anti-inflammatory drug cyclooxygenase, PT prothrombin time, SOFA sequential organ failure assessment, TCVGH Taichung Veterans General Hospital, 
WBC white blood cell

Demographics Derivation cohort p-value Validation cohort p-value

AKI Non-AKI AKI Non-AKI

N = 4287  N = 9574  N = 849  N = 2022

Age (years) 70 (59–81) 63 (52–74) < 0.001 69 (58–79) 63 (51–74) < 0.001

Sex (male), n (%) 2700 (63) 6288 (65.7) 0.002 515 (60.7) 1274 (63) 0.236

BMI (kg/m2) 24.1 (21.4–27.2) 23.7 (21–26.5) < 0.001 24.6 (21.7–27.9) 23.9 (21.2–26.7) < 0001

Comorbidity and severity

 CCI 2 (1–5) 1 (0–3) < 0.001 3 (1–5.3) 1 (0–3) < 0.001

 APACHE II score 26 (21–30) 20 (15–25) < 0.001 24 (20–29) 19 (15–24) < 0.001

 SOFA score 8 (6–11) 6 (4–8) < 0.001 8 (6–11) 6 (4–8) < 0.001

 Vasopressor, n (%) 1975 (46.1) 2161 (22.6) < 0.001 403 (47.5) 435 (21.5) < 0.001

 Ventilator, n (%) 794 (18.5) 1382 (14.4) < 0.001 249 (29.3) 407 (20.1) < 0.001

Nephrotoxic medication

 NSAID COX‑1 inhibitor 295 (6.9) 1065 (11.1) < 0.001 73 (8.6) 266 (13.2) < 0.001

 NSAID COX‑2 inhibitor 130 (3) 399 (4.2) 0.001 30 (3.5) 146 (7.2) < 0.001

 Vancomycin 465 (10.8) 919 (9.6) 0.024 105 (12.4) 208 (10.3) 0.103

 Gentamicin 181 (4.2) 430 (4.5) 0.475 43 (5.1) 58 (2.9) 0.004

 Colistin 171 (4) 39 (0.4) < 0.001 23 (2.7) 5 (0.2) < 0.001

 Amphotericin B 57 (1.3) 24 (0.3) < 0.001 9 (1.1) 8 (0.4) 0.034

Clinical data

 WBC count (/µL) 10,650 (7530–14,897.5) 9910 (7510–13,010) < 0.001 10,490 (7740–14,650) 9940 (7515–13,067.5) 0.002

 Hemoglobin (g/dL) 9.7 (8.7–11.3) 11.1 (9.6–12.9) < 0.001 9.6 (8.4–11.2) 11.2 (9.7–12.9) < 0.001

 Platelet  (103/µL) 161 (92–243) 200 (146–263) < 0.001 165 (92–245.8) 199 (144–261) < 0.001

 AST (mg/dL) 46 (28–80) 32 (22–56) < 0.001 47 (29–79) 30 (21–55) < 0.001

 ALT (mg/dL) 29 (17–55) 25 (16–46) < 0.001 32 (17–60) 25 (15–48) < 0.001

 Total bilirubin (mg/dL) 0.7 (0.5–1.5) 0.6 (0.4–1) < 0.001 0.7 (0.4–1.5) 0.6 (0.4–0.9) < 0.001

 PT (seconds) 12.4 (11.1–14.8) 10.8 (10.1–11.9) < 0.001 12.4 (11.3–14.7) 11.2 (10.5–12.3) < 0.001

 BUN (mg/dL) 31 (19–52) 17 (12–24) < 0.001 30 (19–50) 18 (13–25) < 0.001

 Serum creatinine (mg/dL) 1.2 (0.8–2.1) 0.8 (0.6–1.1) < 0.001 1.3 (0.8–2) 0.8 (0.7–1.1) < 0.001

 Serum Lactate (mg/dL) 19 (9.5–36.2) 13 (8.6–23.1) < 0.001 14.5 (8.9–33.1) 10.2 (7.9–19.4) < 0.001

 24‑h Urine output (mL) 1300 (730–2050) 2500 (1810–3420) < 0.001 1320 (738.8–2102.0.5) 2542.5 (1830–3400) < 0.001

Outcome

 Hemodialysis, n (%) 1295 (30.2) 0 (0) < 0.001 249 (29.3) 0 (0) < 0.001

 ICU length of stay (days) 13.8 (6.9–23.6) 4.4 (2.7–8.8) < 0.001 15.1 (7.4–25) 4.2 (2.6–8.9) < 0.001

 Hospital mortality, n (%) 1758 (41) 598 (6.2) < 0.001 356 (41.9) 144 (7.1) < 0.001
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Fig.  2A). The calibration plot showed that all classifiers 
tended to overestimate the AKI risk (Fig. 2B). Based on 
the decision curve analysis comparing the four classi-
fiers, XGBoost and the neural network had a higher net 
benefit across different probability thresholds, whereas 
logistic regression had the least net benefit (Fig. 2C). The 
SHAP plot of the neural network models revealed that 8- 
and 24-h urine output, diuretic use, pulse, and creatinine 
were the main five features contributing to the model 
prediction (Fig. 3).

External validation of the parsimonious TCVGH model
We applied the parsimonious neural network model to 
four medical centers for external validation (Fig.  1B). 
Supplemental Table 5 summarizes the demographics and 
distribution of the input features of the external datasets 
from the four hospitals. The prevalence of AKI varied 
from 24.9 to 67.2% among 2874 to 12,483 cases at the 
four hospitals. The prediction performance decreased 
from 0.911 to 0.812 to 0.865 at three hospitals with an 
incidence of AKI comparable to that at TCVGH. For the 
hospital with fewer cases and a higher AKI incidence, 

the performance decreased to an AUC of 0.760 (Table 3, 
Supplemental Fig. 3).

Comparison of the aggregated FL and parsimonious 
TCVGH models
The aggregated FL model had statistically improved 
prediction performance compared to the parsimonious 
TCVGH model at the four hospitals, with the improve-
ments in the AUROC curve ranging from 0.012 to 0.039. 
However, there was a slight improvement in the AUROC 
curve of 0.003 for TCVGH, but the difference was not 
significant (Fig. 4, Supplemental Table 8).

Discussion
We developed a machine learning model with explain-
able features to predict KDIGO stages 1 to 3 AKI in adult 
ICU patients with a lead time of 24  h. Our model was 
externally validated at four independent medical centers 
in Taiwan and yielded promising results. We also estab-
lished an FL platform enabling the creation of an aggre-
gated model using model weight exchange among all five 
centers without sharing any raw data. This aggregated 

Table 2 Comparison of TCVGH model performance with 60 versus 21 features using four classifiers among the temporal 
validation cohort

AUROC area under the receiver-operating characteristic, TCVGH Taichung Veterans General Hospital

Classifier Features Sensitivity Specificity Precision Accuracy AUROC curve

XGBoost 60 0.787 0.901 0.769 0.867 0.928

21 0.769 0.889 0.744 0.853 0.917

Neural network 60 0.766 0.879 0.726 0.845 0.905

21 0.764 0.888 0.742 0.852 0.911

Random forest 60 0.822 0.846 0.692 0.839 0.913

21 0.817 0.845 0.688 0.837 0.912

Logistic regression 60 0.728 0.875 0.710 0.831 0.878

21 0.731 0.880 0.719 0.836 0.880

Fig. 2 Taichung Veterans General Hospital (TCVGH) parsimonious model performance using the temporal validation dataset. A Receiver‑operating 
characteristic (ROC) curve. B Calibration. C Decision curve analysis
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model outperformed the original TCVGH model for the 
remaining four hospitals.

AKI is a heterogeneous syndrome that can increase 
acute morbidity and mortality rates, thus affecting long-
term cardiovascular and renal outcomes. Early diag-
nosis and treatment are essential to the prevention of 
long-term complications [20]. Electronic alerts have 
been suggested for the early diagnosis of AKI [21]. How-
ever, evidence of their benefits in ICUs [22] and general 
wards [23] is limited. More promising prediction mod-
els involving machine learning that were developed with 
different prediction windows and AKI severities have 

recently emerged. These models provide snapshot scores 
[24], moving windows [21], or continuous AKI prediction 
[25]. The prediction model generally has higher accuracy 
with a shorter prediction window (lead time) and more 
severe AKI.

Traditional machine learning-based AKI prediction 
models have achieved AUROC curve values from 0.75 
to 0.90 according to internal validation studies and from 
0.75 to 0.86 according to external validation studies [26, 
27]. In this study, we assumed that predictors within a 
6-h feature window before 24 h of an AKI event would be 
sufficient for machine learning to discriminate between 
AKI and non-AKI cases. A 24-h lead time for prediction 
also enables clinical usefulness by allowing clinicians to 
review high-risk patients for intervention.

Le et al. [6] developed a convolutional neural network 
for the AKI prediction model with a lead time of 24  h 
in the ICU based on the Medical Information Mart for 
Intensive Care III, which is a single-center dataset; their 
model showed AUC values of 0.834 and 0.867, predict-
ing all-stage and stage 3 AKI, respectively. In compari-
son, our model demonstrated AUC values of 0.911 and 
0.977 for predicting all-stage AKI and dialysis, respec-
tively (Supplementary Table 9). Of note, AUC is chosen 
as it is widely used for binary classification tasks, like 
medical predictions. It gauges a model’s ability to differ-
entiate cases regardless of the chosen threshold. A higher 
AUC means better prediction. In medicine, AUC is cru-
cial to assess a model’s condition separation without 
tying it to a single threshold, aligning well with clinical 
considerations.

An explainable ML model is crucial to avoid black-
box prediction and to create trust among clinicians. By 
applying the SHAP value, we found that decreased urine 
output, increased use of diuretics, higher heart rate, and 
increased serum creatinine levels were the main factors 
contributing to the prediction of AKI. Previous machine 
learning studies of AKI prediction in the ICU [26–28] 
have shown that serum creatine and urine output are 
usually among the main five features in the prediction 
models. Consistent with these studies, we found that 
the urine and serum creatinine levels used to define AKI 
were strong predictors of AKI in the ICU. Combining 

Fig. 3 Shapley Additive Explanations (SHAP) plot of the neural net‑
work classifier in the parsimonious model. BP blood pressure, BT body 
temperature, BUN blood urea nitrogen, RAS renin aldosterone system, 
RR respiratory rate, SysBP systolic blood pressure

Table 3 External validation of the parsimonious model among four hospitals in Taiwan

AUROC area under the receiver-operating characteristic, MMH Mackay Memorial Hospital, TVGH Taipei Veterans General Hospital, NCKU National Cheng Kung 
University Hospital, KMUH Kaohsiung Medical University Hospital

N Sensitivity Specificity Precision Accuracy AUROC curve

1. MMH 12,483 0.758 0.817 0.581 0.802 0.865

2. KMUH 12,299 0.668 0.768 0.561 0.737 0.812

3. NCKU 10,768 0.661 0.818 0.715 0.754 0.825

4. TVGH 2874 0.547 0.823 0.859 0.640 0.760
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these two main features could streamline the complex 
model to a parsimonious one, making it easily applicable 
in hospitals. In contrast to other studies, we found that 
diuretics, which are used to increase urine output and are 
often prescribed to patients with fluid overload, are also a 
strong indicator of AKI. The feature importance analysis 
of our model mitigates the problem of black-box predic-
tions and provides an explainable model for clinicians.

Only a few studies have externally validated the AKI 
prediction model in ICUs. Using the Medical Informa-
tion Mart for Intensive Care IV dataset, Zhang et al. [26] 
developed an ensemble machine learning model to pre-
dict sepsis-associated AKI 12 to 48 h before its onset. The 
model was externally validated in the eICU Collaborative 
Research Database (eICU dataset), with an AUC of 0.774 
to 0.788. The performance of our model among four 
external validation cohorts revealed an above-average 
performance, with an AUC of 0.760 to 0.865. However, 
the performance of our model deteriorated at the fourth 
hospital, which had a twofold higher prevalence of AKI 
than other hospitals (Supplemental Fig.  3). This finding 
suggests that changing outcome rates and shifting patient 
populations can affect the performance of the model.

Creating a generalizable model with healthcare data is 
challenging because of siloed data at individual hospitals 
and privacy concerns. Although external validation can 
test the generalizability of a model using more health-
care datasets, it cannot improve its performance with-
out pooling raw data from healthcare institutes. Song 
et  al. leveraged the United States PCORnet platform, 
demonstrated deterioration in the performance of the 

transported AKI prediction model among hospitalized 
patients across six independent health systems [7] and 
attributed it to the heterogeneity among the risk factors 
across populations. To address this issue, we created an 
FL framework to train an aggregated model with raw data 
stored at local institutions. Compared with the original 
TCVGH model, the aggregated FL model improved the 
prediction performance at the four external centers, pos-
sibly because of the ability of FL to capture more diver-
sity and mitigate bias in homogeneous populations [8, 
29]. Dang et al. [30] used the eICU dataset with 28 hos-
pitals and 6641 patients to experiment with FL for AKI 
prediction; they designed a prediction model with 22 
features, a 7-h feature window, and a 1-h prediction win-
dow and trained it with a neural network classifier. The 
local and aggregated average FL models showed AUROC 
curve values of 0.709 and 0.724, respectively. In contrast, 
our parsimonious model performed better (AUROC 
curve: 0.911), and the aggregated FL model showed an 
improved AUROC curve value of 0.012 to 0.039 at four 
external hospitals. Compared to a 1-h prediction win-
dow, the 24-h lead time of our model provides sufficient 
time for clinicians to intervene.

FL in healthcare is an emerging practical tool that ena-
bles effective collaboration among different hospitals to 
develop generalizable medical artificial intelligence (AI) 
[31, 32]. FL addresses the important barrier of data pri-
vacy in the global deployment of medical AI by allow-
ing rapid model deployment while keeping private data 
securely stored at local hospitals [12, 33, 34]. One of the 
objective is to facilitate the implementation of the model 

Fig. 4 Performance comparison of the parsimonious Taichung Veterans General Hospital (TCVGH) model and the aggregated federated learning 
model. AUROC area under the receiver‑operating characteristic
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across all ICUs by utilizing universally applicable param-
eters common to all ICUs and streamlining the parame-
ter set for simplicity. By leveraging FL, the model derived 
has a higher likelihood of successful integration into clin-
ical practice. Our study demonstrates the feasibility of 
the development of a generalizable medical AI using the 
FL platform without sharing raw data.

Our study had several limitations. First, our model was 
derived from and validated among Taiwanese datasets; 
therefore, it might not be generalizable to other ethnici-
ties. Nonetheless, the original model could evolve into a 
more generalized one as more hospitals join the FL plat-
form we built. Second, we used only 21 features to build 
the prediction model, and we used machine learning 
instead of more advanced tools, such as deep learning or 
ensemble machine learning. A complex model with more 
features or one trained using an advanced AI method 
might further improve the performance of the model. 
However, the trade-offs between simpler, faster, and more 
explainable models compared to complex and slower but 
more accurate models would depend on the interest in 
favoring practical application or academic research.

Conclusions
Using datasets from five medical centers across Taiwan 
to develop and validate a parsimonious AKI prediction 
model with a lead time of 24 h in the ICU. An aggregated 
model built upon FL framework across the hospitals fur-
ther improved the performance. This study shows that 
the adoption and integration of such a prediction model 
into clinical practice may be facilitated by applying FL 
based on the universally applicable features without shar-
ing raw data of different institutions. Further research is 
still needed to translate this model to clinical outcomes 
of critically ill patients.
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