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Abstract 

The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM). 
The definitive diagnosis of DCM necessitates the identification of invasive, costly, and contraindicated coronary 
angiography. Many diagnostic studies of cardiovascular disease have tried modal decomposition based on electrocar-
diogram (ECG) signals. However, these studies ignored the connection between modes and other fields, thus limit-
ing the interpretability of modes to ECG signals and the classification performance of models. This study proposes a 
classification algorithm based on variational mode decomposition (VMD) and high order spectra, which decomposes 
the preprocessed ECG signal and extracts its first five modes obtained through VMD. After that, these modes are esti-
mated for their corresponding bispectrums, and the feature vector is composed of fifteen features including bispec-
tral, frequency, and nonlinear features based on this. Finally, a dataset containing 75 subjects (38 DCM, 37 ICM) is 
classified and compared using random forest (RF), decision tree, support vector machine, and K-nearest neighbor. The 
results show that, in comparison to previous approaches, the technique proposed provides a better categorization for 
DCM and ICM of ECG signals, which delivers 98.21% classification accuracy, 98.22% sensitivity, and 98.19% specificity. 
And mode 3 always has the best performance among single mode. The proposed computerized framework signifi-
cantly improves automatic diagnostic performance, which can help relieve the working pressure on doctors, possible 
economic burden and health threaten.
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Introduction
Electrocardiogram (ECG) is an electrophysiologi-
cal method for recording the cardiac activity [1]. It has 
gained wide application in clinical settings owing to its 
non-invasiveness, affordability, convenient operation, and 
high time resolution [2]. Dilated cardiomyopathy (DCM) 
is a non-ischemic myocardial disease with structural or 
functional myocardial abnormalities [3]. Early diagnosis 

and treatment of DCM can be significantly helpful to 
improve the prognosis of patients. But in terms of clinical 
manifestations, ischemic cardiomyopathy (ICM) is simi-
lar to DCM, while the difference in treatment is huge [4]. 
Explicit exclusion of ICM requires patients to undergo 
coronary angiography (CAG), an invasive diagnostic 
technique that entails stringent requirements for surgi-
cal instruments and an operating team. Moreover, CAG 
imposes a considerable economic burden on patients, 
serving as an additional and unnecessary surgical inter-
vention for individuals with DCM.

Many methods based on gene sequencing and bio-
markers have been utilized to assist in the diagnosis of 
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DCM and ICM. Such as plasma metabolomic profiles, 
expression of Nrf2, syndecan-1, et al. [5–7]. However, the 
utilization of gene sequencing or uncommon biochemi-
cal tests is limited, posing additional financial strain on 
patients. The laboratory-based approaches, as diagnos-
tic methods for DCM, face challenges in meeting the 
requirements of routine examinations. Hence, the devel-
opment of ECG signal analysis techniques is crucial for 
giving doctors a second opinion on the proper diagnosis 
of DCM. In this study, we specifically evaluated the diag-
nostic potential of ECG signals and compared their effec-
tiveness to that of CAG, considered the gold standard.

The ECG analysis methods based on the time–fre-
quency domain, nonlinear domain, and machine learning 
are increasingly used in DCM detection. In a heart rate 
variability (HRV) analysis based on ECG signals, HRV 
parameters such as MeanRR, SDNN, and pNN50 were 
extracted based on the classification and regression tree 
algorithm, and included in the produced models, result-
ing in a classification accuracy of 73.3% [8]. In a spectra 
analysis method, the quantification of respiratory sinus 
arrhythmia (RSA) through HRV analysis facilitated the 
extraction of mean, standard deviation, and nonlin-
ear features. The results showed a significant difference 
between ICM and DCM subjects (P = 0.013) with a sen-
sitivity of 83% and specificity of 90% [9]. In another work, 
high-resolution joint symbolic dynamics and segmented 
Poincaré plot analysis were used to ECG signals. They 
reported a maximum classification accuracy of 84.2% 
[10]. And in a method based on discrete wavelet trans-
form and K-nearest neighbor (KNN), the highest accu-
racy between DCM, hypertrophic cardiomyopathy and 
myocardial infarction reached 96.7% [11].

Variational mode decomposition (VMD), an innova-
tive technique for signal decomposition, was recently 
introduced by Dragomiretskiy and Zosso [12]. VMD 
is a modal variational and signal processing technique 
that is adaptive and entirely non-recursive. The modes 
obtained through VMD are less susceptible to noise, 
and it is backed by suitable mathematical modeling. 
VMD has been used in many biological, voice, and seis-
mic signal processing applications because of its excel-
lent performance in these fields [13]. In the realm of 
ECG processing, many studies have utilized VMD’s abil-
ity to capture local variations of clinical components by 
exploiting the morphological similarities between the 
mode and the QRS complex [14, 15]. However, there is 
no unified method for the processing of deconstructed 
modes. In a sleep apnea detection study based on ECG, 
the feature vector was constructed by computing spec-
tral entropies, interquartile range, and energy from four 
modes obtained through VMD. This approach achieved 
a maximum classification accuracy of 87.5% using KNN 

[13]. Similarly, a study focused on ventricular arrhythmia 
recognition employed VMD to extract a total of 24 fea-
tures, including temporal, spectral, and statistical meas-
ures from five modes. The highest accuracy attained was 
99.18% [16]. Furthermore, a method based on decision 
tree (DT) selected hybrid features solely from mode 3 
of VMD to discriminate different cardiac arrhythmias, 
achieving an accuracy of 98.89% [14]. As of yet, no con-
sensus has been reached regarding the optimal number 
of modes or the subsequent modal deconstruction tech-
nique for ECG analysis.

The higher order statistics approach is widely utilized 
to extract the subtle changes in the biosignals, with 
bispectrum being a prominent higher order spectra 
(HOS) parameter [17]. The nonlinear parameters that the 
second order statistics fail to represent can be extracted 
by using the bispectrum. And modes of VMD encompass 
a plethora of information. Based on this, we propose a 
novel method based on bispectrum and bispectral fea-
tures for modes obtained through VMD of single-lead 
ECG signals.

In this paper, a new feature extraction based on VMD 
and bispectrum, namely bispectral features of the modes 
obtained through VMD for DCM detection is proposed. 
The ECG data sets are decomposed into five modes using 
VMD, followed by bispectral analysis of these modes. 
And various features including bispectral features, the 
peak value of PSD, and nonlinear features are calculated 
from the corresponding bispectral matrix of each mode. 
For the categorization of ECG signals into DCM and 
ICM, the characteristics are fed to DT, support vector 
machine (SVM), KNN and random forest (RF) classifi-
ers, evaluating their performance using assessment indi-
ces include sensitivity, specificity, accuracy, and the area 
under the receiver operating characteristic curve (AUC). 
Our findings indicate that the RF classifier demonstrates 
superior performance.

Methodology
The diagram of proposed method is shown in Fig. 1.

Dataset
In this study, 75 in-patients who were admitted to Sun 
Yat-sen University’s Third Affiliated Hospital over a 
5-year period (2006–2021) were retrospectively identi-
fied. There were 38 patients diagnosed with DCM and 37 
patients diagnosed with ICM among them.

To gather data on demographics, co-morbidities, 
laboratory markers, and ECG signals, a thorough evalu-
ation of electronic medical records was conducted. Fig-
ure 2 depicts the flowchart of data collection included 
in this study. Except for those with additional cardio-
myopathies and those without complete baseline data, 
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the echo in both groups showed a dilated left ventri-
cle with an ejection fraction of less than 45%. Then, 
according to CAG, ICM was defined as having a 75% 
stenosis in the left main stem, the proximal left anterior 
descending artery, or two or more epicardial coronary 

arteries, and DCM as having a stenosis less than that 
[10].

Table  1 shows baseline characteristics of patients in 
DCM and ICM, which included demographic, clinical, 
and echocardiographic characteristics.

Fig. 1 Overview diagram of ECG signals classification using VMD-bispectrum method

Fig. 2 A flow diagram indicating the selection of individuals
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In this investigation, a digital resting surface ECG with 
a V5 lead was employed. A sample frequency of 1000 Hz 
was chosen. The program used for signal processing and 
analysis was MATLAB 2021a. The Human Ethics Boards 
of the School of Public Health at Sun Yat-sen University 
gave their approval to the project (2021-No. 081). The 
Declaration of Helsinki was followed in the execution of 
the study. Being a retrospective study, informed consent 
was not necessary.

Preprocessing
The parser analyzed the XML data containing electro-
cardiography. To mitigate the influence of power lines 
interferences, baseline drift and muscle contraction noise 
presented in the original ECG signals, we apply the 50 Hz 
notch filter, the median filter, and the wavelet threshold 
denoising in turn [18]. The ECG signals are fragmented 
into multiple tiny pieces to ensure data standardization, 
with each section representing one heartbeat. The Pan-
Tompkins algorithm is used to identify the R-peaks. With 
its straightforward computation and simple implementa-
tion, this approach is a reliable R-peak identification.

Each series of 300 samples preceding a QRS peak, 300 
samples following the peak, and the QRS peak itself are 
consolidated into a 601-sample segment, which is sub-
sequently regarded as a single ECG beat for subsequent 
analysis after detecting the QRS complex. We exclude the 
initial and final beats from the entire dataset to ensure a 
consistent count of 601 sample points [19].

Variational mode decomposition
The VMD approach iteratively decomposes the ECG 
signal f into a K set of discrete modes uk , compactly 

supports around their center frequencies [20]. The 
VMD constrained problem is mathematically defined 
as:

where {uk } := {u1,u2, . . . ,uK } and {ωk } := {ω1,ω2, . . . ,ωK } 
reflect shorthand notations for the kth mode of the ECG 
signal and their center frequencies.
To make the problem unrestricted, the formulation 
includes both a quadratic penalty term and Lagrangian 
multipliers, �:

where δ(.) is the Dirac distribution and α is the band-
width control parameter. The initial minimization issue 
is resolved using the alternate direction method of mul-
tipliers (ADMM) technique. The following formula-
tion captures the obtained modes’ frequency domain 
representation:

Similarly, the optimization of ωn which represents 
center frequency is defined as follows:

The higher modes shoes higher frequency oscillations 
and contains more energy information about the origi-
nal signal [16]. Figure 3 shows samples of the six modes 
based on VMD of ECG signals from two classes of ECG 
beats. The amplitude values oscillate down significantly 
from mode 6 onwards and hence contain no significant 
information, since first five modes are decomposed in 
this study.
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Table 1 Demographic, clinical, and echocardiographic 
characteristics of patients with ICM and DCM

Variable Ischemic car-
diomyopathy 
(n = 37)

Dilated car-
diomyopathy 
(n = 38)

P value

Age 62.35 ± 12.71 63.89 ± 12.65 0.600

Gender (M), n (%) 33 (89.2) 24 (63.2) 0.018

Weight (kg) 62.97 ± 9.21 65.11 ± 16.59 0.495

Height (cm) 164.89 ± 9.01 163.79 ± 8.95 0.597

Smoking, n (%) 26 (70.3) 14 (36.8) 0.008

Alcohol, n (%) 4 (10.8) 7 (18.4) 0.545

Hypertension, n (%) 15 (40.5) 14 (36.8) 0.927

Diabetes mellitus, 
n (%)

13 (35.1) 5 (13.2) 0.050

LVEDD (mm) 62.38 ± 6.16 63.76 ± 5.39 0.303

LVEF (%) 33 ± 7 34 ± 8 0.585

Septal thickness (mm) 10.59 ± 1.40 10.34 ± 1.30 0.421
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Bispectrum computation
Following VMD, the modes are estimated using the 
bispectrum analysis. Higher-order moments or cumu-
lants of a signal can be observed spectrally in higher 
order spectrum [21]. The third order statistics utilized 
in this work is referred to as bispectrum.

The power spectra of random process is defined using 
the Fourier transform of the auto-correlation func-
tion. A high-order moment’s Fourier transform is how 
the high-order spectra is described [22]. It is suggested 
that the HOS can provide precise signal estimation and 

Fig. 3 Example six modes of VMD. a DCM signal, and b ICM signal
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analysis, and potentially contain richer information 
compared to low-order spectra.

The bispectrum, which is a two-dimensional function 
representing the minimal high-order spectra, is a very 
valuable tool for detecting and quantifying quadratic 
effects in time series [23].

x(n) is a stationary, zero-mean, stochastic process with 
the following definition of the third-order cumulant:

where τ1 and τ2 denote the time shift.E[·] denotes math-
ematical expectation.

Then, the bispectrum of x(n) is given by the expression:

where f1, f2 are two independent frequencies.

Feature extraction
This work utilizes nine bispectral features to identify 
diverse signal qualities, aiming to retain the bispectral 
information and capture the regularity and irregularity of 
the signal based on the bispectral matrix [24, 25].

The bispectral features are as follows:

1 Bispectral Brightness: the ratio of the sum of the 
bispectrum magnitudes above a specific bound-
ary frequency F to the sum of all the magnitudes in 
the bispectrum can be used to express the spectral 
brightness of a bispectral matrix.

where N denotes the number of points of bispectral 
matrix, and ω

(

i, j
)

 is the bispectral amplitude at point 
(i, j) . In this work, we set F to 120 Hz.

2 Bispectral Flatness: the degree of closeness between 
the signal and noise bispectrum is measured by 
bispectral flatness. It is determined by the geometric 
mean to arithmetic mean bispectral ratio:

3 Bispectral Roll-off: the frequency that corresponds to 
the frequency F below which a specific proportion of 

(5)R3x(τ1, τ2) = E[x(n)x(n+ τ1)x(n+ τ2)],

(6)

Bx(f1, f2) =
+∞
∑

τ1=−∞

+∞
∑

τ2=−∞

R3x(τ1, τ2) · e−j(f1τ1+f2τ2),

(
∣

∣f1
∣

∣,
∣

∣f2
∣

∣ ≤ π),

(7)F1 =

∑

N
2
i=F

∑

N
2
j=F

∣

∣

ω(i, j)
∣

∣

∑

N
2
i=0

∑

N
2
j=0

∣

∣

ω(i, j)
∣

∣

,

(8)F2 =

N
2

√

N
2

√

�

N
2
i=0�

N
2
j=0

∣

∣

ω(i, j)
∣

∣

1
N/2

1
N/2

∑

N
2
i=0

∑

N
2
j=0

∣

∣

ω(i, j)
∣

∣

.

the total bispectral energy is focused is known as the 
bispectral roll-off. The measure of the signal’s non-
uniformity around its mean value is the bispectral 
roll-off. The spectral roll-off is computed as follows,

where β is the coefficient, which is 0.95 after many 
experiments in this work.

 And these bispectral entropies have the following 
formulas:

4 Normalized Bispectral Entropy:
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∑
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..

5 Normalized bispectral squared entropy:
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2 .

6 The sum of logarithmic amplitudes of the bispec-
trum:

7 The sum of logarithmic amplitudes of diagonal ele-
ments in the bispectrum:

8 The first-order spectral moment of the amplitudes of 
diagonal elements in the bispectrum:

9 The second-order spectral moment of the amplitudes 
of diagonal elements in the bispectrum:

In addition to the nine bispectral features, we incorpo-
rate frequency and nonlinear analysis as complementary 
measures for each mode. For this purpose, a 16-order 
autoregressive (AR) model is employed, and the param-
eters are estimated using Burg’s method. The peak value 
of power spectral density (PSD) in the ECG beats is 
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extracted using the parametric power spectrum estima-
tion method due to its benefit in the analysis of short 
time series [26]. When the ECG signal is modeled with 
an AR order of 16, the AR spectrum is served as a reliable 
alternative to the Fourier spectrum [27].

Furthermore, we acquire the following five features 
of entropy: approximate entropy, fuzzy entropy, sam-
ple entropy, permutation entropy, and complexity [28], 
expressing modal information intricately. Table  2 pro-
vides a comprehensive listing of all 15 features extracted 
in this study.

Classification
Several machine learning algorithms have been employed 
to classify cardiac diseases by leveraging the extracted 
features of ECG signals, encompassing their diverse 
properties [29]. Utilizing the aforementioned the 15 fea-
tures, the present study evaluates four classification tech-
niques: SVM, DT, KNN and RF [30–32].

Results and discussions
In this study, a total of 38 participants diagnosed with 
DCM and 37 participants diagnosed with ICM collec-
tively provided 6007 ECG beats (3360 DCM beats and 
2647 ICM beats). Each ECG beat is decomposed into 
five modes, from which ECG beat features are extracted. 
Consequently, a total of 75 features are obtained from 
each ECG beat. Our research findings indicate that these 
characteristics can serve as potent predictors.

Figure  4 depicts the bispectral contour of five modes 
from a patient of diagnosed with DCM and ICM sepa-
rately. Each data point in the visualization represents the 
biamplitude content of the signal at (f1, f2) , and shows 
the amount of interaction between frequencies f1 and f2 . 
This graphical representation reveals the level of interac-
tion between the mentioned frequencies, which can be 
attributed to the nonlinear characteristics presented in 
the ECG signal.

This primary aim of this study is to analyze ECG data 
using VMD and bispectrum to extract features capable of 
effectively distinguishing between DCM and ICM. Nota-
bly, the oscillation patterns of the five modes obtained 
from VMD for both DCM and ICM exhibit no discern-
ible differences. This observation can be attributed to 
the inherent nature of both signals as electrophysiologi-
cal signals and sharing the same sampling frequency. As 
a result, comprehensive exploration of the frequency 
domain information of these modes is pursued, along 
with the estimation of their respective bispectra to unveil 
concealed intricacies within the ECG signals.

In the different modes of the bispectrum, the differ-
ence can be depicted intuitively. The five modes of DCM 
exhibit a general resemblance to the corresponding 

five modes of ICM, albeit with notable dissimilarities 
in their internal intricacies. Under the condition that 
the sampling length of the ECG beats are the same, the 
contour of DCM’s modes appears smoother. Exploiting 
the characteristics of contour topographic mapping, it 
becomes evident that DCM exhibits a brighter color. 
Specifically, the biamplitude content associated with 
DCM tends to be closer to higher values, whereas the 
biamplitude content corresponding to ICM tends to be 
closer to lower values.

The feature vector comprises 15 characteristics for 
each mode, encompassing 9 bispectral features, the 
peak value of PSD, and 5 nonlinear features. These 
characteristics are fed to various classifiers, yielding 
diverse performance outcomes. In this study, multiple 
classifiers are employed and their performances are 
compared to identify the optimal classifier.

Table 2 distinctly illustrates the range of characteris-
tics encompassing the mean and standard deviation of 
each mode derived from DCM and ICM ECG beats.

In this study, a 10-fold cross validation approach is 
implemented to mitigate classifier overlap during train-
ing and testing. Each time, one equivalent subset of 
the input data is designated as the testing data, while 
the remaining subsets are allocated for training pur-
poses. The input data is divided into 10 equal subsets. 
To ensure rigorous conditions for reporting the results, 
each subset is employed nine times as training data and 
only once as test data.

Accuracy (ACC), Sensitivity (SEN), and Specificity 
(SPE) calculated based on True positive (TP), True neg-
ative (TN), False positive (FP), and False negative (FN) 
are utilized as follows to assess the performance of the 
suggested method:

TP represents instances where the input ECG signal 
is labeled as DCM, and the classifier accurately classi-
fies it within the DCM group. TN refers to cases where 
the input ECG signal is labeled as ICM, and the classi-
fier correctly assigns it to the ICM group. FP indicates 
situations where the input ECG signal is labeled as 
ICM, yet the classifier incorrectly classifies it as DCM. 
FN denotes cases where the input ECG signal is labeled 
as DCM, but the classifier erroneously assigns it to the 
ICM group. We compute the mode classification sep-
arately of features, as well as the overall classification 

(16)

ACC =
TN + TP

TN + TP + FN + FP
× 100,

SEN =
TP

TP + FN
× 100,

SPE =
TN

TN + FP
× 100.
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Fig. 4 Bispectral contour plots of five modes from two segments in ECG records
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across all modes. Given that accuracy provides an 
intuitive assessment of discriminant effectiveness, it is 
important to note that high accuracy alone does not 
guarantee superior classification performance. There is 
a possibility of encountering a low count of true posi-
tives or true negatives [33]. Furthermore, this study 
computes the AUC value as an evaluation index, which 
effectively captures the combined impact of sensitivity 
and specificity.

Table  3 provides a comprehensive overview of the 
classification outcomes for the test data, both per mode 
and across all modes. For each evaluation indicator, the 
model shows high classification performance and low 
deviation. The trend of classification results across differ-
ent modes is illustrated in Fig. 5.

Table 4 lists the recording categorization results of the 
proposed approach with those of several prior studies. 
The RF has the highest efficiency in mode classification, 

achieving impressive accuracy, sensitivity, specificity, 
and AUC value of 98.21%, 98.22%, 98.19%, and 99.81% 
respectively. The classification performance is better than 
that of the recent studies on the identification of DCM 
and ICM. Moreover, within a similar research context, 
the proposed strategy exhibits comparable classification 
effectiveness to studies distinguishing DCM from hyper-
trophic cardiomyopathy through deep learning methods 
[34], underscoring the advanced nature of the proposed 
approach.

There is no predefined criterion for selecting the 
most suitable classifiers for diverse challenges. Despite 
the classification performance of all modes is the best, 
this study evaluates the classification performance indi-
vidually for each mode. Nevertheless, the four classifi-
ers in this study show a remarkable level of coherence 
in terms of the classification performance for indi-
vidual mode. Mode 3 consistently achieve the highest 

Table 3 Performance of four classifiers with various modes

Classifier Index All modes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
(%) (Mean ± std) (Mean ± std) (Mean ± std) (Mean ± std) (Mean ± std) (Mean ± std)

RF ACC 98.21 ± 0.35 93.47 ± 0.96 93.72 ± 1.12 95.02 ± 0.81 93.33 ± 0.86 92.47 ± 0.94

SEN 98.22 ± 0.69 94.01 ± 2.67 93.76 ± 1.55 94.31 ± 1.82 94.09 ± 2.15 90.95 ± 2.22

SPE 98.19 ± 0.69 93.04 ± 1.73 93.65 ± 2.39 95.61 ± 2.02 92.75 ± 2.36 93.62 ± 3.05

AUC 99.81 ± 0.10 98.05 ± 0.48 98.23 ± 0.40 98.71 ± 0.23 98.14 ± 0.29 97.51 ± 0.43

DT ACC 87.38 ± 1.35 79.57 ± 1.54 79.86 ± 1.42 82.66 ± 1.47 77.92 ± 1.99 75.37 ± 2.82

SEN 81.58 ± 3.12 82.01 ± 3.80 76.49 ± 3.30 83.73 ± 1.75 76.66 ± 4.14 78.33 ± 6.06

SPE 91.90 ± 1.66 77.62 ± 3.37 82.48 ± 3.73 81.83 ± 2.90 79.00 ± 4.56 73.12 ± 5.12

AUC 89.95 ± 1.59 84.92 ± 1.79 84.07 ± 1.26 86.40 ± 1.64 82.19 ± 2.11 82.25 ± 2.27

SVM ACC 94.64 ± 0.91 78.03 ± 1.97 79.99 ± 1.09 84.86 ± 2.61 80.25 ± 1.93 81.01 ± 1.57

SEN 94.48 ± 2.58 81.56 ± 5.11 81.95 ± 4.95 85.79 ± 2.94 74.67 ± 4.83 77.68 ± 5.01

SPE 94.81 ± 2.28 75.05 ± 6.01 78.36 ± 4.56 84.24 ± 5.33 84.70 ± 3.45 83.51 ± 4.21

AUC 98.57 ± 0.40 85.35 ± 2.13 86.53 ± 0.90 91.90 ± 1.46 86.29 ± 1.79 88.03 ± 1.34

KNN ACC 97.92 ± 0.61 90.45 ± 1.57 91.82 ± 0.98 93.87 ± 1.37 91.49 ± 1.32 90.35 ± 0.92

SEN 97.87 ± 1.10 89.39 ± 2.84 90.98 ± 1.79 94.59 ± 1.33 90.50 ± 3.31 90.90 ± 3.00

SPE 97.94 ± 0.82 91.31 ± 2.67 92.44 ± 1.73 93.34 ± 2.18 92.33 ± 3.16 89.86 ± 2.49

AUC 99.48 ± 0.27 95.94 ± 1.07 96.86 ± 0.52 97.56 ± 0.67 96.37 ± 0.65 95.61 ± 0.57

Fig. 5 The classification results of various modes, a Accuracy, b Sensitivity, c Specificity, and d AUC 
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accuracy among the five modes, aligning with the con-
clusion that it bears the closest resemblance to the QRS 
complex [14].

The approach employed in this work focuses on the 
comprehensive exploration of the modal frequency 
domain following VMD, thereby mitigating the fre-
quency domain incompleteness in the subsequent 
analysis of various modes. In practical application, this 
model could diagnose DCM and ICM conveniently 
without consuming long operation time and financial 
resources. The analysis of the optimal number of modes 
obtained from VMD and features adaptation is the 
direction of our follow-up work.

Conclusion
We propose a VMD-Bispectrum based approach for 
distinguishing DCM and ICM. A novel method is put 
forward to select the bispectral features. The ECG sig-
nals are partitioned into individual ECG beats, sub-
sequently decomposed into five modes using VMD. 
Bispectrum estimation is conducted for each mode. 
Nine bispectral features corresponding to these modes 
are recorded, including the peak value of PSD and five 
entropies. These features are made available to the 
classifiers for categorizing. The suggested methodol-
ogy efficiently distinguishes between DCM and ICM 
of ECG beats, according to experimental data. The RF 
classifier achieves a classification accuracy of 98.21%, 
with classification accuracy for each mode being more 
than 90%. Hence, the suggested methodology’s merits 
include both robustness and universality. In our future 
work, we intend to apply the proposed methodology 
to other cardiovascular and cerebrovascular diseases 
to verify universality, and further improve the perfor-
mance of our method.
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