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Abstract 

Purpose: Chest x-rays are a fast and inexpensive test that may potentially diagnose COVID-19, the disease caused 
by the novel coronavirus. However, chest imaging is not a first-line test for COVID-19 due to low diagnostic accuracy 
and confounding with other viral pneumonias. Recent research using deep learning may help overcome this issue as 
convolutional neural networks (CNNs) have demonstrated high accuracy of COVID-19 diagnosis at an early stage.

Methods: We used the COVID-19 Radiography database [36], which contains x-ray images of COVID-19, other 
viral pneumonia, and normal lungs. We developed a CNN in which we added a dense layer on top of a pre-trained 
baseline CNN (EfficientNetB0), and we trained, validated, and tested the model on 15,153 X-ray images. We used data 
augmentation to avoid overfitting and address class imbalance; we used fine-tuning to improve the model’s perfor-
mance. From the external test dataset, we calculated the model’s accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1-score.

Results: Our model differentiated COVID-19 from normal lungs with 95% accuracy, 90% sensitivity, and 97% specific-
ity; it differentiated COVID-19 from other viral pneumonia and normal lungs with 93% accuracy, 94% sensitivity, and 
95% specificity.

Conclusions: Our parsimonious CNN shows that it is possible to differentiate COVID-19 from other viral pneumonia 
and normal lungs on x-ray images with high accuracy. Our method may assist clinicians with making more accurate 
diagnostic decisions and support chest X-rays as a valuable screening tool for the early, rapid diagnosis of COVID-19.
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Introduction
COVID-19 is an infectious disease caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[1]. The virus was first observed in Wuhan, China, in 
December 2019 and then spread globally. On March 11, 
2020, the World Health Organization (WHO) declared 
COVID-19 a pandemic [1]. The virus spreads via respira-
tory droplets or aerosol so that it can be transmitted into 
individuals’ mouth, nose, or eyes of individuals in close 

proximity. The most common symptoms include a high 
fever, continuous cough, and breathlessness [2].

COVID-19 is usually diagnosed by an RT-PCR test [3] 
and often is complemented by chest radiographs, includ-
ing x-ray images and computed tomography (CT) scans 
[4]. X-ray machines are widely available worldwide and 
provide images quickly, so chest scans have been recom-
mended, by some researchers [5], for screening during 
the pandemic. Unlike the RT-PCR test, chest scans pro-
vide information about both the status of infection (i.e., 
presence or absence of the disease) and disease severity. 
Moreover, x-ray imaging is an efficient and cost-effective 
procedure. It requires relatively cheap equipment and can 
be performed rapidly in isolated rooms with a portable 
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chest radiograph (CXR) device, thus reducing the risk of 
infection inside hospitals [6, 7].

Despite these benefits, the American College of Radi-
ology (ACR) and the Centers for Disease Control and 
Prevention (CDC) have not endorsed chest imaging as 
a first-line test for COVID-19 [8]. In the diagnosis of 
COVID-19, chest CT scans are highly sensitive (97%) but 
far less specific (25%) than RT-PCR [9]. Recent research, 
however, suggests that deep learning techniques may 
improve the specificity of x-ray imaging [10] for the diag-
nosis of COVID-19 (see publications in Table 1).

Many of the studies in Table 1 use convolutional neural 
networks (CNNs) that take advantage of transfer learn-
ing—that is, they are built on existing CNNs (e.g., Effi-
cientNet, VGG-16, AlexNet, GoogLeNet, SqueezeNet, 
ResNet) that were trained on large-scale image-classifica-
tion datasets (e.g., ImageNet [11]). The size of the dataset 
and generic nature of the trained task (e.g., describe the 
general shapes of an object) make the features learned by 
the existing CNN useful for other computer-vision prob-
lems with other images. As shown in Table 1, most of the 
studies reported high accuracy (above 87%) [12–32], ten 
studies reported high sensitivity (above 88%) [12, 13, 16–
18, 29, 30, 33–35], seven studies reported high specificity 
(above 78%) [14, 15, 17, 18, 28, 29, 31, 34, 35], three stud-
ies reported high F1-scores (above 94%) [14, 15, 30], and 
three studies reported above 94% precision [12–14]. All 
of the models were validated internally (i.e., trained and 
validated on different random splits of the same dataset; 
the proportions of the dataset for training versus valida-
tion vary). However, it remains unclear whether these 
models would perform as well on an external validation 
task (i.e., on a different dataset that was not involved in 
the model’s development).

To address the need for external validation and advance 
the possibility of using x-ray technology to alleviate the 
impact of the global pandemic, we develop a CNN using 
a parsimonious yet powerful pre-trained CNN as the 
baseline model, and we assess its diagnostic accuracy 
on an independent (external) dataset. We compare the 
model’s performance on two classification datasets: a) 
COVID-19 vs. normal lungs (two-class classification) and 
b) COVID-19 vs. other viral pneumonia vs. normal lungs 
(three-class classification).

Methods
Study design
We used the COVID-19 Radiography database [36], a 
public database that contains 15,153 images (as of 3rd 
May 2021) across three cohorts: COVID-19, other viral 

pneumonia, and normal lungs. We randomly split each of 
the three cohorts into train (70%), validation (20%), and 
test (10%) subsets (Fig. 1). Only the train and validation 
subsets contributed to the model’s development; we kept 
the test subset separate for external validation.

Transfer learning and feature extraction
We developed a hybrid CNN using a pre-trained Con-
vNet called EfficientNetB0 [37], which is the baseline 
model of a family of EfficientNet models (from Efficient-
NetB0 to EfficientNetB7). These models use compound 
scaling, in which the image’s dimensions (i.e., depth, 
width, and resolution) are scaled by a fixed amount at the 
same time. Models with compound scaling usually out-
perform other CNNs, as shown in Fig. 2: the baseline B0 
model starts at a higher accuracy than some other mod-
els (e.g., ResNet-50, Inception-v2), while the latest Effi-
cientNet model (B7) achieves the highest accuracy of all 
(84%). Although the EfficientNets achieve high accuracy, 
they require fewer parameters (5 million for B0; 66 mil-
lion for B7) and less computation time than most other 
models. In this work, we utilize the EfficientNet-B0 as our 
baseline model for the following reasons: (a) it has less 
parameters than the rest models (B1–B7) of the Efficient-
Net family, (b) it is more cost-efficient for training and 
tuning than the more advanced EfficientNetB1-B7 model 
as it does not require much computational power (see 
Discussion section) and (c) it contributes to high accu-
racy in differentiating COVID-19 from non-COVID-19 
viral pneumonia and healthy images (see Results section), 
thus satisfies the rational of our study for developing a 
parsimonious yet powerful convolution network.

On top of the baseline EfficientNetB0 network, we 
connected a fully dense layer of 32 neurons (Fig. 3). The 
features learned by the baseline model are run through 
our (two-class or three-class) classifier to extract new fea-
tures from the sample.

Our CNN uses about 5 million parameters (Fig.  4), 
which is considerably fewer than AlexNet (61 million) and 
GoogLeNet (7 million) [14]. Thus, our CNN was faster 
to train and less likely to overfit the training data, which 
leads to worse performance on external datasets. We also 
reduced the risk of overfitting by adding 20% and 50% 
(which outperformed the 20% drop-out rate for the three-
class model; results not shown) drop-out rates to our two-
class and three-class prediction models, respectively. By 
adding drop-out during training, a proportion of features 
(20% and 50% for the two- and three-class model respec-
tively) is set to zero, whereas during validation, all features 
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are used. This makes the model at validation more robust, 
leading to higher testing accuracy (Figs.  5 and 6). We 
applied Sigmoid and Softmax operations to model the 
two- and three-class classification outputs, respectively. 
We used an Adam optimizer with a learning rate of 0.001.

Before training the model, we “froze” the convolution 
base (i.e., EfficientNetB0) to preserve the representa-
tions learned during the baseline model’s original train-
ing. Subsequently, we trained only the weights in the two 
dense layers that we added to the convolution base.

Data augmentation
We augmented the training data to eliminate the class 
size imbalance and avoid overfitting. First, we resized the 
images to 150 × 150 pixels to reduce the data volume, and 
we normalized them to the [0, 1] interval because neural 
networks are more efficient with small input values. Then, 
we augmented the training images through random trans-
formations to increase the variety of the images. Specifi-
cally, we manipulated the parameters by (a) rotating the 
image by 40 degrees, (b) randomly shifted the height and 
width horizontally or vertically by 20% of the image’s ini-
tial size, (c) randomly clipping the image by 20%, (d) ran-
domly zooming in by 20%, (e) randomly flipping half of 
the images horizontally, and (f ) filling in the pixels that 
were created by a rotation or a height or width shift. Data 
augmentation is essential for avoiding overfitting in small 

samples because the additional, varied images prevent the 
CNN from being exposed to the same image twice.

Fine-tuning
We fine-tuned our CNN by “unfreezing” a few of the top 
layers (i.e., from block 7a onwards) in the convolution base 
and jointly training both the “unfrozen” layers and the 
two layers that we added (Fig. 7). By training some of the 
top layers of the baseline CNN, we adjusted the presen-
tations of the pre-trained model that were more abstract 
(in terms of shape and size) to make them more relevant 
and specific to our sample, thereby improving our model’s 
performance.

Performance metrics
We assessed the model’s performance with the following 
metrics [14]:

(a) sensitivity (or recall): the percentage of positive cases 
that were predicted to be positive

(b) specificity: the percentage of negative cases that were 
predicted to be negative

Sensitivity =
True Positives

True Positives + False Negatives

Specificity =
True Negatives

True negatives + False positives

Fig. 1 Study flow chart
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(c) positive predictive value (or precision): the percentage 
of positive predictions that were actually positive cases

(d) negative predictive value: the percentage of negative 
predictions that were actually negative cases

Positive predictive value =
True Positives

True Positives + False Positives

Negative predictive value =
True Negatives

True Negatives + False Negatives

(e) F1-score: a combination of recall and precision, 
used for model comparison

(f ) accuracy

Moreover, we constructed 95% confidence intervals for 
the above metrics using bootstrapping.

Results
We include results for the two-class classification 
(COVID-19 vs. normal lungs) and the three-class classi-
fication (COVID-19 vs. other viral pneumonia vs. normal 
lungs).

Two-class classification
Table  2 reports the performance of the two-class clas-
sification model with feature extraction only and with 
fine-tuning. Figure 5 depicts the performance after fine-
tuning on the train (blue line) and validation subsets 
(orange line). The model reached an accuracy of 93.8% 
on the validation subset after training for 10 epochs (i.e., 
runs through the train dataset).

As shown in Table  2, the model’s performance 
improved with fine-tuning, achieving a recall (i.e., sen-
sitivity) of 90% (95% CI 88, 92), specificity of 97% (95% 
CI 96, 98), precision (i.e., PPV) of 91% (95% CI 89, 93), 
F1-score of 90% (95% CI 88, 92), and accuracy of 95% 
(95% CI 94, 96). The fine-tuned model misclassified only 
32 normal images as COVID-19 (versus 70 misclassifica-
tions in the model with only feature extraction).

Three-class classification
Table 3 reports the performance of the three-class clas-
sification model with feature extraction only and with 
fine-tuning. Figure 6 depicts the performance after fine-
tuning on the train (blue line) and validation subsets 
(orange line). The model reached an accuracy of 92.6% 
after 10 epochs.

As shown in Table  3, the model’s performance 
improved with fine-tuning, achieving an accuracy of 93% 
(95% CI 92, 95), recall (i.e., sensitivity) of 94% (95% CI 
93, 96), precision (i.e., PPV) of 86% (95% CI 84, 88), and 
F1-score of 90% (95% CI 88, 92). The F1-score improved 

F1− score =
2X True Positives

2X True Positives + False Positives + False Negatives

Accuracy =
True Positives + True Negatives

Total number of cases

Fig. 2 The performance of the EfficientNet models versus other 
CNNs on ImageNet (from Tan & Lee 2019). Source: Tan M, Le Q, 
Efficientnet: Rethinking model scalling for convolutional neural 
networks. In International Conference on Machine Learing 2019 May 
24 (pp. 6105–6114). PMLR

Fig. 3 Structure of the CNN in the present study
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by 5% with fine-tuning relative to the model with only 
feature extraction. The fine-tuned model was adept at 
differentiating between COVID-19 and other viral pneu-
monia—only one other viral pneumonia image was mis-
classified as COVID-19, and no COVID-19 images were 
misclassified as other viral pneumonia. (Two normal 
images were misclassified as other viral pneumonia.).

Discussion
We implemented a hybrid CNN that combines a pre-
trained EfficientNetB0 network with a dense layer 
(32 neurons) to differentiate between x-ray images of 
COVID-19 and normal lungs (and other viral pneumonia, 

in the three-class classification). After feature extraction 
and fine-tuning, the model achieved 95% (95% CI 94, 96) 
accuracy for the two-class classification and 93% (95% 
CI 92, 95) accuracy for the three-class classification. This 
model’s performance is comparable to existing models 
[10, 12, 13], but it offers several other advantages.

Methodologically, to the best of our knowledge, this 
is the first instance in which the pre-trained Efficient-
NetB0 (the baseline model of the EfficientNet family, 
which uses compound scaling to achieve higher accuracy) 
with a dense layer(32) on top has been used to improve 
the accuracy of COVID-19 diagnosis from X-ray images. 
Chaudhary et  al. [12] used an EfficientNet-B1 model to 

Fig. 4 Summary of the parameters for the two-class classification

Fig. 5 The fine-tuned model’s performance on the train and validation subsets for two-class classification
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distinguish COVID-19 from non-COVID-19 and nor-
mal x-ray images with 95% accuracy and 100% sensitiv-
ity, while Luz et al. [13] used a range of EficientNetB0-B5 
models with four dense layers on top. In the latter case, the 
EfficientNet-B0 with four layers on top achieved an accu-
racy of 90% and sensitivity of 93.5%, whereas the best per-
forming EfficientNet-B3 with four layers on top achieved 
94% accuracy and 96.8% sensitivity. In comparison, our 
model achieved better accuracy (93%) and slightly better 
sensitivity (94%) than the B0-X (where X denotes the four 
layers on top) with fewer parameters (5 million vs 5.3 mil-
lion). It also achieved similar accuracy and sensitivity with 
the B1 and B3-X (6.6 and 12.3 million parameters respec-
tively). Jiao et al. [38] also used EfficientNet as the baseline 

ConvNet, but the prediction was different (COVID-19 
severity: critical vs. non-critical), and the model was con-
siderably more complex: it connected a convolutional 
layer (256 neurons) and a dense layer (32 neurons) on top 
of the baseline. Despite its complexity, the model did not 
perform as well on an external dataset: accuracy of 75% 
(95% CI 74, 77), sensitivity of 66% (95% CI 64, 68), and 

Table 2 The model’s performance on two-class classifica-
tion

CI confidence interval, PPV positive predictive value, NPV negative predictive 
value

Model with feature extraction Predicted

Normal COVID-19

Observed

 Normal 950 70

 COVID-19 47 315

Accuracy (95% CI) (%) 92 (90, 94)

Sensitivity (95% CI) (%) 87(85, 89)

Specificity (95% CI) (%) 93 (91, 95)

PPV (95% CI) (%) 82 (79, 84)

NPV (95% CI) (%) 95 (94, 96)

F1-score (95% CI) (%) 84 (82, 86)

Model with fine-tuning Predicted

Normal COVID-19

Observed

 Normal 988 32

 COVID-19 38 324

Accuracy (95% CI) (%) 95 (94, 96)

Sensitivity (95% CI) (%) 90 (88, 92)

Specificity (95% CI) (%) 97 (96, 98)

PPV (95% CI) (%) 91 (89, 93)

NPV (95% CI) (%) 96 (95, 97)

F1-score (95% CI) (%) 90 (88, 92)

Fig. 6 The fine-tuned model’s performance on the train and validation subsets for three-class classification

Fig. 7 Fine-tuning the last convolution block on the EfficientNetB0 
network
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Table 3 The model’s performance on three-class classification

CI confidence interval, PPV positive predictive value, NPV negative predictive value

Model with feature extraction Predicted

Normal Other viral pneumonia COVID-19

Observed

 Normal 941 0 79

 Other viral pneumonia 20 108 7

COVID-19 32 0 330

Accuracy (95% CI) (%) 91 (89, 93)

Sensitivity (95% CI) (%) 91 (89, 93)

Specificity (95% CI) (%) 92 (90, 94)

PPV (95% CI) (%) 79 (77, 82)

NPV (95% CI) (%) 95 (94, 96)

F1-score (95% CI) (%) 85 (83, 87)

Model with fine-tuning Predicted

Normal Other viral pneumonia COVID-19

Observed

Normal 964 2 54

Other viral pneumonia 32 102 1

COVID-19 22 0 340

Accuracy (95% CI) (%) 93 (92, 95)

Sensitivity (95% CI) (%) 94 (93, 96)

Specificity (95% CI) (%) 95 (94, 96)

PPV (95% CI) (%) 86 (84, 88)

NPV (95% CI) (%) 95 (94, 96)

F1-score (95% CI) (%) 90 (88, 92)

We also mitigated overfitting by augmenting the train-
ing images (i.e., randomly transforming existing images 
to generate new ones). Data augmentation also addressed 
the class imbalance (as there were unequal numbers of 
COVID-19, other viral pneumonia, and normal images). 
We fine-tuned the model by training some of the top lay-
ers of our baseline CNN to improve their specificity to 
the current problem.

Finally, all of the reviewed studies except for one [14] 
reported only point estimates for their performance met-
rics (accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1-score). By includ-
ing the 95% confidence intervals, we capture the uncer-
tainty of our estimates and enable a more comprehensive 
appraisal of the model.

The main limitation of our study is the lack of patient 
data. We appreciate that the model built by Jiao et  al. 
[38] included patient clinical data (e.g., age, sex, oxygen 
saturation, biomarkers, comorbidities), which slightly 
improved the accuracy of the image-based CNN. We 
recognize that this is an important avenue for future 
research. We further note that the training and tuning of 

specificity of 70% (95% CI 69, 71). Although the present 
model addresses a different problem, we are confident 
that it performs better on the two-class classification 
problem than the model built by Jiao et  al. Given that a 
model trained on more parameters is more prone to over-
fitting, we believe that our relatively small number of 
parameters and data augmentation strategy contributed 
to our model’s superior performance.

Another advantage of this study lies in its design. Previ-
ous works have used a variety of splits to create subsets 
of data for two purposes: training and validation. For 
instance, Pham [14] used several random splits (80% vs. 
20%; 50% vs. 50%; 90% vs. 10%) of an older version of the 
COVID-19 Radiography database used here. Rahimzadeh 
et al. [16] used eight subsets of their dataset for training 
and another subset for testing; Panwar et  al. [17] used 
70% for training and 30% for validation. To the best of 
our knowledge, the present research is the first to cluster 
the dataset into three independent subsets: train (70%), 
validation (20%), and test (10%). Thus, we reduced over-
fitting by testing the model’s performance on a subset of 
data that did not contribute to the model’s development.
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our “light” CNN took about two hours on a conventional 
Macintosh computer with 16G RAM and one Terabyte of 
a hard disk. More computational power is instead needed 
to train more advanced versions of the EfficientNet (from 
B1 through B7), possibly increasing the barrier of entry 
for non-specialists users (i.e., clinicians).

Conclusions
This study uses a “light” CNN to discriminate COVID-19 
from other viral pneumonia and healthy lungs in chest 
X-ray images. To the best of our knowledge, our model is 
at present the most parsimonious CNN used to address 
the demanding issue of COVID-19 diagnosis via chest 
x-ray. The model successfully overcame the issue of low 
specificity that has prevented the ACR and CDC from 
endorsing chest imaging to diagnose COVID-19 [8]. 
Specifically, the fine-tuned model differentiated COVID-
19 from normal lungs with a positive predictive value of 
91% and specificity of 97% (95% CI 96, 98); it differenti-
ated COVID-19 from other viral pneumonia and normal 
lungs with a positive predictive value of 86% and speci-
ficity of 95% (95% CI 94, 96). Both classifications had a 
negative predictive value of 95% (95% CI 94, 96), mean-
ing that a negative COVID-19 classification would indi-
cate a 95% chance of not having COVID-19. Moreover, as 
shown in Table 3, just one image of other viral pneumo-
nia was misclassified as COVID-19, proving a remarkable 
discriminatory ability given the overlap in the presenta-
tion of COVID-19 and other viral cases of pneumonia.

The insights presented in this study may help clinicians 
(namely, radiologists) accurately diagnose COVID-19 at 
an early stage by enabling the use of x-ray as a first-to-
test tool that can complement RT-PCR analyses. Moving 
forward, the validation of our CNN on other databases 
would increase our confidence in the use of neural net-
works to aid the early diagnosis of both COVID-19 and 
other life-threatening diseases that traditionally have 
been difficult to diagnose via imaging.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s13755- 021- 00166-4.

Below is the link to the electronic supplementary material.Supplementary file1 
(DOCX 40 kb)

Funding
The author received no funding for this work.

Data Availability
The publicly available COVID-19 Radiography Database [36] was used.

Code availability
The python notebook for the two-class classification model is available here: 
http://localhost:8888/notebooks/OneDrive%20-%20University%20of%20
Surrey/Kaggla_data/Two-class_classification.ipynb. The python notebook for 

the three-class classification model is available here: http://localhost:8888/
notebooks/OneDrive%20-%20University%20of%20Surrey/Kaggla_data/Three-
class_classification.ipynb.

Declarations

Conflict of interest
The author declares no conflict of interest.

Author details
1 Surrey Business School, University of Surrey, Alexander Fleming Rd, 
Guildford GU2 7XH, UK. 2 The Organizational Neuroscience Laboratory, 
London WC1N 3AX, UK. 3 The Hague University of Applied Sciences, Johanna 
Westerdijkplein 75, 2521 EN Den Haag, The Netherlands. 

Received: 15 June 2021   Accepted: 20 September 2021

Published online: 12 October 2021

References
 1. COVID-19 pandemic. https:// en. wikip edia. org/ wiki/ COVID- 19_ pande mic. 

Accessed on 09 May, 2021
 2. COVID-19 pandemic. https:// en. wikip edia. org/ wiki/ COVID- 19_ pande 

mic# Trans missi on. Accessed on 09 May, 2021
 3. Reverse transcription polymerase chain reaction. https:// en. wikip edia. 

org/ wiki/ Rever se_ trans cript ion_ polym erase_ chain_ react ion. Accessed 
on 09 May, 2021

 4. COVID-19 pandemic. https:// en. wikip edia. org/ wiki/ COVID- 19_ pande 
mic# Diagn osis. Accessed on 09 May, 2021

 5. Ng M-Y, Lee EYP, Yang J, et al. Imaging profile of the COVID-19 
infection: radiologic findings and literature review. Radiology. 
2020;2(1):e200034.

 6. Baratella E, Crivelli P, Marrocchio C, et al. Severity of lung involvement on 
chest X-rays in SARS-coronavirus-2 infected patients as a possible tool to 
predict clinical progression: an observational retrospective analysis of the 
relationship between radiological, clinical, and laboratory data. J Brasil 
Pneumol. 2020;46(5):e20200226.

 7. Rubin GD, Ryerson CJ, Haramati LB, et al. The role of chest imaging 
in patient management during the COVID-19 pandemic: a multi-
national consensus statement from the Fleischner society. Chest. 
2020;296(1):172–80.

 8. ACR Recommendations for the use of Chest Radiography and Computed 
Tomography (CT) for Suspected COVID-19 Infection (https:// www. acr. 
org/ Advoc acy- and- Econo mics/ ACR- Posit ion- State ments/ Recom menda 
tions- for- Chest- Radio graphy- and- CT- for- Suspe cted- COVID 19- Infec tion). 
Accessed on 09/05/2021.

 9. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation 
of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) 
in China: a report of 1014 cases. Radiology. 2020;296(2):E32-40.

 10. Ghaderzadeh M, Asadi F. Deep learning in the detection and diagnosis of 
COVID-19 using radiology modalities: a systematic review. J Healthcare 
Eng. 2021;15:2021.

 11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: a large-scale 
hierarchical image database. In 2009 IEEE conference on computer vision 
and pattern recognition (pp. 248–255), (2009, June).

 12. Chaudhary Y, Mehta M, Sharma R, Gupta D, Khanna A, Rodrigues JJ. 
Efficient-CovidNet: deep learning based COVID-19 detection from chest 
x-ray images. In 2020 IEEE international conference on e-health network-
ing, application & services (HEALTHCOM) 2021 Mar 1 (pp. 1–6). IEEE.

 13. Luz E, Silva P, Silva R, Silva L, Guimarães J, Miozzo G, Moreira G, Menotti 
D. Towards an effective and efficient deep learning model for COVID-19 
patterns detection in X-ray images. Res Biomed Eng. 2021;20:1–4.

 14. Pham TD. Classification of COVID-19 chest X-rays with deep learning: new 
models or fine tuning? Health Inf Sci Syst. 2021;9(1):1–1.

 15. Saiz FA, Barandiaran I. COVID-19 detection in chest X-ray images using a 
deep learning approach. Int J Interact Multimed Artif Intell. 2020;6:4.

 16. Rahimzadeh M, Attar A. A modified deep convolutional neural network 
for detecting COVID-19 and pneumonia from chest X-ray images based 

https://doi.org/10.1007/s13755-021-00166-4
https://doi.org/10.1007/s13755-021-00166-4
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/COVID-19_pandemic#Transmission
https://en.wikipedia.org/wiki/COVID-19_pandemic#Transmission
https://en.wikipedia.org/wiki/Reverse_transcription_polymerase_chain_reaction
https://en.wikipedia.org/wiki/Reverse_transcription_polymerase_chain_reaction
https://en.wikipedia.org/wiki/COVID-19_pandemic#Diagnosis
https://en.wikipedia.org/wiki/COVID-19_pandemic#Diagnosis
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection


Page 11 of 11Nikolaou et al. Health Inf Sci Syst (2021) 9:36

on the concatenation of Xception and ResNet50V2. Inf Med Unlocked. 
2020;19:100360.

 17. Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V. Applica-
tion of deep learning for fast detection of COVID-19 in X-rays using 
nCOVnet. Chaos Solitons Fractals. 2020;138:109944.

 18. Li J, Xi L, Wang X, et al. Radiology indispensable for tracking COVID-19. 
Diagn Interv Imaging. 2020;102(2):69–75.

 19. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning 
for pulmonary disease and coronavirus COVID-19 detection from X-rays. 
Comput Methods Programs Biomed. 2020;196:105608.

 20. Loey M, Smarandache F, Khalifa NEM. Within the lack of chest COVID-19 
X-ray dataset: a novel detection model based on GAN and deep transfer 
learning. Symmetry. 2020;12(4):651.

 21. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. 
Automated detection of COVID- 19 cases using deep neural networks 
with X-ray images. Comput Biol Med. 2020;121:103792.

 22. El Asnaoui K, Chawki Y. Using X-ray images and deep learning for 
automated detection of coronavirus disease. J Biomol Struct Dyn. 
2020;38:3615–26.

 23. Dey N, Rajinikanth V, Fong SJ, Kaiser MS, Mahmud M. Social group 
optimization-assisted Kapur’s entropy and morphological segmentation 
for automated detection of COVID-19 infection from computed tomogra-
phy images. Cogn Comput. 2020;12(5):1011–23.

 24. Vaid S, Kalantar R, Bhandari M. Deep learning COVID-19 detec-
tion bias: accuracy through artificial intelligence. Int Orthopaed. 
2020;44:1539–42.

 25. Ucar F, Korkmaz D. COVIDiagnosis-Net: deep Bayes-SqueezeNet based 
diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. 
Med Hypotheses. 2020;140:109761.

 26. Togaçar M, Ergen B, Cömert Z. COVID-19 detection using deep learning 
models to exploit social mimic optimization and structured chest X-ray 
images using fuzzy color and stacking approaches. Comput Biol Med. 
2020;121:103805.

 27. Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network for detection 
and diagnosis of COVID-19 from chest X-ray images. Comput Methods 
Programs Biomed. 2020;196:105581.

 28. Martinez F, Maríınez F, Jacinto E. Performance evaluation of the NASNet 
convolutional network in the automatic identification of COVID-19. Int J 
Adv Sci Eng Inf Technol. 2020;10(2):662.

 29. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. 
CovidGAN: data augmentation using auxiliary classifier GAN for improved 
COVID-19 detection. IEEE Access. 2020;8:91916–23.

 30. Pereira RM, Bertolini D, Teixeira LO, Silla CN, Costa YMG. COVID-19 
identification in chest X-ray images on flat and hierarchical classification 
scenarios. Comput Methods Programs Biomed. 2020;194:1055.

 31. Apostolopoulos ID, Mpesiana TA. COVID-19: automatic detection from 
X-ray images utilizing transfer learning with convolutional neural net-
works. Phys Eng Sci Med. 2020;43(2):635–40.

 32. Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine 
learning method for image-based diagnosis of COVID-19. PLoS ONE. 
2020;15(6):e0235187.

 33. Sethy PK, Behera SK, Ratha PK, Biswas P. Detection of coronavirus disease 
(COVID-19) based on deep features and support vector machine. Int J 
Math Eng Manag Sci. 2020;5(4):643–51.

 34. Yi PH, Kim TK, Lin CT. Generalizability of deep learning tuberculosis clas-
sifier to COVID-19 chest radiographs: new tricks for an old algorithm? J 
Thoracic Imaging. 2020;35(4):102–4.

 35. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19 outbreak 
screening using chest X-rays. Phys Eng Sci Med. 2020;43(3):915–25.

 36. COVID-19 Radiography Database. https:// www. kaggle. com/ tawsi furra 
hman/ covid 19- radio graphy- datab ase. Accessed 3 May 2021.

 37. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neu-
ral networks. International Conference on Machine Learning 2019 May 24 
(pp. 6105–6114). PMLR.

 38. Jiao Z, Choi JW, Halsey K, Tran TM, Hsieh B, Wang D, Eweje F, Wang R, 
Chang K, Wu J, Collins SA. Prognostication of patients with COVID-19 
using artificial intelligence based on chest X-rays and clinical data: a 
retrospective study. The Lancet Digital Health. 2021;3(5):e286–94.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

	COVID-19 diagnosis from chest x-rays: developing a simple, fast, and accurate neural network
	Abstract 
	Purpose: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Study design
	Transfer learning and feature extraction
	Data augmentation
	Fine-tuning
	Performance metrics

	Results
	Two-class classification
	Three-class classification

	Discussion
	Conclusions
	References




