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Abstract
A reliable economic risk map is critical for effective debris-flow mitigation. However, the uncertainties surrounding future 
scenarios in debris-flow frequency and magnitude restrict its application. To estimate the economic risks caused by future 
debris flows, a machine learning-based method was proposed to generate an economic risk map by multiplying a debris-flow 
hazard map and an economic vulnerability map. We selected the Gyirong Zangbo Basin as the study area because frequent 
severe debris flows impact the area every year. The debris-flow hazard map was developed through the multiplication of the 
annual probability of spatial impact, temporal probability, and annual susceptibility. We employed a hybrid machine learning 
model—certainty factor-genetic algorithm-support vector classification—to calculate susceptibilities. Simultaneously, a 
Poisson model was applied for temporal probabilities, while the determination of annual probability of spatial impact relied 
on statistical results. Additionally, four major elements at risk were selected for the generation of an economic loss map: 
roads, vegetation-covered land, residential buildings, and farmland. The economic loss of elements at risk was calculated 
based on physical vulnerabilities and their economic values. Therefore, we proposed a physical vulnerability matrix for 
residential buildings, factoring in impact pressure on buildings and their horizontal distance and vertical distance to debris-
flow channels. In this context, an ensemble model (XGBoost) was used to predict debris-flow volumes to calculate impact 
pressures on buildings. The results show that residential buildings occupy 76.7% of the total economic risk, while road-
covered areas contribute approximately 6.85%. Vegetation-covered land and farmland collectively represent 16.45% of the 
entire risk. These findings can provide a scientific support for the effective mitigation of future debris flows.

Keywords  Economic risk · Future debris flows · Gyirong Zangbo Basin · Machine learning model · Physical vulnerability 
matrix · Southwest Tibet, China

1  Introduction

Debris flows, characterized by velocity ranging from 1 to 20 
m/s, stand out as one of the most devastating landslide types, 
causing considerable losses to human lives and properties 
in mountainous areas (Hungr et al. 2001; Papathoma-Köhle 

et al. 2017; Laigle and Bardou 2022). The socioeconomic 
toll of such event is exacerbated by the rapid urbanization 
and the impacts of climate change witnessed in recent years 
(Hardwick Jones et al. 2010; Stoffel et al. 2014; Pei et al. 
2023). Therefore, in order to reduce casualties and losses, 
adoption of hazard and susceptibility maps have been sug-
gested by past studies (Mondal and Maiti 2013; Chen et al. 
2015; Angillieri 2020). However, these tools fall short in 
indicating the potential distribution of damages (Remondo 
et al. 2005)—a crucial aspect even in post-disaster recon-
struction efforts. Conducting an economic risk assessment 
becomes imperative to identify areas most susceptible to 
debris flows and quantify the potential economic losses asso-
ciated with such occurrences. The economic risk assessment 
will allow decision makers to prioritize mitigation projects 
in high-risk areas where the economic impact is significant. 
Therefore, generating an economic risk assessment map of 
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debris flows is part of the mitigation strategies aiming at 
minimizing economic losses (Vranken et al. 2015).

Many methods have been proposed to assess the economic 
risks caused by debris flows. For example, Dai et al. (2002) 
conducted a comprehensive overview of landslide risk 
assessment, introducing an equation for evaluating property 
damage that is applicable to debris flows. This equation 
incorporates the annual probability of landslide (P(H)), 
the probability of spatial impact (P(S|H)), the vulnerability 
of properties (V(P|S)), and elements at risk (E). However, 
the temporal probability was not taken into consideration 
in the equation. This parameter signifies the likelihood of 
experiencing at least one hazard event within a specific time 
period (Guzzetti et al. 2006). Furthermore, Liu et al. (2009) 
calculated the property loss resulting from debris flows 
using numerical simulations to delineate the debris-flow 
influence area. Nevertheless, this study failed to assess the 
damage degree of buildings and infrastructure, potentially 
yielding unreliable results. Moreover, a run-out model was 
developed by Quan Luna et al. (2014) to ascertain debris-
flow intensities, which were used to determine the dangerous 
zone. As a result, the economic risk can be calculated with 
the consideration of the physical damages to the buildings. 
However, the application of this established model is 
constrained by the changes in debris-flow frequency and 
magnitude. Therefore, there is a pressing need to derive a 
more dependable method to estimate economic risks from 
future debris flows. Our proposed model addresses the 
limitations highlighted in prior studies by incorporating 
temporal probability into risk assessment, evaluating the 
damage degree of buildings, and considering the model’s 
applicability in future scenarios.

To quantify the economic risks, a supervised machine 
learning (ML)-based method was proposed. Machine 
learning is designed to find the complex and hidden 
relationships between input variables and output results 
(Khosravi et al. 2021). This is because a supervised model 
is well suited in this study due to the lesser amount of 
data and a clear labelled data for model training. Among 
the several supervised models, support vector machine 
(SVM) performs well in handling classification problem 
due to its high prediction accuracy and good performance 
in generalization. It has been proved that this model 
outperformed the other supervised models due to the 
highest accuracy when utilizing the UCI Repository of 
Machine Learning Databases to conducting classification 
analysis (Mohamed 2017). However, this method needs a 
good kernel function, therefore requires the optimal hyper-
parameters, C and gamma, for a specific classification 
problem. Therefore, the genetic algorithm (GA) is 
introduced to generate the optimal C and gamma so that 
we can obtain a good kernel function for classification 
problem and avoid overfitting (Burbidge and Buxton 2001). 

Moreover, Mohamed (2017) also suggested that SVM has 
a high sensitivity to input data. In this case, certainty factor 
(CF) is employed to increase the stability of input data 
so as to develop a robustness model. Therefore, a hybrid 
machine learning model, certainty factor-genetic algorithm-
support vector classification (CF-GA-SVC), was used in 
our study (Qiu et al. 2022). Additionally, an ensemble ML 
model, extreme gradient boosting (XGBoost), was used 
to predict the volume of future debris flows and estimate 
economic losses, thus generating a reliable economic risk 
map. XGBoost was developed based on Gradient Boosting 
Decision Tree (GBDT) with the involvement of a L2 regular 
term to avoid overfitting (Dong et al. 2022). As a result, this 
model has attracted a lot of attentions from various fields 
due to its good performance in both computational speed 
and prediction accuracy (Wang et al. 2022). For example, 
XGBoost performed better than logistic regression (LR) in 
the medical field (Wang et al. 2022). Additionally, XGBoost 
outperformed artificial neural network (ANN) and SVM in 
predicting groundwater levels (Osman et al. 2021). A better 
performance was found in utilizing XGBoost to predict 
concrete strength when compared to SVM and multilayer 
perceptron (MLP) (Nguyen et al. 2021). Overall, XGBoost 
is an effective machine learning model in conducting 
regression analysis. Therefore, this model was selected in 
our study to estimate the debris-flow volume of a future 
event.

The Gyirong Zangbo Basin in Tibet Autonomous Region, 
China, was selected as the study area to implement the 
proposed method. This area, characterized by an intricate 
geological and geomorphological environment, experiences 
frequent and severe debris flows annually.

2 � Methodology

Generally speaking, risk assessment includes hazard 
assessment, vulnerability assessment, and definition of the 
elements at risk. Therefore, a conceptual equation defined 
by the International Association of Engineering Geology 
(IAEG) and Varnes (1984) was proposed:

where R represents the risk. H is the hazard, and V represents 
the vulnerability. E is the selected elements at risk. Dai 
et  al. (2002) further developed Eq.  1 for financial risk 
estimation by considering the product of P(H)×P(S|H) as 
the hazard, where P(H) is the annual probability of debris-
flow occurrence, which indicates the probability of an event 
occurring once a year, and P(S|H) represents the annual 
probability of spatial impact. It is used to describe the 
probability of an occurred event that reaches an individual 

(1)R = H × E × V ,
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property. However, this equation ignored the annual temporal 
probability (P(Ht)), which means that there is generally at 
least one event in a given period of time. Therfore, Vranken 
et al. (2015) reworked Eq. 1 to estimate the risk of property 
damage by utilizing P(H), P(S|H), and P(Ht) to represent 
the hazard. However, the application of this equation under 
future scenarios was not considered. Since vulnerability is 
not a fixed value (Papathoma-Köhle et al. 2017), we defined 
a conceptual model to estimate the economic risk caused by 
future debris flows at a regional scale as follow:

where P(Hs) represents the annual spatial probability of 
a debris-flow event. P(Ht) is the temporal probability of 
occurrence of one debris-flow event. P(S|Ht) represents 
the annual probability of spatial impact, which means the 
probability of a debris-flow event impacting the individual 
property. The product of P(Hs), P(Ht), and P(S|Ht) represents 
the hazard in Eq. 1. Ve is the future economic vulnerability, 
and E represents the elements at risk. Therefore, the 
economic risk was estimated by using Eq. 2.

Before calculating the different components in Eq. 2, 
debris-flow volume prediction is the first step to be carried 
out. Therefore, the selection of predisposing factors holds 
significance in achieving reliable predictions, as these 
factors can exert an impact on the ultimate prediction of 
debris-flow volume. Huang et al. (2020) highlighted strong 
correlations between some geomorphic features and debris-
flow volume, such as catchment area (A), channel length 
(L), topographic relief (Rt), and mean slope of the main 
channel (J). Apart from these four factors, the curvature of 
the main channel (C) is also selected for volume prediction 
based on Shi et al. (2015). The values for A, L, J, and C 
can be obtained through a digital elevation model (DEM) 
with a resolution of 30 m.1 Rt is decided using the Focal 
Statistics in GIS, requiring the determination of an optimal 
statistical unit. However, a rectangle statistical unit was 
employed in this study, and it contains n × n pixels (n = 1, 2, 
3, …). Therefore, in order to decide the optimal statistical 
unit that can reflect the characteristic of the topographical 
condition, we utilized the change-point model. This method 
can decide the slope change point in the logarithmic curve 
that depicts the relationship between topographic relief 
and the neighborhood area. This change point is therefore 
regarded as the optimal statistical unit. The basic steps are:

(1)	 The number of pixels of a statistical unit involved in 
calculation is set in an ascending order ranging from 
2 × 2 to n × n;

(2)Risk = P
(
Hs

)
× P

(
Ht

)
× P

(
S|Ht

)
× Ve × E

(2)	 Decide the average topographic relief (rj) and neighbor-
hood area (sj) of each statistical unit using the Focal 
Statistics tool;

(3)	 Calculate the unit relief (Tj) of each statistical unit 
through the ratio of rj and sj (j = 1, 2, 3,…, n);

(4)	 Take the logarithm for Tj, ln (Tj), and construct a new 
sequence X, X is {xj, j = 1, 2,3…, n}. Then, calculate 
the mean value, X , of the sequence X.

(5)	 Calculate the statistical values of S and Sj by using the 
following equations to define the maximum difference 
between S and Sj (j = 1, 2, 3, …, 20). Separate the 
sequence X to Xj1 = (x1, x2, …, xj−1) and Xj2 = (xj, xj+1, 
…, xn).

where Xj1 is the mean value of the first part of Xj1, and 
Xj2 is the average value of the rest part of Xj2. These 
equations are used to calculate the expected values, 
E(S − Sj), j = 1, 2, 3, …, n. The point that causes the 
maximum difference between S and Si is called the 
change point. Once the optimal statistical unit is deter-
mined, the topographic relief for each catchment is cal-
culated using GIS.

 Following the identification of the optimal statistical 
unit, we can calculate the topographic relief within each 
catchment. Finally, for a catchment, the mean value of 
topographic relief across different optimal units is employed 
to represent its topographic relief.

Subsequent to data preparation, an ensemble algorithm 
(XGBoost) with robust and efficient computational abilities 
is introduced to predict the volume of future debris-flow 
events. The prediction performance is evaluated using 
absolute bias (AB), mean absolute error (MAE), root mean 
square error (RMSE), and mean absolute percentage error 
(MAPE), which are widely employed indices for assessing 
model performance.

(3)Tj = tj∕sj

(4)X =

n∑

j=1

xj

n

(5)S =

n∑

j=1

(
xj − X

)2

(6)Sj =

j−1∑

t=1

(
xt − Xj1

)2

+

n∑

t=j

(
xt − Xj2

)2

(7)AB =
|||yi,pre − yi,true

|||

1  Downloaded from Geospatial Data Cloud: https://​www.​gsclo​ud.​cn/.

https://www.gscloud.cn/
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where yi,pre is the predicted debris-flow volume, and yi,true 
represents the measured debris-flow volume. m is the num-
ber of prediction values.

2.1 � Debris‑Flow Hazard Assessment

Debris-flow hazard assessment is fundamental for the 
selection of possible safe areas to locate new residential 
buildings and infrastructure. Hazard is calculated 
considering the temporal probability (P(Ht)), the annual 
probability of spatial impact to the properties (P(S|Ht)), and 
annual spatial probability (P(Hs)).

2.1.1 � Annual Spatial Probability (P(Hs)) and Annual 
Probability of Spatial Impact (P(S|Ht))

A hybrid machine learning model (CF-GA-SVC) is 
employed to calculate the annual spatial probability, taking 
into account both annual precipitation and annual average 
temperature. As for the annual probability of spatial impact 
on a property, this parameter signifies the likelihood of 
impact when flowing materials reach a specific property 
(Corominas et al. 2014). The annual probability of spatial 
impact may vary across different catchments due to varying 
occurrence frequencies for debris-flow magnitudes. For 
buildings and roads, the debris-flow-related annual spatial 
impact is derived from statistical results and interviews 
during the field investigations conducted by Sichuan 
Geological Exploration Institute from 2006 to 2018. In 
the case of forests and pastures, we assume a probability 
of damage equal to 1, implying complete destruction when 
a debris flow occurs. Therefore, the annual probability of 
spatial impact for forests and pastures is represented by 
the reciprocal value of the recurrence period of a debris-
flow event. While the recurrence period of a debris flow is 
decided based on the statistical analysis of historical records.

2.1.2 � Temporal Probability (P(Ht))

Temporal probability is associated with the occurrence 
of debris-flow events of the same magnitude at least once 

(8)MAE =
1

m

m∑

i=1

|||yi,pre − yi,true
|||

(9)RMSE =

√√√√
m∑

i=1

(
yi,pre − yi,true

)2
/

m

(10)MAPE =
100%

m

m∑

i=1

|||||

yi,pre − yi,true

yi,true

|||||

within a specified time period, also known as the exceedance 
probability (Guzzetti et al. 2006). To calculate the temporal 
probability, the Poisson model proposed by Crovelli and Coe 
(2008) is introduced:

where H(t) denotes the number of debris-flow events 
within the time period t. μ is the time interval between two 
debris flows, and λ is equal to 1/μ. This formula illustrates 
that if the time period t is long enough, there must be one 
more debris-flow event observed in a catchment when the 
parameter μ is a constant. Concurrently, an increase in μ 
signifies a diminishing probability of debris-flow occurrence 
within the specified time period t.

2.2 � Future Economic Loss

Economic loss plays a crucial role in quantitative risk 
assessment, serving as the link between debris-flow 
occurrence and the elements at risk (Bednarik et al. 2012). 
To estimate potential economic loss (Ve) arising from future 
debris-flow events, we employ the multiplication of the 
economic values of elements at risk and their corresponding 
physical vulnerabilities (Vp). For residential buildings, physical 
vulnerability (Vp) is related to the impact pressure (Pt) induced 
by the flowing material, and the horizontal (HD) and vertical 
(VD) distance between the building and the nearest debris-
flow channel. Pt serves as an effective indicator reflecting 
the energy of the phenomena and the potential degree of 
damage to buildings (Jakob et al. 2012; Kang and Kim 2016). 
In contrast, HD and VD reflect the impact intensity since the 
actual damage is generally more significant if the building is 
closer to the debris-flow channel (Sturm et al. 2018).

As a first step, we propose a physical vulnerability matrix 
(Table 1) to assess damages to buildings. Then, the impact 
pressure on buildings is estimated based on the predicted 
debris-flow volumes. Finally, the economic loss can be 
appraised by multiplying physical vulnerability and unit price.

The physical vulnerabilities (Vp) of roads, farmland, and 
pastures are defined on the basis of fragility values as defined 
in Totschnig and Fuchs (2013). In this context, fourth-grade 
road is assigned a fragility value of 0.85, while the third-grade 
road has a value of 0.65. Moreover, it is assumed that pastures 
and farmland would suffer complete destruction in the event 
of a debris-flow occurrence.

The economic loss of an element caused by one debris-flow 
event is defined as follow:

(11)
P[H(t) ≥ 1] = 1 − P[H(t) = 0] = 1 − exp (−�t) = 1 − exp (−t∕�)

(12)Ve =

m∑

i

Vei
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where Vei and Vfi represent the economic loss and the 
economic value of each element, respectively. Vp represents 
the physical vulnerability of an element. Pi is the price per 
km2, and Ai is the area of each element.

3 � Study Area

The Gyirong Zangbo Basin in the Tibet Autonomous Region 
of China was selected to test the proposed methodology and 
assess the economic risk related to future debris flows. This 
area covers 2120 km2, including two towns and 13 villages 
(Fig. 1a).

The lithology class belongs to the Mesozoic era, in which 
the Cretaceous (K2zz and K1j) mainly tended east-west (EW) 
direction. Cretaceous formations, primarily comprised of 
shale and sandstone interbedded with limestone, dominate 
this area. Shale, known for its fragility and erodibility, con-
tributes to the extensive availability of sediment for transport 

(13)Vei = Vpi × Vfi

(14)Vfi =

m∑

i

Pi × Ai

on the slopes of the northern section of the Gyirong Zangbo 
Basin. The widely distributed cracked rocks is a result of 
the combined effects of intense weathering and active faults 
(Qiu et al. 2022), potentially leading to the mobilization of 
sediment during heavy rainfall and the subsequent develop-
ment of debris flows. In contrast, the southern part of the 
Gyirong Zangbo Basin exhibits a markedly different mor-
phology, characterized by widely distributed vegetation-cov-
ered slopes. This geomorphic feature is attributed to warm 
air from the Indian Ocean, fostering abundant rainfall and 
creating an optimal environment for vegetation growth. In 
this southern region, forests are primarily distributed at alti-
tudes below 2900 m. Beyond the 4100 m threshold, where 
glaciers are present, no forests are observed. In addition, 
the southern part is characterized by schist, gneiss, granu-
lite, and migmatite (AnZN). Both schist and gneiss belong 
to metamorphic rock, exhibiting a lamellar structure that 
results in low shear strength along the dips, leading to unsta-
ble slopes. Therefore, the expansive source areas and pre-
vailing water conditions create an environment conducive to 
the initiation of debris flows in this southern region.

Table 1   Physical vulnerability (Vp) of buildings in the Gyirong Zangbo Basin

RC frame represents the reinforced concrete buildings. Non-RC frame includes masonry, wooden, and light steel frame structures

Pt (kPa) Building structure HD < 30 m 30 < HD < 100 m

VD < 4 4 < VD <10 10 < VD < 15 VD < 4 4 < VD <10 10 < VD < 15

< 30 RC frame 0.3 0.2 0.1 0.2 0.1 /
Non-RC frame 0.8 0.7 0.6 0.7 0.6 0.4

30–70 RC frame 0.6 0.5 0.4 0.5 0.4 0.2
Non-RC frame 1 0.9 0.8 0.9 0.8 0.6

70–100 RC frame 0.7 0.6 0.5 0.6 0.5 0.3
Non-RC frame 1 1 0.9 1 0.9 0.7

> 100 RC frame 0.8 0.7 0.6 0.7 0.6 0.4
Non-RC frame 1 1 0.9 1 1 0.8

Pt (kPa) Building structure 100 < HD < 160 m 160 < HD < 230 m

VD < 4 4 < VD <10 10 < VD < 15 VD < 4 4 < VD <10 10 < VD < 15

< 30 RC frame 0.1 / / / / /
Non-RC frame 0.6 0.4 0.1 0.4 0.1 /

30–70 RC frame 0.4 0.2 / 0.2 / /
Non-RC frame 0.8 0.6 0.3 0.6 0.3 /

70–100 RC frame 0.5 0.3 / 0.3 / /
Non-RC frame 0.9 0.7 0.4 0.7 0.4 /

> 100 RC frame 0.6 0.4 0.1 0.4 0.1 /
Non-RC frame 1 0.8 0.5 0.8 0.5 0.1
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4 � Economic Risk Assessment

Economic risk assessment aids in quantifying the severity 
of potential economic losses associated with future debris 
flows. This section illustrates the calculation results of 
economic risks and provide guidance for helping risk 
managers, supporting decision-making process, and 
allocating resources effectively.

4.1 � Characteristics of the Selected Elements at Risk

Four elements at risk are selected in the study area to evalu-
ate future economic risk, including roads, residential build-
ings, vegetation-covered land (forest, shrub, and pasture), 
and farmland. The distribution characteristics of the selected 
elements are shown in Fig. 1b. In the study area, shrub, simi-
lar to forests and pastures, is assigned a fragility value of 
1.0, implying complete destruction in the event of debris 
flows. Therefore, shrub, forest, pasture, and farmland are 
considered completely destroyed when debris flows occur. 
Other land cover types, such as uncultivated land and gla-
cier, are not incorporated into the economic risk assessment 

due to challenges in estimating their economic values, as 
they are unsuitable for farming and grazing. The widely dis-
tributed crushed rocks in the northern part cannot serve as 
the foundation of houses or infrastructure and therefore are 
not considered in such calculation. River networks are also 
excluded from risk assessment because there are no planned 
hydropower plants or fishery industries.

Generally, the roads in the Gyirong Zangbo Basin fall into 
two main categories according to the Standard of Recon-
struction Project for County-Level and Village-Level Roads 
in China: county-level highways and backroads. This area 
encompasses two towns and 13 villages, with most build-
ings situated on alluvial fans or along streams. Alluvial 
fans are commonly chosen for residential sites in mountain 
environments due to their gentle slopes, smooth topography, 
and proximity to rivers benefiting farming and living needs 
(Schick et al. 1999; Marcato et al. 2012) but inevitably suf-
fer a higher risk of debris flows. Livestock is the primary 
income source for the local people and a large area of the 
basin is pasture, which is mainly distributed in the northern 
part (Fig. 1b).

Fig. 1   a Location of the study area in southwestern Tibet, China; b Distribution of the elements at risk in the study area
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4.2 � Volume Prediction and Prediction Model 
Assessment

The DEM used to derive parameters A, L, J, and C features a 
spatial resolution of 12.5 m.2 As for Rt, the optimal statistical 
unit for calculation results in this study was determined to 
be 10 × 10 pixels. Prior to model training with the identified 
factors, it is imperative to conduct correlation analysis to 
ascertain their suitability for predicting debris-flow volume. 
The relationships between each factor and debris-flow vol-
ume were examined to ascertain their suitability using the 
data in Table 2. The analysis results revealed that the catch-
ment area (A) factor exhibits the most robust linear relation-
ship with volume since Person’s coefficient is greater than 
0.8. The length of the main channel (L) follows, presenting 
some correlation with volume, as well as the topographic 
relief (Rt) and mean slope of the main channel (J), although 
weaker. No correlation was observed between the mean 
curvature of the main channel (C) and debris-flow volume. 

Therefore, C was excluded, and only A, L, Rt, and J were 
used to develop the debris flow volume prediction model.

Following the correlation analysis, the data were split 
into a training set and a testing set with a ratio of 7:3. 
The training set was used to develop a prediction model 
through tenfolds cross-validations and leave-one-out cross-
validations, while the testing set served to evaluate the 
performance of the prediction model. Following this, the 
model’s performance was further evaluated, demonstrat-
ing a reduction in MAPE value to 9.32%. Regarding MAE 
and RMSE, these two metrics are 501.4 m3 and 594.4 m3, 
respectively. The MB was calculated as − 50.6 m3, indi-
cating an underestimation of debris-flow volume but with 
a relatively small average deviation from the measured 
value. The prediction results are plotted against the meas-
ured values in Fig. 2a. This figure shows that the predic-
tion results well agree with the measured values. There-
fore, it can be concluded that this model performed well 
in predicting the volume of a future debris-flow event. In 
addition to assessing the overall model performance, it 
is equally crucial to discern the individual contribution 
of each geomorphic factor to the estimation of debris-
flow volume. This analysis of factor importance not only 

Table 2   Database of the 
prediction model in the Gyirong 
Zangbo Basin, including 
four geomorphic factors (A 
is catchment area, L is main 
channel length, Rt represents 
topographic relief, and J is main 
channel gradient) and measured 
volumes of debris flows (V) 
through field investigations

The total number of training samples is 49

No. A (km2) L (km) Rt (m) J (°) V (104 m3) No. A (km2) L (km) Rt (m) J (°) V (104 m3)

1 8.55 3.13 269 6.0 3.5 26 3.99 3.78 134 22.1 0.7
2 4.68 1.41 126 12.2 2.3 27 2.88 2.40 313 35.4 1.1
3 12.88 4.16 269 7.1 5.4 28 0.34 1.14 163 40.6 2
4 0.29 0.50 95 9.3 0.28 29 2.81 2.84 253 27.7 2.3
5 0.29 0.29 200 22.4 0.28 30 7.18 4.82 400 27.2 3.7
6 5.73 0.71 260 6.7 4.5 31 24.42 9.47 337 17.5 0.3
7 0.56 0.62 195 13.9 0.8 32 2.81 1.74 205 17.7 0.7
8 2.15 0.73 250 15.3 0.5 33 0.43 1.30 200 38.7 0.5
9 0.32 0.46 276 28.6 0.2 34 7.06 4.41 275 24.1 3
10 1.67 0.95 161 20.3 0.61 35 1.07 2.05 225 23.9 2.2
11 11.21 1.93 360 8.6 1.8 36 0.86 2.17 149 21.7 2.47
12 2.85 1.57 232 14.4 0.72 37 6.51 2.92 252 26.7 4.41
13 2.29 1.84 189 19.7 1.27 38 0.42 1.64 151 25.7 8.17
14 0.08 0.42 240 19.6 0.18 39 0.51 1.43 153 26.1 8.42
15 0.18 0.48 366 34.9 0.05 40 0.20 0.76 130 28.9 0.92
16 0.53 0.81 170 16.4 0.4 41 0.34 1.25 130 26.3 1.25
17 0.71 1.74 151 33.0 7.1 42 0.05 0.18 85 10.8 0.15
18 0.49 1.64 162 33.0 8.3 43 0.06 0.23 81 16.9 0.16
19 0.60 1.52 155 32.9 6.2 44 0.33 0.5 162 15.6 0.29
20 0.36 1.15 261 39.4 3.2 45 0.05 0.2 107 14.9 0.14
21 2.73 2.57 190 34.1 2 46 1.37 1.11 160 10.0 1.54
22 2.02 2.59 198 35.1 2.2 47 4.83 1.96 277 11.7 1.4
23 0.43 1.30 198 37.7 1.95 48 1.33 0.5 258 27.1 0.5
24 0.19 1.09 181 34.5 1.6 49 0.17 0.62 231 25.3 0.2
25 1.03 2.02 232 23.6 1.2

2  Accessed at https://​search.​asf.​alaska.​edu/#/.

https://search.asf.alaska.edu/#/
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illuminates the significance of each raw factor but also pro-
vides valuable insights for utilizing the developed model 
in estimating debris-flow volumes. To accomplish this, 
we assessed the significance of each raw factor by sys-
tematically excluding one factor at a time, thereby training 
four models. They are Model 1 (A + L + Rt + J), Model 2 
(A + L + Rt), Model 3 (A + L), and Model 4 (A). Subse-
quently, we assessed the estimation accuracy of the four 
models using the RMSE, MAE, AB, and MAPE indices, 
and the corresponding results are depicted in Fig. 2b–d. 
Model 1 stands out as the most effective model, whereas 
the estimation outcomes of Model 4 demonstrate the most 
significant deviation from the measured values. To conduct 
a more comprehensive performance comparison among 
the four models, we calculated the MAPE, RMSE, and 
MAE values (Fig. 2).

Figure 2b shows an 193.5% increase of MAPE when 
J was excluded from model training (Model 2), which 
indicates a significant decrease of prediction accuracy. 
Another accuracy decline of 15.8% was noted when fac-
tor Rt was omitted from the factor combination (Model 
3). It can be concluded that J plays a more critical role 
in enhancing estimations compared to Rt. Furthermore, 

a significant reduction in prediction accuracy was found 
when only A was used (Model 4) for debris-flow volume 
estimation, reaching 188.8% decline of prediction accu-
racy when compared to Model 3. Although catchment size 
may suggest the potential water storage and the maximum 
capacity for erodible debris materials within a debris-
flow catchment, the scaling relationship between catch-
ment areas and debris-flow volume is intricate (Gartner 
et al. 2008; Marchi et al. 2019; Lee et al. 2021). This 
complexity poses a challenge in relying on a single factor 
for achieving a reliable estimation of debris-flow volume. 
Figure 2c illustrates the variations in RMSE and MAE 
for the four models, showcasing an upward trend as the 
number of input variables decreases. The RMSE values 
for all four models consistently surpass the MAE values. 
This discrepancy arises because RMSE amplifies estima-
tion errors, particularly those that are relatively significant. 
Consequently, the RMSE index is well-suited for detect-
ing outliers, whereas MAE values typically represent the 
exact errors between the estimation results and raw data. 
Therefore, the increase in RMSE values signifies greater 
estimation errors and instability in estimation performance 
after excluding input variables (refer to Fig. 2d).

Fig. 2   a Scatter diagram of prediction results; b MAPE results of the four models; c RMSE and MAE results of the four models; d AB results of 
the four models (MAPE mean absolute percentage error; RMSE root mean square error; MAE mean absolute error; AB means absolute bias)
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As depicted in Fig.  2d, Model 1 demonstrates the 
most stable outputs, with estimation errors ranging from 
0.0055 × 104 to 0.2031 × 104 m3. Excluding J, the maximum 
estimation error increases to 0.9112 × 104 m3, notwithstand-
ing the presence of two abnormal values, 1.2394 × 104 m3 
and 1.4541 × 104 m3, which are the primary contributors to 
the rise in RMSE in Fig. 2c. For Model 3, which excludes 
J and Rt from the model training, there is no significant 
decrease in the MAPE value (refer to Fig. 2b), but the maxi-
mum estimation error increases to 1.4452 × 104 m3. Model 
4 exhibits a maximum estimation error of 7.6917 × 104 m3. 
Consequently, the developed prediction model with the 
incorporation of four factors performs well in estimating 
debris-flow volume, and 49 training samples could support 
the development of a reliable prediction model in the Gyi-
rong Zangbo Basin.

4.3 � Debris‑Flow Hazard Assessment

Volume prediction of future debris flows can help in deter-
mining the annual probability of an event affecting the vul-
nerable elements and its exceedance probability within a cer-
tain time range. The calculation of susceptibility estimates 
the occurrence probability of this event.

4.3.1 � Annual Probability of Spatial Impact to Properties 
and Temporal Probability

The prediction results illustrate that the volumes of future 
debris-flow events in this area are generally smaller than 
20 × 104 m3. According to the Specification of Geological 
Investigation for Debris-Flow Stabilization (DZT0220-
2006),3 debris flows are categorized as medium-scale when 
the volume ranges from 2 × 104 to 20 × 104 m3, while small-
scale debris flows have a volume smaller than 2 × 104 m3. 
The field investigations indicate that small-scale debris flows 
occur approximately once every 2 years in this area, and the 
return period of medium-scale debris flows is 5 years.

For the temporal probability, a 5-year time period (t) was 
selected. Within this timeframe, the time intervals (µ) of 
small-scale and medium-scale debris flows were determined 
as 2 and 5 years, respectively. Therefore, the temporal prob-
ability of 0.91 was assigned for small-scale debris flows, and 
0.63 for the medium-scale debris flows based on Eq. 11. This 
allows for the determination of the temporal probability of a 

Fig. 3   a Susceptibility levels in the Gyirong Zangbo Basin using certainty factor-genetic algorithm-support vector classification (CF-GA-SVC); 
b Debris-flow hazard map

3  http://​www.​gsyskc.​com/​uploa​dfiles/​file/​20170​109/​14839​28553​
80501​8529.​pdf (in Chinese).

http://www.gsyskc.com/uploadfiles/file/20170109/1483928553805018529.pdf
http://www.gsyskc.com/uploadfiles/file/20170109/1483928553805018529.pdf
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potential debris-flow event in each catchment based on the 
predicted debris-flow volume.

4.3.2 � Annual Spatial Susceptibility and Debris‑Flow Hazard 
Assessment Map

The causative factor combination in this area has been sug-
gested by Qiu et al. (2022). Figure 3a displays a suscepti-
bility map of the area with five levels, generated using the 
CF-GA-SVC model. The occurrence probability of debris 
flows ranges from 0.0028 to 0.9811. The high susceptibil-
ity level is delineated within the range of 0.7516 to 0.9533, 
while values between 0.9533 and 0.9811 indicate a very 
high susceptibility level. Apart from the high and very high 
susceptibility regions, the probabilities of very low and low 
levels are 0.0028–0.0404 and 0.0404–0.2887, respectively. 
The moderate level falls within the range of 0.2887–0.7516. 
The results highlight that the very-high susceptibility level 
is predominantly distributed in the southern part, attributed 
to the glacier’s location and abundant rainfall, both capable 
of triggering debris flows. In recent years climate change 
has promoted glacier degradation and thus generated more 
exposed rocks and great availability of loose materials on 
slopes. These materials can be mobilized by water runoff 
or involved by mass movements, thus forming debris flows. 
Additionally, glacier melting, influenced by rainfall and ris-
ing temperatures, contributes to increased debris-flow occur-
rences. This is because a 0.5 °C increment of temperature 
may cause a 6.6% increase of annual streamflow based on 
the study of Zhang et al. (2011) when annual precipitation 
is a fixed value. As a result, the mobilization of the accumu-
lated and settled materials within the catchments may also 
increase, which results in the increasing susceptibility. The 
northern part of the study area exhibits a higher suscepti-
bility to debris flows, primarily due to widely distributed 
crushed rocks associated with tectonic activity. This sector 
features one main fault and seven secondary faults, result-
ing in large amounts of loose materials accumulating along 
slopes or at their bases. These settled materials can start to 
move under the effect of heavy rainfalls and glacial-melting 
runoff, evolving into saturated/partly saturated flows.

The hazard map resulting from the product of 
susceptibility, annual probability of spatial impact, and 
temporal probability shows values ranging from 0.0013 
to 0.4415 (Fig. 3b). These values are classified into five 
levels—very high (0.3720–0.4415), high (0.1939–0.3720), 
moderate (0.0605–0.1939), low (0.0182–0.0605), and very 
low (0.0013–0.0182)—based on natural break point method. 
The catchments with very high hazard levels are mostly 
concentrated in the southern part.

4.4 � Economic Loss Map

Using the predicted debris-flow volumes, the equations 
proposed by Cui et al. (2013) and Rickenmann (1999) 
allow for the calculation of peak discharge and debris-
flow velocity. The flow depth can also be defined based 
on its velocity and the slope gradient of the main channel 
(Koch 1998; Rickenmann 1999). Consequently, the catch-
ments with building clusters were extracted to calculate 
the impact pressure of future debris-flow events (Zan-
chetta et al. 2004) and to determine the damage degree 
of the buildings affected by debris flows. The potential 
impact pressures resulting from future debris flows are 
depicted in Fig. 4a. However, to assess the physical vul-
nerability of the residential buildings, HD and VD need 
to be defined. Building cluster polygons were extracted 
based on satellite images (Gaofen-2). The used panchro-
matic (black and white) images have a spatial resolution 
of 0.8 m. Furthermore, the Fishnet tool in GIS was used 
to divide these building clusters into rectangles, each 
representing a single building. Considering the average 
house type, a 500 m2 threshold was applied to generate 
building rectangles (see building segments in Fig. 4a). 
Consequently, the physical vulnerability of each build-
ing was determined based on HD and VD values, along 
with the calculated potential impact pressure from a future 
debris-flow event. Apart from the residential buildings, the 
physical vulnerabilities of roads, farmland, and vegetation-
covered land were decided based on the suggested fragil-
ity values by Totschnig and Fuchs (2013). The economic 
loss of each element was estimated based on the unit 
price in Table 3. The unit prices of buildings and roads 
were decided based on the meeting with the Housing and 
Urban–Rural Construction Agency in Gyirong during the 
field investigations. The unit price of vegetation-covered 
land was obtained through the meeting with the Forestry 
and Grassland Administration of Tibet, mainly including 
the restoration cost after the destruction by debris flows. 
“Proportion” in Table 3 illustrates the percentage of the 
area occupied by each element in relation to the overall 
study area.

Based on the unit price of each element, we can estimate 
the economic loss of each rectangle. Subsequently, the 
economic loss of each building segment can be calculated 
based on Eqs. 11, 12.

The economic losses of the catchments with build-
ing segments are presented in Fig. 4b. Since catchment 
was used as an analysis unit rather than a grid unit, the 
catchment unit can effectively reflect the hazard-inducing 
environment. As depicted in Fig. 4b, Zongga and Jilong 
do not emerge as residential areas with the most severe 
economic losses. This is primarily attributed to the major-
ity of houses being constructed with reinforced concrete 
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Fig. 4   a Impact pressures caused by future debris flows to buildings, and the economic vulnerabilities of b the extracted catchments and c all the 
catchments in the Gyirong Zangbo Basin
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(RC frames), with the structural strength to withstand the 
impact of future debris flows. Similar distribution char-
acteristics were found when all the elements at risk were 
considered (Fig. 4c). However, the involvement of other 
elements at risk can also increase the economic losses. For 

example, the vulnerability in Chongdui reaches the highest 
level (4.2–30 €/km2), but the economic loss of buildings 
in this area only ranges from 1.8 to 4.2 €/km2 (Fig. 4b). 
Additionally, an increase of 0.74 €/km2 and 1.08 €/km2 are 
found in Jilong and Zongga, respectively. Nevertheless, 

Table 3   Unit price of the elements at risk in the Gyirong Zangbo Basin

Elements Categories Area and length Proportion (%) Unit price Value based on

Roads Third-grade road 186.2 km 13.8 83,460 €/km Repair cost
Fourth-grade road 50.8 km 3.8 46,320 €/km Repair cost

Buildings Residential building 6.0 km2 0.5 417.140 €/m2 Average house price
Vegetation-covered land Pasture 764.3 km2 56.7 0.019 €/m2 Official data

Shrub 154.7 km2 11.5 0.089 €/m2 Official data
Forest 165.9 km2 12.3 0.208 €/m2 Official data

Other types of lands Farmland 20.9 km2 1.5 2.090 €/m2 Production value loss

Fig. 5   a Potential economic risk caused by future debris flows in the Gyirong Zangbo Basin; b, c Catchments with very high risk level (1.90–
5.10 €/km2), where the yellow dashed line depicts the catchment boundary
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the overall levels of economic loss in these two areas 
exhibit no significant change when compared to Fig. 4b. 
The areas with the highest economic loss (4.2–30.0 €/
km2) are mainly situated in the residential sites, such as 
Zongga, Jilong, Chongdui, and Pula. Farmland is distrib-
uted closely to residential buildings, further contribut-
ing to the escalation of economic loss of the catchments. 
Therefore, it can be stated that residential buildings are 
responsible for the principal economic losses.

5 � Economic Risk Map

The overall economic risk is presented in Fig. 5. The eco-
nomic risk levels of 0.9–5.1 €/km2 cover an area of 13.3 
km2, with the high risk level (0.9–1.9 €/km2) encompass-
ing 19.5% of the territory. The largest area is covered by 
the very low risk level class (0–0.03 €/km2), with 1722.4 
km2 and comprising 261 catchments. The low risk level 
(0.03–0.08 €/km2) covers an area of 200.2 km2 with 22 
catchments. The distribution characteristics of risk levels 
in Fig. 5a align with the historical debris-flow distribution 
in Fig. 1a, as expected. Local inhabitants prefer settling on 
alluvial fans to meet the demands of planting and farming, 
as revealed by field investigations (Fig. 5b, c). This choice 
allows people to reside close to rivers, benefiting cattle 
and sheep husbandry. However, the potential economic 
risks stemming from future debris flows may lead to sub-
stantial property losses, particularly in residential areas 
with non-reinforced concrete frames. Therefore, it can be 
concluded that socioeconomic development can promote 
the accumulation of valuable elements, resulting in high 
and very high economic risks due to future debris flows.

Furthermore, we unveiled the contributions of the four 
major elements to the total economic risk. As depicted in 
Fig. 2, pastures cover 56.7% of the total area, with building 
clusters representing the smallest percentage at 0.5%. 
However, pastures account for the smallest proportion of 
the total economic risk at 2.49%, while building clusters 
are responsible for the largest share, constituting 76.7% of 
the entire economic risk. Forests contribute approximately 
0.72 €/km2, exceeding shrubs at 0.33 €/km2. Roads, covering 
almost 0.2% of the total area, contribute about 4.36% of the 
total economic risk by third-grade roads, while fourth-grade 
roads are responsible for 2.49% of the total economic risk. 
Farmland, covering an area of 20.9 km2, poses an economic 
risk of 0.75 €/km2.

To validate the economic risk results, several catchments 
identified during the field investigations conducted by 
Sichuan Geological Exploration Institute are examined. As 
shown in Fig. 5a, a debris-flow event occurred in catchment 
1, with a volume smaller than 2 × 104 m3, classified as a 
small-scale debris flow. Therefore, the annual probability 

of spatial impact and temporal probability are 0.55 and 
0.91, respectively, and the susceptibility of this catchment 
is 0.9423. The field investigation estimated an economic 
loss of 3.85 × 106 €. In this case, the calculated economic 
risk is 0.01 €/km2, aligning with the classified risk level 
in Fig. 5a. For catchment 2 in Fig. 5a, a property loss of 
3.96 × 106 € was estimated during the field investigations. 
The loss was caused by a small-scale debris flow (estimated 
volume is 1.7 × 104 m3). The susceptibility of this catchment 
is 0.74. Therefore, the economic risk is 0.04 €/km2, falling 
within the range of 0.03–0.08. Moreover, a total of six debris 
flows were observed on the same day in catchment 3, most 
of which are hill-slope debris flows causing damages to 
residential areas and roads. Therefore, these events are all 
small-scale but claimed a total property loss of 10.2 × 106 €. 
The susceptibility in this catchment is 0.94. Consequently, 
the economic risk is estimated at 0.13 €/km2, placing it in 
the moderate risk level (0.08–0.90 €/km2).

These results can indicate the effectiveness and reliability 
of the proposed method in estimating economic loss 
risk related to future debris flows and therefore provide 
guidance for decision makers about site selection of future 
infrastructure and countermeasure construction.

6 � Discussion and Limitations

The integration of a hybrid CF-GA-SVC model and an 
ensemble XGBoost model serves to enhance the reliability 
of the presented results. To be more specific, the hybrid 
ML model (CF-GA-SVC) demonstrates an effective 
improvement in the prediction accuracy of susceptibility 
compared to traditional approaches (Vranken et al. 2015; 
Fu et al. 2020) and the conventional ML models (Staley et al. 
2017). This is because the complexity of the debris-flow 
event occurrence process poses a significant challenge for 
susceptibility assessment using simple empirical methods. 
Therefore, generating a reliable debris-flow hazard map 
through such approaches may be unrealistic. In contrast, 
the introduction of ML methods, with their robust ability to 
handle complex spatial heterogeneity problems, facilitates 
the establishment of more reliable and precise relationships 
among numerous variables. Furthermore, the hybridization 
of different individual ML models enhances the robustness 
and accuracy of each single ML model (Ardabili et al. 2020). 
This hybrid ML method offers a scientific, advanced, and 
systematic means to describe the triggering conditions of 
debris flows.

Additionally, a proper vulnerability evaluation is 
fundamental for estimating economic risk. Past studies 
repeatedly focused on physical vulnerability using 
different approaches (Papathoma-Köhle et al. 2017) but 
further studies may be needed. If we can predict the 
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volume of future debris-flow events, the impact pressure 
on buildings can be defined. To achieve this, we introduced 
an ensemble ML model (XGBoost), which is composed of 
a series of regressors to extract the relationship between 
geomorphological conditions and possible debris-flow 
volume. The subsequent step involves defining a factor 
combination essential for analyzing impacts on residential 
buildings, thereby supporting the formulation of the 
economic risk map. We are aware that impact pressure, 
along with HD and VD, cannot fully encompass the 
complex effects of a debris flow on the buildings and 
therefore we proposed this synthetic procedure that can 
provide an average-based assessment of the damage 
degree that can occur in a residential area based on the 
construction typology. However, sample size may emerge 
as an uncertainty to impact the performance of models in 
estimating debris-flow volume. Therefore, we incorporated 
32 more historical debris-flow events in Sichuan, China 
into model training to test the reliability of the developed 
model. The performance of this model with 81 debris-
flow samples was further assessed, with MAPE reaching 
9.64%, which is slightly higher than the MAPE value when 
49 samples were used for model development. This result 
indicates that the predictions are accurate in relative terms, 
which is a favorable aspect of its performance. The MAE 
and RMSE are 560.7 m3 and 776.3 m3, respectively. The 
MB is − 90 m3, which indicates an underestimation of the 
debris-flow volume but relatively a small average deviation 
from the measured value. Therefore, the incorporation of 
more training samples may result in a slight decrease in 
prediction accuracy without impacting significantly on the 
prediction efficiency, which demonstrates the reliability of 
the developed model based on 49 training samples. We are 
also aware that 49 or even 81 samples are still not enough 
if a wider application of this model is expected. This is 
because the completion of this task needs continuous input 
of debris-flow data in different areas and regions globally, 
which may not be fully completed in this study. However, 
the model developed in this study can support the effective 
risk assessment in the Gyirong Zangbo Basin and even 
the Himalayan regions due to the similar topographic and 
meteorological conditions, and we will also keep working 
on this model to increase its robustness so that we can use 
the model to achieve reliable predictions at a national scale 
or continental scale. Overall, the incorporation of the 32 
more historical debris flows can increase the robustness 
of the developed prediction model but cannot change 
the prediction results to a large extent. The predicted 
economic vulnerabilities and risks of the catchments show 
slight changes without causing changes to the classified 
vulnerability and risk levels.

The economic analysis presented thus far serves to 
map risk levels in various catchments, offering effective 

guidance and scientific support for decision makers. By 
quantifying potential risks, decision makers can gain a 
better understanding of future challenges, enabling them to 
prioritize actions and optimize resource allocation in high-
risk zones. This approach facilitates long-term urban plan-
ning, policy development, and the formulation of adapta-
tion strategies to effectively reduce and manage identified 
risks. Moreover, the preparedness and emergency response 
system would be implemented accordingly. Despite these 
strengths, some limitations persist, suggesting room for 
improvement in the proposed methodology’s performance. 
The database of debris-flow occurrences needs further 
enrichment to refine the volume prediction model. Another 
potential area for enhancement lies in augmenting the 
physical vulnerability assessment with new data, consid-
ering additional building characteristics such as shape and 
the number of windows. Nevertheless, all these limitations 
cannot alter the fact that the proposed ML-based method 
represents a new tool for generating a map of economic 
risk caused by future debris-flow events. It also signifies a 
practical method to deliver accurate and reliable warnings 
to local residents about the risks posed by debris flows.

7 � Conclusion

In this study, a machine learning-based method was proposed 
with the integration of a hybrid and ensemble machine 
learning model to produce a map of economic risk due to 
future debris-flow events. This map was derived through 
the assessment of debris-flow hazards and the calculation 
of economic losses associated with the elements at risk. 
Completing the debris-flow assessment involves multiplying 
the annual spatial probability of debris-flow occurrence, the 
annual probability of spatial impact on properties, and the 
temporal probability. During this process, we used a hybrid 
machine learning model (in this case certainty factor-
genetic algorithm-support vector classification) to calculate 
debris flow susceptibility. This hybrid model integrated 
topographical, ecological, geological, and meteorological 
factors into model development. Apart from the debris-flow 
assessment, the economic losses sustained by residential 
buildings were analyzed, since this element comprises the 
majority of the total economic risk. In this case, an ensemble 
machine learning model, XGBoost, was employed to predict 
the final volume of future debris-flow events because it 
calculates impact pressure on residential buildings. To 
provide reliable physical vulnerabilities for buildings at 
risk, we analyzed the horizontal and vertical distance 
values of buildings and proposed a physical vulnerability 
matrix based on such analysis. Finally, the multiplication 
of physical vulnerability and unit price of properties led 
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to the evaluation of possible economic losses. To test the 
efficiency and feasibility of this method in estimating the 
economic risk, the Gyirong Basin in southwestern Tibet 
was selected as the study site. The results revealed that 
residential buildings account for 76.7% of the total economic 
risk, followed by farmland and forests. These calculated 
results align with the actual distribution of debris flows 
based on field investigations, demonstrating the method’s 
accuracy and applicability. Our findings suggest that this 
method is suitable for the regional assessment of economic 
risks caused by future debris flows in mountainous areas. 
The proposed methodology can thus provide an effective 
guidance and scientific support for decision makers in 
the fields of risk understanding, resource prioritization, 
definition of mitigation and adaptation strategies, long-term 
planning, and emergency response, to prevent and mitigate 
future debris-flow risk in the Gyirong Zangbo Basin.
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