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Abstract
This study presents a novel method for optimizing parameters in urban flood models, aiming to address the tedious and 
complex issues associated with parameter optimization. First, a coupled one-dimensional pipe network runoff model and a 
two-dimensional surface runoff model were integrated to construct an interpretable urban flood model. Next, a principle for 
dividing urban hydrological response units was introduced, incorporating surface attribute features. The K-means algorithm 
was used to explore the clustering patterns of the uncertain parameters in the model, and an artificial neural network (ANN) 
was employed to identify the sensitive parameters. Finally, a genetic algorithm (GA) was used to calibrate the parameter 
thresholds of the sub-catchment units in different urban land-use zones within the flood model. The results demonstrate that 
the parameter optimization method based on K-means-ANN-GA achieved an average Nash-Sutcliffe efficiency coefficient 
(NSE) of 0.81. Compared to the ANN-GA and K-means-deep neural networks (DNN) methods, the proposed method bet-
ter characterizes the runoff generation and flow processes. This study demonstrates the significant potential of combining 
machine learning techniques with physical knowledge in parameter optimization research for flood models.

Keywords  Artificial neural network · Coupled urban flooding model · Genetic algorithm · K-means algorithm · Sub-
catchment delineation · Uncertain parameters

1  Introduction

In recent years, urban flood disasters caused by sudden 
heavy rainfall have become increasingly severe, posing a 
serious threat to urban public infrastructure and the safety 
of residents’ lives and property (Nguyen and Bae 2020; Lu 
and Sun 2021). Flood forecasting is one of the important 
non-engineering measures for flood control and disaster 
reduction, and the construction of a waterlogging model is 
the cornerstone of urban waterlogging forecasting (Chang 
et al. 2021; Li et al. 2022; Nandi and Reddy 2022). Urban 
waterlogging models involve a large number of parameters 
(Zeng et al. 2020; Liao et al. 2022), and a significant portion 

of them cannot be directly obtained from measurable catch-
ment characteristics (Sinnathamby et al. 2017; Guo and Su 
2019; Wang et al. 2020). However, the accuracy of runoff 
depth simulation largely depends on how relevant param-
eters are defined (Huo and Liu 2019; Feigl et al. 2022a). 
Sensitivity analysis of the model parameters is fundamental 
for improving the efficiency and accuracy of model simula-
tions. However, traditional methods for parameter sensitivity 
analysis involve complex processes, which severely hinder 
the efficiency of sensitivity analysis for urban waterlogging 
models.

Therefore, it is crucial to efficiently identify and optimize 
these sensitive parameters (Wood et al. 2016; Willis et al. 
2019). Parameter optimization calibration is a key step in 
simulating urban waterlogging models and can be performed 
through manual or automatic calibration methods (Jung et al. 
2017; Feigl et al. 2022b; Katipoğlu and Sarıgöl 2023). In 
the past, manual calibration methods, which are tedious 
and time consuming, were commonly used. To overcome 
the difficulties of manual parameter optimization calibra-
tion, researchers, both in China and internationally, have 
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developed computer-based automatic optimization methods. 
For instance, Wu et al. (2021) proposed a deep-learning-
based method for optimizing the uncertainty parameters in 
flood processes. Yuan et al. (2021) implemented automatic 
calibration of rainfall-runoff model parameters using a BP 
neural network algorithm. Wang et al. (2022) addressed the 
issue of the inability to automatically calibrate parameters 
in the optimization module of flood models and proposed an 
automatic calibration method based on a genetic algorithm 
(GA) for rainfall-runoff models.

In recent years, there have been rapid developments in 
the field of deep learning. Compared to traditional hydro-
dynamic methods, deep learning resembles a “black box” 
(Adnan et al. 2021). While the internal structure and physi-
cal mechanisms of these methods are not fully understood, 
they have the ability to quickly capture trends and relation-
ships in the data through extensive training (Yan et al. 2021; 
Ye et al. 2022). Therefore, the application of methods based 
on artificial neural networks (ANN) and other deep learning 
techniques for the rapid identification of sensitive param-
eters in urban waterlogging models is worth exploring. The 
K-means clustering machine learning algorithm (referred to 
as K-means) is widely used in flood forecasting research 
owing to its simple mathematical principles and fast con-
vergence speed (Xu and Peng 2015). Li et al. (2016) used 
flood similarity to expand real-time corrective information 
and combined it with a K-means algorithm to achieve flood 
classification and forecasting in a transitional river basin. 
Hu et al. (2022) constructed a rapid flood classification fore-
casting model for the Jingle Basin based on K-means and 
backpropagation (BP) neural networks. Sun et al. (2022) 
applied improved sub-watershed division rules combined 
with the K-means algorithm for parameter calibration in the 
Storm Water Management Model (SWMM). However, there 
is a lack of discussion regarding the physical significance 
of the model parameters and the universal laws that govern 
the relationship between these parameters and the complex 
underlying urban surface. The application of the K-means 
algorithm in flood forecasting research has mostly focused 
on watershed areas and often classifies floods based on the 
characteristics of rainfall-flood events, with few studies 
exploring the sensitive parameters of urban waterlogging 
models.

In recent years, urbanization has led to increased levels 
of complexity in underlying surface conditions. Although 
traditional pipe network routing models perform well in 
simulating water routing within a network, they cannot 
provide information on the extent of surface inundation 
and water depths (Yang et al. 2020). This limitation makes 
it challenging to simulate the two-dimensional inundation 
process under complex urban conditions (Rai et al. 2016; 
Shahed Behrouz et al. 2020). Surface runoff models have 
the advantage of simulating the extent, depth, and process 

of urban inundation based on overflow processes (that 
is, flow rate versus time relationship) at overflow nodes 
and urban topography. But such models do not take into 
account underground space (Zeng et al. 2017; Dao et al. 
2022; Yang et al. 2022). Therefore, this study combined a 
one-dimensional pipe network routing model with a two-
dimensional surface runoff model to construct an inte-
grated urban waterlogging model.

Although the efficiency of identifying and optimiz-
ing sensitive parameters in urban flood models can be 
improved with the help of high-performance computers 
and machine learning methods, current research largely 
overlooks the physical significance of these model parame-
ters and the universal laws that exist between these param-
eters and complex urban underlying surfaces of urban 
areas (Zang et al. 2022). The parameters are often assigned 
in a simplistic manner, and the sensitivity analysis of these 
parameters often involves cumbersome and complex pro-
cesses, such as multiple simulations of the model. Further-
more, these studies have often directly used the simulation 
results of one-dimensional hydrological models to repre-
sent the surface inundation situation without considering 
the two-dimensional hydrodynamic processes of surface 
water runoff (Cai et al. 2019).

Investigating the differences in sensitive parameters 
among different land use functional zones in cities is help-
ful for reflecting the actual conditions of the study area 
and improving the efficiency and accuracy of urban flood 
simulations. Therefore, in this study, we proposed a prin-
ciple for dividing urban hydrological response units based 
on the coupling model of the pipe network and surface. 
This principle incorporates the surface attribute features. 
Subsequently, we employed K-means clustering to explore 
the clustering patterns of the uncertain model parameters 
and identify sensitive parameters using artificial neural 
networks. Finally, we calibrated the threshold values of the 
sensitive parameters for the sub-watershed units in differ-
ent land use functional zones using a genetic algorithm.

2 � Methodology

In urban flood simulations, there are several issues, such 
as inadequate consideration of urban underlying surface 
attributes, unclear principles for dividing urban hydrologi-
cal response units, and the complex and tedious parameter 
optimization process. In view of these issues, this study 
considered the characteristics of underlying urban surfaces 
and used the K-means-ANN-GA machine learning method 
to identify and optimize sensitive parameters in urban 
flood models. The research framework is shown in Fig. 1.
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Fig. 1   Research framework
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2.1 � Urban Flood Coupling Model Construction

This study combines a one-dimensional pipe network rout-
ing model with a two-dimensional surface runoff model to 
construct an integrated urban waterlogging model. This inte-
grated model aims to overcome the limitations of individual 
models and provide a comprehensive understanding of urban 
inundation processes by considering both surface and under-
ground water routing (Yang et al. 2022).

2.1.1 � Pipe Network Runoff Model

Surface water in urban areas flows naturally into low-lying 
areas and enters the stormwater pipe networks through 
rainwater inlets. The hydraulic characteristics of the pipe 
network and stormwater nodes after the rainwater entered 
the pipe network were calculated using the dynamic wave 
method. Once rainwater enters the pipe network, the flow 
state within the pipes continuously switches between an 
open-channel flow and apressurized pipe flow (Ye et al. 
2021). The Pressimann virtual slit method and unsteady 
Saint-Venant equations were employed to model stormwater 
runoff in a pipe network. The specific equations used for the 
calculations are as follows:

where M represents the cross-sectional area of the pipe, N 
represents the width of the virtual slit, Q represents the flow 
rate in the pipe cross-section, u denotes the lateral bound-
ary inflow velocity along the pipe, q represents the lateral 
boundary flow rate, x represents the distance along the pipe, 
a is the momentum correction coefficient, g represents the 
acceleration due to gravity, y represents the water head posi-
tion, and Sf denotes the friction slope of the pipe. To solve 
the aforementioned stormwater pipe network runoff model, 
an explicit numerical algorithm was utilized, in which the 
hydraulic parameters and geometric characteristics of the 
pipe network were obtained from the data of the stormwater 
pipe network model (Schilling and Tränckner 2022).

2.1.2 � Surface Runoff Model

The surface runoff model incorporates clear physical mech-
anisms, enabling the calculation of a surface water depth 
distribution consistent with the precision of the terrain data 
through water exchange between grid cells. Owing to the 
similarity between representing urban surfaces using regular 
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grids and the modeling approach that employs raster data to 
describe surface attributes in geographic information sys-
tem (GIS) (Sosa et al. 2019; O’Loughlin et al. 2020; Shus-
tikova et al. 2020), this study adopted a grid-based hydraulic 
computation model to simulate the surface runoff process in 
urban areas.

According to the soil permeability, the underlying surface 
can be classified as impermeable, semi-permeable, perme-
able, and highly permeable surfaces. Modeling the surface 
runoff process using regular grid data involves employing 
hydraulic methods to calculate the water exchange between 
grid cells, simulating the movement of water under the influ-
ence of gravity and structures, and outputting water depth 
distribution results that are consistent with the topographic 
grid. The main control equation is shown as follows:

where x and y represent the distances in the X and Y direc-
tions in the Cartesian coordinate system, respectively. H 
represents the depth of the surface water, t represents time, 
and J and K represent the discharge per unit width in the 
X and Y directions, respectively. g represents the accelera-
tion due to gravity, and z represents the water level on the 
surface, which is the cumulative quantity of the water depth 
and surface elevation. u and v represent the components of 
the velocity vector in the X and Y directions (vertical direc-
tion), respectively, and n represents the Manning roughness 
coefficient.

The implicit finite difference method was used to solve 
the dynamic model of surface runoff. This allows the calcu-
lation of the magnitude and direction of the flow between 
adjacent grid cells. Subsequently, the water depth in the grid 
cells was updated based on the flow in different directions.

2.1.3 � Coupled Model of Surface and Subsurface Drainage 
Networks

Compared to the one-dimensional pipe network routing 
model, the two-dimensional surface runoff model excels 
in simulating flow in uncertain directions. However, it 
lacks consideration for underground space routing (Zeng 
et al. 2022). Therefore, in this study, a coupled approach 
was employed to integrate a one-dimensional pipe network 
runoff model with a two-dimensional surface runoff model. 
The pipe network provides net overflow rates at the nodes, 
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whereas the surface runoff model simulates the extent, 
depth, and inundation process. By coupling these models, it 
is possible to leverage their respective strengths to simulate 
urban flooding processes effectively. The coupling process 
consists of the following steps.

Step 1	� Construct a pipe network runoff model for the study 
area with minimal or no generalization of suscepti-
ble flooding nodes.

Step 2	� Run the one-dimensional pipe network runoff 
model to extract the overflow process at the over-
flow nodes of the pipelines.

Step 3	� Calculate the overflow flow rates for the overflow-
ing pipelines.

Step 4	� Use the overflow processes and overflow rates as 
point-source boundary conditions to drive the two-
dimensional surface runoff model.

Step 5	� Input the elevation grid data and configuration files 
such as partial node reflux sequences into the two-
dimensional surface runoff model to compute the 
extent and depth of surface inundation.

2.2 � Identification and Optimization of Sensitive 
Parameters in the Coupled Urban Flood Model

The parameters of urban flood models can be classified into 
two categories: deterministic and uncertain parameters. 
Deterministic parameters are obtained through field meas-
urements or software analyses, generally refers to Area, 
Width, Imperv, Slope, Pipe shape, Pipe length, and Node 
elevation (Liu et al. 2023). Uncertain parameters are derived 
from expert experience or parameter calibrations. The cum-
bersome and complex calibration optimization process of 
uncertain parameters is a core issue that affects the efficiency 
of model simulations and predictions.

The sensitivity of uncertain parameters in urban flood 
models is widely acknowledged to be closely related to 
underlying surface conditions. For example, surface depres-
sion storage reflects the depth of water storage in hydro-
logical response units, the surface Manning’s coefficient 
represents the resistance encountered by precipitation dur-
ing runoff in hydrological response units, the pipe network 
roughness coefficient determines the velocity of under-
ground runoff, while infiltration rate and decay coefficient 
reflect the subsurface infiltration capacity in the Horton 
overland flow model (Padiyedath Gopalan et al. 2019; Hu 
et al. 2020). Thus, based on this understanding, this study 
proposed a rule for dividing urban hydrological response 

units, which incorporates the characteristics of underlying 
surface attributes. Subsequently, the differential parameter 
thresholds obtained through K-means clustering analysis 
were assigned to each watershed unit. Finally, a genetic 
algorithm was used to calibrate the parameters of the sub-
watershed units in different urban land use functional zones 
within the coupled urban flood model. The main steps are 
as follows:

Step 1	� Division of hydrological response units consider-
ing urban surface characteristics. This ensures that 
each sub-catchment corresponds to an independent 
urban land use functional zone.

Step 2	� Outputting feature parameter values for different 
urban land use functional zones using the K-means 
clustering algorithm. A crowdsourced dataset of 
uncertain parameters in urban flood models was 
established. First, the relevant literature and his-
torical experiential data are searched to obtain a 
set of prior sample parameters with explicit values 
for nine uncertain parameters in urban flood mod-
els: S-Imperv, S-perv, N-Imperv, N-perv, MaxRate, 
MinRate, Decay, Drytime, and Roughness. Then, 
the prior sample parameters are input into the 
K-means clustering model for analysis, resulting in 
the output of the feature parameter values assigned 
to different urban land use functional zones.

Step 3	� Proposal of a sensitive parameter identification 
mechanism based on an ANN model. This involves 
using environmental indicators that affect the sen-
sitivity of parameters in different hydrological 
response units as inputs and constructing a binary 
classification ANN model with sensitive parame-
ters in the urban flood model as outputs. By adjust-
ing the number of hidden layers and the maximum 
iteration count of the neural network model, the 
sensitive parameters of the urban flood model can 
be quickly obtained.

Step 4	� Calibration of sensitive parameters using a genetic 
algorithm. Based on the K-means clustering analy-
sis and the sensitive parameter identification mech-
anism using the ANN model, the thresholds of the 
sensitive parameters in the urban flood model are 
distributed to each sub-watershed unit according 
to the distribution pattern of the urban land use 
functional zones. Multiple rainfall-runoff events 
are selected, and based on the mapping relation-
ship between two-dimensional surface runoff gen-
eration and one-dimensional pipe network runoff 
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mechanisms, the optimal parameter values are 
determined using genetic algorithm.

2.2.1 � Hydrological Response Unit Division Considering 
Subsurface Characteristics

Hydrological response units serve as both spatial discre-
tization units and modeling entities for urban flood models. 
Due to human activities, the natural drainage network within 
urban areas undergoes continuous fragmentation and merg-
ing, transforming from a traditional dendritic structure to a 
complex network structure (Shen et al. 2019; Zhang et al. 
2022). Currently, most hydrological response unit delinea-
tion methods in flood simulations are time-consuming and 
do not consider the influence of topography and human 
infrastructure. In this study, we not only relied on empiri-
cal partitioning methods but also imposed constraints on 
the number and fundamental spatial scales of hydrologi-
cal response units. Therefore, this study proposed a set of 
rules for urban hydrological response unit delineation that 
incorporates both social and natural characteristics of land 
surfaces. The specific steps are as follows.

(1)	 Based on the natural features of the terrain, conduct 
preliminary analysis of the hydrological characteristics 
of the digital elevation model (DEM) using ArcMap 
software, and delineate primary watershed units based 
on the flow direction of the pipelines.

(2)	 The distribution of major drainage pipelines and roads 
is used as a basic principle for further refinement and 
division of watershed areas. At the same time, con-
trol the number of sub-watersheds to ensure a balance 
between the number of pipe segments and nodes with 
the number of sub-watershed areas (Sun et al. 2022).

(3)	 Since each watershed unit possesses both natural and 
social attributes, overlay these two types of attributes 
to perform urban functional zoning.

The specific delineation principles are as follows.

(1)	 Class I sub-catchments correspond to transportation 
areas where land use is predominantly composed of 
paved surfaces. The surface is relatively flat and com-
pact, with minimum values for ponding storage capac-
ity, Manning’s coefficient, infiltration rate, and attenu-
ation coefficient.

(2)	 Class II sub-catchments correspond to commercial and 
industrial areas, where land use consists primarily of 
buildings and paved surfaces. The surface is relatively 
flat, with relatively small values for ponding storage 
capacity, Manning’s coefficient, infiltration rate, and 
attenuation coefficient.

(3)	 Class III sub-catchments correspond to relatively dis-
persed residential areas characterized by a mixture of 
paved roads, roofs, and limited green spaces. Compared 
to commercial and industrial areas, residential areas 
have greater surface roughness and variability as well 
as slightly better permeability. The values for pond-
ing storage capacity, Manning’s coefficient, infiltration 
rate, and attenuation coefficient are moderate.

(4)	 Class IV sub-catchments correspond to public land 
areas dominated by gardens and green spaces. The land 
use consists primarily of grasslands and forests, with 
the highest surface roughness, good permeability, and 
water storage capacity. The values for ponding storage 
capacity, Manning’s coefficient, infiltration rate, and 
attenuation coefficient are the highest.

2.2.2 � Parameter Clustering Based on K‑Means

The K-means clustering algorithm is an iterative machine 
learning analysis algorithm that partitions the sample data 
into multiple distinct clusters based on the similarity of their 
feature characteristics. It accomplishes this by randomly 
selecting k initial sample points as the initial cluster centers 
(Liu et al. 2015). In this study, we searched the relevant lit-
erature and historical experiential data to obtain a prior sam-
ple parameter set that includes nine uncertainty parameters: 
S-Imperv, S-perv, N-Imperv, N-perv, MaxRate, MinRate, 
decay, dry time, and roughness. Subsequently, the K-means 
clustering algorithm was applied to cluster the uncertainty 
parameters of different functional land use areas in an urban 
context. The number of clusters k was set, and the prior 
parameter samples were inputted into the K-means model 
for analysis. The algorithm outputs characteristic parameter 
values (that is, cluster centroids) under k different clustering 
conditions. These values were assigned to transportation, 
commercial and industrial, residential, and public facility 
areas, representing four distinct land use functional areas in 
the urban context. A flowchart of the clustering algorithm 
is shown in Fig. 2.

2.2.3 � Sensitive Parameter Identification Based on Artificial 
Neural Network (ANN) Model

Artificial neural networks are powerful tools for processing 
deep-learning algorithms and are widely applied in regres-
sion and classification tasks. In general, ANN can fit any 
nonlinear function with a well-designed network structure, 
making them suitable for handling nonlinear systems or 
black-box models with complex internal representations. 
However, ANN models require substantial data training to 
achieve stability, and the training process can be time-con-
suming. Once trained, though, the model could be rapidly 
applied to new datasets.



122	 Jin et al. Using Machine Learning to Identify and Optimize Sensitive Parameters in Urban Flood Model

To expedite the identification of sensitive parameters 
in urban flood models using ANN, the input and output 
layer data must be prepared. Because this study focused 
on a coupled model of surface and pipe networks, the 
determinants of parameter sensitivity were attributed to 
rainfall, underlying surface, and pipe networks. A quan-
titative representation of these three factors was achieved 
by utilizing 11 measurable representative environmen-
tal indicators (Table 1), forming part of the ANN model 
input. The output-layer data (sensitive parameters) were 
prepared using the Morris method. Specifically, within 
the parameter range obtained from K-means clustering, 
each parameter xi was randomly altered, and the model 
was run to generate different outputs corresponding to the 

varied xi values. The sensitivity ei of parameter i can be 
expressed as:

where x represents the values of the model parameters, 
and the corresponding output is y. When this parameter is 
changed to xi, the corresponding output is y*.

The sensitivity identification of parameter i through 
K-means clustering is treated as a binary classification 
problem, where the output is 1 if the parameter is sensitive 
and 0 otherwise. The performance and prediction accuracy 
of a neural network are influenced by hyperparameters. By 

(6)ei =
y∗ − y

xi − x

Fig. 2   Flowchart of cluster-
ing analysis based on K-means 
algorithm
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adjusting the hyperparameters of the ANN model, a sensitive 
parameter identification model with higher accuracy can be 
obtained. The structure of the model is illustrated in Fig. 3.

2.2.4 � Parameter Calibration Based on Genetic Algorithm

Genetic algorithms are primarily used for optimizing prob-
lem-solving in machine learning. The basic framework of 
this algorithm consists of four components: solution vector 
encoding, solution vector population, fitness function evalu-
ation, and genetic operations (Song et al. 2009). In this study, 
we adopted the clustering results (that is, specific parameter 
values) in conjunction with the sensitive parameter cluster-
ing results. This approach aims to prevent the singulariza-
tion of sensitive parameters in each sub-catchment area and 
enhance the adaptability of sub-catchment areas in different 
urban land use functional zones. The clustering results are 
used as thresholds for calibrating the parameters of the urban 
flood model in sub-catchment areas. The threshold values of 

the sensitive parameter clustering features are distributed to 
individual catchment units based on the distribution patterns 
of the urban land use functional zones. A genetic algorithm 
is utilized to determine the optimal values based on the map-
ping relationship between two-dimensional surface runoff 
generation and one-dimensional pipe network runoff mecha-
nisms (to reduce uncertainty in the simulation process, the 
calibration results of this method can only serve as a refer-
ence and still require further refinement in conjunction with 
manual calibration by experts). The specific procedure of the 
algorithm can be found in Fig. 1, Step 5.

2.3 � Evaluation Metrics

In this study, the surface water depth at monitoring stations 
was evaluated using the Nash-Sutcliffe efficiency coefficient 
(NSE), root mean square error (RMSE), and peak time dif-
ference (PTD) (Ichiba et al. 2018). The calculation methods 
for these evaluations are:

Table 1   Environmental 
indicators affecting parameter 
sensitivity

Influencing factor Environmental indicator Unit

Rainfall Total rainfall mm
Mean rainfall intensity mm/10 min

Land surface Hydrological response unit area ha
Hydrological response unit slope %
Proportion of impervious surface %
Proportion of completely impervious surface %

Pipe Pipe burial depth m
Pipe length m
Pipe slope %
Pipe segment type –
Pipe segment radius m

Fig. 3   Artificial neural networks (ANN) model structure
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where Dobs and Dsim represent the observed and simulated 
water depth at time t, respectively. NSE serves as an impor-
tant indicator for evaluating the quality of the model simu-
lation results. The closer the value of NSE is to 1, the more 
plausible it is that the model simulates the evolution of the 
inundation. ti

sim
 and ti

obs
 represent the occurrence times of the 

simulated and observed flood peaks, respectively, and this 
study selects whole-hour intervals.
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3 � The Study Area

This section first presents an overview of the research area 
and its scientific rationale as a typical case study. It then 
elaborates on the sources of rainfall, water depth monitoring, 
pipeline, and geographical data.

3.1 � Overview of the Study Area

The study area is located in the western part of Nanjing City 
(Fig. 4). The total land area is approximately 28 m2, with 
surface elevations ranging from 0 to 19.5 m. The drainage 
pipe network within the area is relatively independent and 
consists of various artificial channels and lakes as storage 
units. Therefore, this area is an urban watershed with clear 
boundary conditions. Furthermore, the study area has a high 
level of urbanization, resulting in high surface temperatures 
during summer. Automobile exhaust emissions and air-con-
ditioning heating contribute to the high temperature of the 
lower atmospheric layer, whereas densely built structures 
impede atmospheric circulation, resulting in a relatively sta-
ble air mass in the region. These conditions create favorable 
circumstances for the occurrence of heavy rainfall and urban 
flooding disasters (Zhu et al. 2018).

Fig. 4   Overview of the study area
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3.2 � Data Sources

This study collected hourly precipitation data from 1 January 
2016, to 14 August 2019. Two rainfall stations are located 
within the study area in Nanjing City, along with three rain-
fall stations located on the outskirts. The data from these 
rainfall stations are useful for determining the timing of 
heavy rainfall events and optimizing parameters in the urban 
stormwater flooding model. Surface water depth monitoring 
data were also collected from six flood-prone sites in the 
study area. The monitoring information included the time 
of observation and water depth. To facilitate the modeling 
of the urban surface in the study area, geographical data, 
such as DEM, building data, water system distribution, and 
land use types, were obtained from the Nanjing Planning 
and Natural Resources Bureau. All the data were based on 
the WGS-84 coordinate system, and the UTM zone 50N 
projection was uniformly adopted for the map projection 
when using the planar coordinate system. In addition, the 
required pipeline network data for this experimental area 
was provided by the Nanjing Survey and Design Research 
Institute Co., Ltd., which include rainwater sewers, inspec-
tion wells (rainwater inspection wells and sewage inspection 
wells), pipelines (rainwater pipelines, sewage pipelines, and 
a small number of combined rain and sewage pipelines), 
and drainage outlets (rainwater drainage outlets and sewage 
drainage outlets).

4 � Results and Discussion

The experiment first divided the study area into different 
urban land use functional zones based on the hydrological 
response unit partitioning rules. Subsequently, a parameter 
sensitivity analysis and optimization were conducted using 
the K-means-ANN-GA machine learning method. Finally, 
the constructed urban inundation model was tested through 
simulations of three observed rainfall events, and a com-
parative analysis was performed to discuss the validity of 
the methodology.

4.1 � Hydrological Response Unit Delineation

According to the partition rules described in Sect. 2.2.1, the 
study area was divided into distinct urban land use func-
tional zones, and specific hydrological response units were 
delineated for each zone.

Land use types provide insights into the natural charac-
teristics of urban surfaces. In this study, land use type and 
geographical data were obtained from the Nanjing Planning 
and Natural Resources Bureau. ArcGIS software, in combi-
nation with manual identification, was used to classify the 
land surface of the study area (Fig. 5).

Land use planning reflects the social attributes of urban 
surfaces. Based on the overall urban land use planning of 
Nanjing City, the study area was divided into several zones, 
including residential, school, administrative office, commer-
cial, financial and industrial areas, public green spaces, and 
water bodies.

To delineate urban land use functional zones, we com-
bined the natural and social attributes of the land surface 
following the classification of land use and land use planning 
in the study area. This approach aimed to avoid the issue 
of having too few categories to differentiate the hydrologi-
cal response units or too many categories to determine the 
threshold values for each subcategory. Therefore, the urban 
land use in the research area was divided into four catego-
ries: transportation areas (TA), commercial and industrial 
areas (CA), residential areas (RA), and public facility areas 
(PA). The urban functional zoning of the study area is shown 
in Fig. 6.

Based on the current status and planning conditions of 
the drainage network in the area, this study modified and 
generalized the drainage network based on spatial topologi-
cal relationships (with minimal or no generalization at points 
vulnerable to waterlogging). Watershed units were deline-
ated based on the principles of hydrological response unit 
division and hydrodynamic knowledge.

4.2 � Sensitivity Analysis and Optimization 
of Parameters in the Study Area

Using parameter values obtained from relevant literature as 
samples, the K-means clustering algorithm was employed to 
calculate the parameter thresholds for different urban land 
use functional areas. The number of clusters K was set to 
four, and the resulting parameter thresholds for different 
urban land use functional areas are presented in Table 2.

Table 2 presents the uncertain parameters required for the 
model. As multiple parameters have similar effects, selecting 
a few sensitive parameters for calibration is sufficient. There-
fore, based on the method of identifying sensitive parameters 
described in Sect. 2.2.3, an artificial neural network was 
employed to rapidly identify the sensitive parameters of the 
coupled urban waterlogging model. The neural network used 
environmental indicators as inputs and sensitive parameters 
as outputs.

This is considered a binary classification problem, where 
a parameter is assigned a value of 1 if it is sensitive and 
0 otherwise. The data were divided into training and test-
ing sets, where TP, TN, FP, and FN represent the numbers 
of true positives, true negatives, false positives, and false 
negatives, respectively. These values are presented as per-
centages in the confusion matrix, as shown in Fig. 7. It can 
be observed from the figure that, in the testing set, the accu-
racy of identifying the sensitivity of the nine parameters is 
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Fig. 5   Land use types of the study area

Fig. 6   Urban functional zones of the study area
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generally above 70%. This indicates the applicability of the 
method for identifying sensitive parameters using artificial 
neural networks.

According to the sensitivity analysis results, only N-Perv, 
MinRate, Decay, and MaxRate were identified as sensitive 
parameters in a certain region. Using Table 2 as a reference, 
we assigned range values to these four sensitive parameters 
for the sub-watersheds within the study area according to the 
distribution patterns of the urban land use functional areas. 
A genetic algorithm was then employed in conjunction with 
the observed urban stormwater flooding events to determine 
the optimal values of these sensitive parameters. In a cer-
tain hydrological response unit within the study area, the 
optimal values of the four sensitive parameters for different 
functional areas of urban land use are presented in Table 3.

4.3 � Model Verification

Referring to the parameter table in Sect. 4.2, we substi-
tuted the uncertain parameter values into the model to ver-
ify its performance across different sub-watershed catego-
ries. Three observed rainfall events were used to simulate 

and test the developed urban flooding model. To validate 
the feasibility of the proposed method, we employed two 
additional methods for comparison: the ANN-GA method, 
which does not consider the delineation rules of urban 
hydrological response units, and the K-means-deep neu-
ral networks (K-means-DNN) method, which does not 
consider the genetic algorithm. The evaluation metrics 
selected for assessing the simulated results at monitor-
ing stations S1 and S2 were the Nash-Sutcliffe efficiency 
coefficient (NSE), root mean square error (RMSE), and 
peak time difference (PTD, ∆t, to an integer). Statistical 

Table 2   Uncertainty parameter thresholds

Parameter S-Imperv S-perv N-Imperv N-perv MaxRate MinRate Decay Drytime
(mm) (mm) – – (mm h−1) (mm h−1) – (d)

Transportation (TA) 0.2–3.2 2.7–5.9 0.01–0.018 0.05–0.18 31.6–40.5 1.3–5.5 2.1–3.2 2.9–4.7
Commercial and industrial (CA) 3.2–5.7 5.9–8.2 0.018–0.024 0.18–0.25 40.5–60.2 5.5–9.1 3.2–4.3 4.7–8.2
Residential (RA) 5.7–7.9 8.2–10.4 0.024–0.039 0.25–0.31 60.2–77.8 9.1–15.7 4.3–5.6 8.2–10.1
Public facility (PA) 7.9–9.2 10.4–12.9 0.039–0.042 0.31–0.39 77.8–94.1 15.7–19.3 5.6–6.7 10.1–13.5

Fig. 7   Parameter sensitivity identification accuracy confusion matrix

Table 3   Uncertainty parameters

Parameter N-perv MinRate MaxRate Decay
Unit – (mm h−1) (mm h−1) –

Transportation (TA) 0.09 3.8 33.2 2.8
Commercial and industrial 

(CA)
0.19 7.2 46.9 3.9

Residential (RA) 0.27 12.4 67.7 5.0
Public facility (PA) 0.33 17.5 85.1 6.5
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analyses of the evaluation metrics for the three methods 
are presented in Table 4.

From the evaluation metrics, the proposed method in this 
study achieved a Nash-Sutcliffe efficiency coefficient (NSE) 
above 0.73, a root mean square error (RMSE) within the 
range of 2–7, and an average peak time difference (PTD, 
∆t) of approximately 20 min. Compared to the ANN-GA 
method, the proposed method shows improvements of 0.29 
in NSE, 3.74 in RMSE, and 0.5 h in PTD. Compared with 
the K-means-DNN method, the proposed method shows 
improvements of 0.19 in NSE, 2.76 in RMSE, and 0.17 hours 
in PTD. Therefore, it can be concluded that the proposed 
method performs better at simulating urban flooding by 
effectively capturing the distribution patterns of uncertain 
parameters in different urban functional areas and aligning 
the model with the actual underlying surface conditions.

Scatter plots of the simulated results and observed val-
ues for the two monitoring stations during the flood events 
on 10 June 2017, and 8 August 2017 are shown in Fig. 8. 
These scatter plots demonstrate a close alignment between 
the simulated results based on the optimized parameters in 
this study and the observed values, following a 1:1 relation-
ship without significant nonlinearity or heteroscedasticity 
patterns. In addition, we fitted the simulated results of the 
other two methods to the observed values. Although the 
fitting line of the K-means-DNN method approaches a 1:1 
relationship in some cases (for example, the S1 monitoring 
station during the 10 June 2017 event), these fitting lines do 
not pass the significance test when considering all the events 
in the testing dataset.

The simulation process of two monitoring stations during 
the flood events on 10 June 2017 and 8 August 2017 is shown 
in Fig. 9 (the curve has been smoothed). From the evolution 
of flood simulation in the study area, it is evident that the 
K-means-ANN-GA parameter optimization method demon-
strates a closer fit between the simulated water depths and 
observed water depths, as well as a closer match between the 
simulated and observed peak values, compared to the param-
eter optimization methods of ANN-GA and K-means-DNN. 
The ANN-GA method, which neglects the consideration of 
urban functional areas, exhibits a pronounced attenuation 

and significant errors in the computed flood hydrographs. 
The results further demonstrate that exploring parameter 
patterns during the modeling process can better reflect urban 
surface features (Sun et al. 2022). The variation in uncer-
tainty parameter thresholds is also linked to urban functional 
zones, providing new insights into rapidly obtaining param-
eters for urban flooding models, consistent with Liu et al.’s 
research findings (Liu et al. 2023). On the other hand, the 
K-means-DNN method, which considers the characteristics 
of urban underlying surfaces based on the division rules of 
urban hydrological response units, does not employ genetic 
algorithms for precise threshold determination of sensitive 
parameters but assigns a single fixed parameter value to each 
sub-catchment unit. As a result, it fails to adequately account 
for parameter uncertainty and exhibits poor fitting to the 
observed values. The results confirm the necessity of con-
ducting parameter precision calibration (Song et al. 2009; 
Li 2020) and address the challenge of accurately simulating 
urban flooding depths in the presence of continuously chang-
ing urban surfaces, which is difficult to achieve with fixed-
parameter models (Kim et al. 2022). The K-means-ANN-GA 
method proposed in this study effectively captured the com-
plex underlying surface characteristics of the study area. It 
not only better explores the sensitive parameters of the urban 
flooding model, but also considers parameter uncertainty. 
Therefore, in the model simulation process, the parameter 
optimization method used in this study can more accurately 
portray the production and convergence processes, which is 
consistent with the above analyzed results.

Further analysis of the flooding situation during the two 
flood events on 10 June 2017 and 8 August 2017 in the study 
area was conducted, and the distribution of the flooded areas 
at a certain moment is shown in Fig. 10. When combined 
with the schematic diagram of urban land use functional 
zones in Fig. 6, it becomes evident that simulated waterlog-
ging is prone to occur in urban blocks, especially in areas 
with a high concentration of industrial and commercial land 
use. This is due to the high building density, extensive sur-
face hardening, strong impermeability, low surface eleva-
tion, and rapid surface runoff in these areas, making them 
highly susceptible to waterlogging. In contrast, simulated 

Table 4   Statistical analyses 
of flood simulation result 
evaluation indicators

Method
Evaluation indicators

ANN-GA K-Means-DNN K-Means-ANN-GA

NSE RMSE Δt(h) NSE RMSE Δt(h) NSE RMSE Δt(h)

10 June 2017 S1 0.61 8.86 1 0.76 7.02 0 0.91 4.22 1
S2 0.40 10.22 1 0.44 9.83 0 0.74 6.76 1

8 August 2017 S1 0.47 4.79 1 0.56 4.34 0 0.80 2.95 0
S2 0.52 4.44 0 0.68 3.60 0 0.87 2.32 0

25 September 2017 S1 0.60 7.82 1 0.64 7.02 1 0.73 2.18 0
S2 0.51 8.51 1 0.65 6.94 2 0.79 3.79 0

Average value 0.52 7.44 0.83 0.62 6.46 0.5 0.81 3.70 0.33
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waterlogging is less likely to occur in the urban outskirts 
because of the abundance of public land, extensive cover-
age of green spaces, sparse buildings, lush vegetation, weak 
impermeability, and low susceptibility to waterlogging. The 
analysis results are consistent with the conclusions of Chen 
et al. (2022), Peng et al. (2021), Liao et al. (2023), among 
others. These results further demonstrate the feasibility of 
the parameter optimization method that considers the social 
and natural characteristics of underlying surfaces. Moreover, 
compared to traditional parameter optimization methods, our 
parameter sensitivity analysis process reduces the tedious 
and complex processes such as multiple simulations of the 
model, effectively reducing the time required for parameter 
optimization (Wu et al. 2021). This significantly improves 
the modeling efficiency of urban rainfall-flood models and 
highlights the great potential of combining machine learning 
with physical knowledge in parameter optimization research 
for urban flood models (Snieder and Khan 2023).

5 � Conclusion

This study employed a coupled approach to integrate a 
one-dimensional pipe network model and a two-dimen-
sional surface runoff model, harnessing their respective 
strengths to simulate urban flooding processes in a more 
detailed manner. To address the challenges related to 
unclear sub-catchment delineation and complex parameter 
optimization in urban flooding models, a principle for par-
titioning urban hydrological response units was proposed. 
Furthermore, the parameters of the urban flooding model 
were optimized using the K-means-ANN-GA method. 
The results indicate that the average Nash-Sutcliffe effi-
ciency coefficient of simulated water depth in the three 
rainfall events reached 0.81, demonstrating a closer fit 
to the observed water depths compared to the ANN-GA 
and K-means-DNN parameter optimization methods. This 
study explored the general patterns of nine uncertainty 

Fig. 8   Scatter plots of the simulated versus observed values. a Monitoring station S1 on 10 June 2017; b Monitoring station S2 on 10 June 2017; 
c Monitoring station S1 on 8 August 2017; d Monitoring station S2 on 8 August 2017.
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parameters, including S-Imperv, S-perv, and N-Imperv, 
and different urban land use functional zones, starting 
from the relationship between the uncertain model param-
eters and the complex underlying surface structure of the 
urban areas. This approach offers a new perspective for the 
rapid acquisition of parameters for urban flooding models. 
This article is based on the parameter optimization method 
of K-means-ANN-GA, which is not entirely automatic. 

In the modeling process, a significant amount of manual 
intervention is still required for the quantification of reflux 
sequences, as the interpretability of reflux patterns with 
spatiotemporal heterogeneity is insufficient. Addition-
ally, based on modeling experience, the efficiency of the 
parameter optimization method using K-means-ANN-GA 
is high, but it has not been validated in other different 
types of regions. The scale dependence and transferability 
of the method require further research.

Fig. 9   Flood process simulation results. a Monitoring station S1 on 10 June 2017; b Monitoring station S2 on 10 June 2017; c Monitoring station 
S1 on 8 August 2017; d Monitoring station S2 on 8 August 2017.
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