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Abstract
Landslides cause huge human and economic losses globally. Detecting landslide precursors is crucial for disaster prevention. 
The small baseline subset interferometric synthetic-aperture radar (SBAS-InSAR) has been a popular method for detecting 
landslide precursors. However, non-monotonic displacements in SBAS-InSAR results are pervasive, making it challenging 
to single out true landslide signals. By exploiting time series displacements derived by SBAS-InSAR, we proposed a method 
to identify moving landslides. The method calculates two indices (global/local change index) to rank monotonicity of the 
time series from the derived displacements. Using two thresholds of the proposed indices, more than 96% of background 
noises in displacement results can be removed. We also found that landslides on the east and west slopes are easier to detect 
than other slope aspects for the Sentinel-1 images. By repressing background noises, this method can serve as a convenient 
tool to detect landslide precursors in mountainous areas.

Keywords  Monotonously changing displacements · Moving landslides · SBAS-InSAR · Time series of deformation

1  Introduction

As a main type of geological hazards, landslides caused 
many casualties and damages to mountain communities in 
the world (Petley 2012; Froude and Petley 2018). Existing 
work shows that some of the catastrophic landslides have 
deforming precursors before their failures (Intrieri et al. 
2018; Fan et al. 2019; Ouyang et al. 2019; Qi et al. 2021). 
Therefore, identifying deforming landslides is crucially 

important to recognize imminent dangers of landslides to 
avoid tragic disasters.

Field reconnaissance is a traditional way to map landslide 
hazards (Strom and Korup 2006). However, it is often labor 
intensive and time consuming and dangerous in mountains. 
In contrast, remote sensing is an efficient way to identify 
moving landslides in large mountain regions (Xu et  al. 
2020). Pixel offset tracking (POT) and interferometric syn-
thetic aperture radar (InSAR) are two most popular remote 
sensing techniques to identify landslide precursors (Ventura 
et al. 2011; Casu and Manconi 2016; Lacroix et al. 2018). 
Although POT (with either optical or SAR images) has been 
widely used to monitor landslide deformation, it is difficult 
to detect subtle deformations of a few centimeters (Li et al. 
2020).

In contrast, InSAR technology can monitor landslide 
deformations of a few centimeters by calculating phase dif-
ferences in SAR images (Dai et al. 2020; Zhang et al. 2022). 
There are a few InSAR methods regarding different pairing 
strategies, such as D-InSAR (differential interferometric 
synthetic aperture radar) (Wang et al. 2013), PSI (persistent 
scatterer interferometry) (Guéguen et al. 2009), and SBAS-
InSAR (small baseline subset interferometric synthetic aper-
ture radar) (Berardino et al. 2002; Bayer et al. 2017). By 
performing differential interferometry, D-InSAR uses two 
SAR images before and after the movement of a landslide 
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to calculate the deformation between them, which is fast to 
process but is always influenced by atmospheric conditions 
and temporal decorrelations (Lu et al. 2019). To overcome 
these problems in D-InSAR, multi-temporal InSAR (MT-
InSAR), such as PSI and SBAS-InSAR were developed by 
inversing time series deformations (Bayer et al. 2017; Lu 
et al. 2019; Roy et al. 2022).

The MT-InSAR technology has been extensively used to 
derive time series deformations of disastrous landslides in a 
retrospective way (Intrieri et al. 2018; Ouyang et al. 2019) 
or monitor deformation of well-known moving landslides 
(Bian et al. 2022). In these studies, cumulative displace-
ments of landslides are carefully selected by considering 
large displacements (usually > 100 mm) and changing 
monotonously with time. However, it is possible that there 
are many non-monotonously changing points that may also 
have large cumulative displacements in MT-InSAR results. 
In addition, there may be some monotonously changing 
displacements with minor displacements, which are land-
slides submerged by background noises. Therefore, iden-
tifying moving landslides is challenging from MT-InSAR 
derived time series results. By exploiting spatial patterns 
of deformations, space cluster strategies have been popular 
in deriving landslides from MT-InSAR results (Bianchini 
et al. 2012; Lu et al. 2019; Solari et al. 2019; Zhang, Zhu, 
et al. 2021). However, the space cluster methods ignored 
time series information in MT-InSAR results, which could 
make it challenging to detect small moving landslides of a 
few pixels. Few works used time series displacements to 
extract landslides (Urgilez Vinueza et al. 2022). Based on 

the assumption that cumulative displacements of landslides 
should change monotonously with time, this work aims to 
propose an algorithm to extract true moving landslides by 
fully exploiting a time series of SBAS-InSAR derived dis-
placements. The work was carried out in Gansu Province in 
western China. First, we derived a time series of cumulative 
deformation using the SBAS-InSAR. Then, we applied the 
proposed method to the derived time series deformations to 
filter out non-monotonous deformation areas. Finally, we 
compared our method with two traditional ones to showcase 
our improvements.

2 � Methodology

This section has two subsections. In the first subsection, 
we introduce the study area with a topographic map and 
describe its geological conditions. In the second subsection, 
we describe the method used for this work. In particular, we 
detail the indices we proposed by explaining their definitions 
with examples.

2.1 � Study Area

The study area is located on the northeastern edge of the 
Tibetan Plateau, in the middle and upper reaches of the 
Bailong River—a secondary tributary of the Yangtze River 
(Fig. 1). With frequent geological hazards, the study area has 
been identified as one of the most landslide sensitive areas in 
China (Zhang et al. 2018). The study area is characterized by 

Fig. 1   Location of the study area in northeastern Tibetan Plateau and elevation. GD = Guanggaishan-Dieshan.
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steep slopes and deep-incised valleys with limited space for 
local development. It has a semiarid climate with an aver-
age annual rainfall of 300–400 mm. The multi-year mean 
summer (June–August) rainfall is > 70 mm per month, 
accounting for 70–80% of the total rainfall (Zhang, Meng 
et al. 2021). The elevation of the study area ranges from 
1023 to 4057 m above sea level. The topographic features 
have a great impact on the local climate. This is manifested 
in that areas with relatively high altitudes receive more rain-
fall, while valley areas receive less rainfall.

The study area is located on the southern section of the 
Qaidam-West Qinling block. Fold and fault structures are 
extremely developed in the area and neotectonic movement 
is active. The local active faults mainly extend along the 
NWW-SEE and NEE-SWW directions (Yu et al. 2015). The 
area is cross-sectioned by the Guanggaishan-Dieshan (GD) 
thrust, which consists of the North GD fault and the South 
GD fault. The 2008 Wenchuan Earthquake had an effect on 
the study area by causing large cracks in sediments and acti-
vating many landslides (Zhang et al. 2018). The lithology 
of the study area is composed of thick layers of sandstone, 
limestone, slate, conglomerate, and sandy conglomerate (Bai 
et al. 2012). The wide distribution of layered soft and hard 
rocks is one of the most notable characteristics of the geo-
logical environment in this area.

2.2 � Methods

The method of the work can be divided into two main parts 
(Fig. 2). The first part is to derive cumulative displacements 

using the traditional SBAS-InSAR method by using SAR 
images from both the ascending and descending tracks. The 
second part is to use the proposed method to extract monoto-
nous deformation pixels.

2.2.1 � Inversing Deformation in the Line of Sight (LOS) 
Direction by SBAS‑InSAR

SBAS-InSAR technology is based on setting the spatial and 
temporal baseline thresholds as a condition, and then gen-
erates interferometric pairs, thus mitigating decoherence 
phenomenon (Lanari et al. 2007; Chen et al. 2021). We 
used a total of 46 scenes of Sentinel-1 single look complex 
(SLC) images under the descending track and 59 scenes of 
the ascending track data from April 2020 to April 2022 to 
derive surface deformation using SBAS-InSAR,1 and the 
orbit correction was performed through the precise orbit 
file2 corresponding to the time. By setting a temporal base-
line threshold of 60 days and a spatial baseline threshold 
of 20%, 261 and 219 interferometric pairs were generated 
for the ascending and descending track images, respec-
tively. Among them, the maximum spatial thresholds in the 
descending track and ascending track image pairs are 228 m 
and 218 m, respectively.

Adaptive filtering functions were used for interferogram 
processing, and unwrapped the phase by using minimum 
cost flow (MCF) algorithm (Werner et al. 2003; Pepe and 

Fig. 2   Flowchart of this work. GCP = Ground control point; GCI = Global change index; LCI = Local change index.

1  https://​search.​asf.​alaska.​edu/
2  https://​scihub.​coper​nicus.​eu/

https://search.asf.alaska.edu/
https://scihub.copernicus.eu/
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Lanari 2006). After these processes, we used the SRTM-
DEM3 data for terrain correction (Zhang, Zhu, et al. 2021) 
and corrected atmospheric errors through atmospheric spa-
tiotemporal filtering. We set ground control points (GCPs) 
based on the selection of a relatively stable region. To esti-
mate and remove the remnant constant phase, these points 
were used for refinement and reflattening. We inversed the 
first deformation rate to flatten the resulting interferogram 
by selecting the linear model. Based on the result of the 
first deformation rate, we removed atmosphere phase delay 
by using temporal high-pass filter and spatial low-pass fil-
ter to separate the phase components. Finally, the singular 
value decomposition (SVD) method was used to obtain line 
of sight (LOS) deformation results from unwrapped phase 
(Berardino et al. 2002; Chen et al. 2021). The SBAS-InSAR 
operation steps of this work were implemented in the ENVI/ 
SARscape package. 1:4 multi-look operation was used for 
the range and azimuth direction, and the final output image 
resolution is 20 × 20 m.

2.2.2 � Definitions of Global Change Index (GCI) and Local 
Change Index (LCI) and Their Applications to Extract 
Landslides

Based on the SBAS-InSAR derived cumulative displace-
ments, we proposed two indices to quantify monotonicity 
of the displacement curve for each pixel. The first proposed 
index is the global change index (GCI). It can be calculated 
in the following steps using the deformation time series. For 
a given deformation time series, we start from the second 
deformation value to the last. We compare the second defor-
mation value to the first value. If the second is smaller than 
the first value, we count 1. Then, we compare the third defor-
mation value with its preceding ones and count the number 
of deformations that are larger than it. We repeat this process 
to the end of the deformation time series. Finally, we sum 
up these counted numbers in all above mentioned repeating 
processes to get the GCI for this pixel. The mathematical 
definition of the GCI is:

where, , Si and Sj are displacements in 

the SBAS-InSAR derived results for time i and j (i > j); Sj 
precedes deformations of Si. n is the number of displace-
ments in the time series.

The GCI defines the overall monotonicity of time series. 
To further explain the definition of GCI, we take the 
descending track in this work as an example. There are 46 

(1)GCI =

n
∑

i=1

i−1
∑

j=1

f (i, j)

Sentinel-1 SAR images, that is, 46 displacement values in 
the SBAS-InSAR time series. When i = x, we count the 
number of displacements from the first (S1) to the last (Sx-1) 
that is larger than Sx. We then sum up all counts from the 
2nd to the 46th to get the GCI for the pixel. For an ideal 
constantly decreasing time series of 46 measures, we have a 
maximum GCI of 1035 (1 + 2 + 3 + … + 45), which means 
every measurement on the time series of the SBAS-InSAR 
result is less than all previous measurements. On the con-
trary, the 0 value of GCI indicates that the deformation time 
series increases monotonically.

To consider local fluctuations in the time series, we pro-
posed the local change index (LCI), which only compares 
any neighboring displacements in the time series. The LCI 
is the number of relations where the later measurement is 
larger than the earlier one in the SBAS-InSAR time series 
result. The mathematical definition of the LCI is:

where, n is the number of total used SAR images for a given 
track. The LCI defines local fluctuations of the cumulative 
displacements in the time series. In the displacement time 
series, we compare the xth displacement (Sx) and its last 
neighboring one (Sx-1). We count the number of the rela-
tions where Sx-1 > Sx. Take the 46 Sentinel-1 SAR images in 
the descending track as an example, the ideally consistent 
decrease of the displacement will result in a maximum LCI 
of 45. If LCI equals 0, it means the first displacement is 
smaller than the neighboring second one and the displace-
ment increases consistently.

In theory, the GCI ranges from 0 to ((n−1) × n) / 2 and 
the LCI ranges from 0 to n–1 for n SAR images. The 0 value 
of both GCI and LCI means monotonously increasing dis-
placement, and their theoretical maximums indicate monot-
onously decreasing displacements. The GCI measures an 
overall monotonicity of the displacement, whereas the LCI 
measures the local fluctuation of the displacement.

Figure 3 are three examples of the time series of displace-
ments from the ascending track. There are 59 SAR images in 
the ascending track. In theory, the range of GCI and LCI are 
0–1711 and 0–58. The low GCI and LCI in Fig. 3a show an 
overall increasing trend of the displacement. The GCI of Pixel 
1 is far less than one half of the theoretical maximum, indicat-
ing a persistent increase of the displacements. The low LCI 
of Pixel 1 means that there is more increase than decrease for 
any two neighboring displacements in the time series. On the 
contrary, the high GCI and LCI of Pixel 3 (Fig. 3c) show an 
overall decreasing trend of the displacements. The moderate 
GCI and LCI of Pixel 2 (Fig. 3b) show a complex change of 
the time series. The GCI is larger than one half of the theo-
retical maximum, which indicates an overall down-trend of 
the displacement. The LCI equals one half of the theoretical 

(2)LCI =
∑n

i=1
f (i, i − 1)

3  https://​dwtkns.​com/

https://dwtkns.com/
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maximum, that is, half increase and half decrease of values 
among all 58 neighboring displacements, which is the most 
fluctuated time series.

2.2.3 � Evaluation of the Method

By using the last cumulative displacement image, we cal-
culated the mean (μ) and standard deviation (σ) of the study 
area. We set two thresholds (μ ± σ and μ ± 2σ) to eliminate 
background noises. All pixels in the last cumulative displace-
ment image that are not within these ranges will be removed. 
Finally, we compared the result filtered by these thresholds 
with the result filtered by our proposed two indices (GCI and 
LCI). We also used a typical landslide to illustrate the differ-
ences among them.

3 � Results

We first use statistical tools (histograms and scatterplots) 
to show the proposed indices (GCI and LCI), which lead 
to thresholds used later. Second, we present the difference 
between ground deformation maps with and without using 

our proposed method. Third, we selected some well-known 
landslides to validate our results.

3.1 � Global and Local Change Indices (GCI and LCI) 
in SBAS‑InSAR Results

We calculated the GCI and LCI using the SBAS-InSAR 
derived time series of displacements for both tracks. Fig-
ure 4 shows the histograms of the GCI for the ascending 
and descending tracks in the study area. There are 580,412 
and 581,204 valid pixels with GCI for the ascending and 
descending tracks, respectively. Because the number of 
used SAR images for the two tracks are different, the range 
of their derived GCI values is also different. The GCI val-
ues for the descending track ranges from 20 to 1035 and 
for the ascending track ranges from 28 to 1705. The medi-
ans, modes, means, and standard deviations of the GCI 
values for the ascending and descending tracks are 1127 
and 474, 1440 and 499, 1059 and 481, and 384.11 and 
216.94, respectively. For the ascending track, the mean 
(1059) is far from the mode (1440), indicating a negative 
skewness distribution. For the descending track, the mean 

Fig. 3   Time series of displacements with low, moderate, and high global change index (GCI) and local change index (LCI)

Fig. 4   Histogram of the global change index (GCI) of the study area 
for the ascending (a) and descending tracks (b). Large GCI to the 
right end of the histograms indicate the monotonous decrease of the 
displacements with time, whereas small GCI near 0 means the time 

series of the displacements increases monotonously with time. Two 
percentile values of the histograms (3% and 97%) are shown with ver-
tical dashed lines.
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(481) is very close to the mode (499), indicating that the 
frequency of GCI values is close to a normal distribution. 
In this work, we used two percentile thresholds (3% and 
97%) to extract true moving landslides in the study area. 
Tails of the distribution are where the time series of cumu-
lative displacements changes monotonously and are more 
likely to be moving slopes.

We also plotted the histogram of the LCI for the ascend-
ing (Fig. 5a) and descending tracks (Fig. 5b). Because the 
total number of used SAR images for the ascending and 
descending tracks are 59 and 46, the theoretical maxi-
mum LCIs are 58 and 45, respectively. The theoretical 
minimum LCIs are 0 for both tracks. For both tracks, the 
actual minimum values (12 and 11 for the ascending and 
descending tracks) are larger than the theoretical minimum 
(0), indicating that there are no monotonously increas-
ing displacements with time. There are 12 or more epi-
sodes of decreases in the time series of displacements for 
all increasing cumulative displacements. In contrast, the 
actual maximum LCI value of the descending track equals 

its theoretical maximum (45), indicating that there are per-
fect monotonously decreasing time series of cumulative 
displacements. For the ascending track, the difference 
between the actual (53) and the theoretical maximums 
(58) of the LCI is smaller than the difference between the 
actual (12) and theoretical minimums (0), indicating that 
there are less fluctuations for the decreasing than increas-
ing cumulative displacements for the ascending track.

Figure 6 shows the relationship between the GCI, LCI and 
displacement of all pixels in two scatterplots for both tracks. 
The GCI and displacements are negatively correlated, that is, 
positive displacements have smaller GCIs and negative dis-
placements have larger GCIs for both tracks. The horizontal 
0 mm displacement line and the vertical 3% and 97% GCI 
lines partitioned the panel into six zones. Points in zone I 
have small GCIs, positive displacements and some of them 
have relatively small LCIs (red color), indicating that these 
pixels moved monotonously towards the sensor in the LOS 
direction. Points in zone II have large GCIs and negative 
displacements. Purple points in zone II also have large LCIs, 

Fig. 5   Histogram of the local change index (LCI) for the descending 
(a) and ascending tracks (b). Inset plots (c), (d), (e), (f) are tails of the 
histograms. The theoretical minimums of both tracks are 0, and the 

theoretical maximums of the two tracks are 58 and 45, respectively. 
The actual minimum LCIs of the two tracks are 12 and 11, whereas 
the actual maximum LCIs are 53 and 45, respectively.

Fig. 6   Scatterplots to show the relationship between the global change index (GCI) and displacement for the ascending (a) and descending 
tracks (b). Colors of the points show the local change index (LCI) of each pixel. Vertical dashed lines are 3% and 97% percentiles of the GCI.
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indicating that these pixels moved monotonously away from 
the sensor in the LOS direction. There are more high-value 
LCI (purple colored) points than low value (red colored) 
points. Most of the high LCI points are found in region II 
of both tracks with displacements < -50 mm, meaning that 
most of the monotonously decreasing time series have larger 
displacements.

3.2 � Filtering of the SBAS‑InSAR Results by Global 
Change Index (GCI) and Local Change Index 
(LCI)

Figure 7a shows the cumulative deformation in the LOS 
direction derived from the SBAS-InSAR for the ascend-
ing track. The SBAS-InSAR failed to work in void loca-
tions without cumulative deformations due to low coher-
ence and a lack of valid InSAR measures. We show the 
deformations of the ascending track in the range from 

−200 mm to 200 mm. Most of the SBAS-InSAR derived 
cumulative deformations (about 93%) are within the range 
of ±50 mm. There are more negative deformation pixels 
(about 61%) than positive ones (about 32%). Negative 
displacements indicate the increase of distance between 
the monitored point and the SAR sensor onboard the Sen-
tinel-1 satellite, meaning that the point moved away from 
the satellite in the LOS direction, whereas positive values 
in both maps indicate decreases of the distance and the 
point moved toward the satellite.

Although large parts of the region have deformations, it is 
unlikely that all these deformations are related to landslides. 
Using the 3% and 97% percentile thresholds in the GCI and 
LCI histograms, we filtered out pixels within the GCI and LCI 
range of 3%–97%. We showed the remaining pixels with their 
cumulative displacements in Fig. 7b, which accounts for about 
2.9% of the originally SBAS-InSAR derived pixels. For the 
remaining pixels, the proportion of pixels within the range of 

Fig. 7   Cumulative deformations in the line of sight (LOS) direction 
of the ascending track (a) of the study area from April 2020 to April 
2022 and the cumulative deformations filtered by the global change 

index (GCI) and local change index (LCI) (b). Insets are histograms 
of the displacements to show the frequency.

Fig. 8   Cumulative deformations in the line of sight (LOS) direction 
of the descending track (a) of the study area from April 2020 to April 
2022 and the cumulative deformations filtered by the global change 

index (GCI) and local change index (LCI) thresholds (b). Insets are 
histograms of the displacements to show the frequency.
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− 50 mm–50 mm falls to 55%. These remaining pixels (Fig. 7b) 
are supposed to have monotonously changing deformations.

Figure 8a shows the original SBAS-InSAR derived cumu-
lative displacements of the descending track. Similarly, 
deformations of most pixels (> 88%) are within −50 mm–50 
mm for the descending result. There is also a large propor-
tion (> 10%) of the pixels with deformations larger than 
50 mm. Figure 8b shows the GCI and LCI filtered results, 
which account for 3.8% of the original pixels after GCI 
and LCI thresholding. In the original result, most displace-
ments are within +/−50 mm, whereas proportions of pixels 
outside that range increased from 11 to 53%. In Particular, 
proportions of pixels with displacements between 50 and 
100 mm increased significantly from 8 to 32% compared to 
the original results. Filtered by the GCI and LCI thresholds, 
there are decreases of pixels for all eight displacement cat-
egories (Table 1). For example, > 96% pixels were removed 
in categories −50 mm–50 mm of both tracks. Decreases in 
most other displacement categories are less than 90%. Mini-
mum decrease of pixels occurred in the category of −150 
mm to −100 mm for both tracks. Red pixels in Fig. 8b are 
located on top of the mountain, where the elevation is about 
3,500 m. We checked these locations on Google Earth’s high 
spatial resolution images and found that they are probably 
related to freeze-thaw effects.

With 3% and 97% percentile thresholds of the GCI and 
LCI, we filtered out about 97.1% and 96.2% of original 
SBAS-InSAR derived displacements for the ascending and 
descending tracks, respectively. We made colored scatter-
plots to show the relationship between the GCI, LCI, and 
displacements for the remaining pixels (Fig. 9). All these 
remaining points are located in zone I and zone II. In zone 
I, points with the smallest LCIs tend to have larger displace-
ments. In zone II, points with the largest LCIs have large dis-
placements with negative signs. These findings mean that: 
(1) there are noises in our SBAS-InSAR derived displace-
ments; and (2) if a landslide moves very slowly, the noise 
may take over the deformation signal in the LOS direction, 
resulting in low LCI in zone II and high LCI in zone I.

3.3 � Validation

To validate, we selected the deformation results of some 
known landslides to verify the results of GCI and LCI. 
We also compared our results with a traditional method.

3.3.1 � Validation with Ground Result in a Typical Region

We selected a typical area with known landslides in the 
descending track for further analysis (Fig. 10). Among these 
known landslides, the Beishan landslide on the westmost 
side has partly collapsed in January 2021. Two landslides 
on the east side (Huanian landslide, Shuidi landslide) have Ta
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been deforming slowly. The black polygons in Fig. 10a are 
pixels with GCI < 3% or > 97% and the red polygons are 
pixels with LCI by the same percentile thresholds. Although 
their spatial patterns are similar, these two types of polygons 
do not always overlap. There are many overlaps of the two 
types of polygons for the three known moving landslides 

(Beishan, Huanian, and Shuidi), the west two of which were 
validated by field reconnaissance in August 2022 (Fig. 10b 
and c). Figure 10b is a photo taken near the Huanian Village 
and Fig. 10c was taken for the Beishan landslide. In addition, 
we selected four points to represent four types of pixels in 
this subregion. P1 meets the LCI threshold criteria but not 

Fig. 9   Scatterplots to show the relationship between the global change index (GCI) and displacement for remaining pixels filtered by the GCI 
and local change index (LCI) thresholds of the ascending (a) and descending tracks (b). Colors of the points show the LCI value of each pixel.

Fig. 10   SBAS-InSAR derived cumulative displacements for the 
descending track (a). Locations filtered by the 3% and 97% global 
change index (GCI) thresholds are shown in black polygons and the 
local change index (LCI) filtered results are shown in red polygons. 

Field photos were taken to show two moving landslides in the field (b 
and c). Time series of displacements of four selected pixels (P1–P4) 
are shown in (d). Photograph by Meng Liu on 17 August 2022.
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the GCI. P2 meets the GCI threshold criteria instead of the 
LCI. P3 meets neither criterion and P4 meets both criteria. 
We plotted their time series displacements in Fig. 10d. Time 
series of P1, P2, and P3 show only minor displacements at 
the end of the study period compared to P4. These three 
points do not have a monotonously decreasing trend and 
their interannual fluctuations of displacements are large 
compared to their overall displacements. Instead, P4 shows 
a consistent decreasing trend, indicating a persistent move 
away from the sensor in the LOS direction. Note the local 
increase between some neighboring measures takes its toll 
in the LCI. Figure 10d indicates that the combined use of the 
GCI and LCI is better than any single measurement.

By visual comparison, we found that most of our detected 
landslides are consistent with an existing landslide data-
base (Dai et al. 2023). To further validate our results, we 

divided the landslides detected by GCI into three categories 
by examining the monitoring results of the ascending and 
descending tracks. The first category is landslides that can 
be monitored by both the ascending and descending tracks 
but the GCI values have the opposite trend (GCI > 886 
under descending and GCI < 296 under ascending / GCI 
< 133 under descending and GCI > 1,596 under ascend-
ing). Figure 11 shows a landslide of this category. Figure 11a 
and b show that the deformation monitoring area in the 
descending and ascending tracks is not completely consist-
ent. Figure 11c and d show the development of landslide 
back wall from high spatial resolution Google Earth images. 
For instance, in Fig. 11c we can see that the collapse is not 
obvious. Yet in Fig.11d the partial collapse becomes severe. 
We plotted their time series displacements in Fig. 11e and 
f. In the deformation time series under the descending and 

Fig. 11   The cumulative displacement of a landslide under the 
descending (a) and ascending tracks (b). (c) and (d) are images of 
the landslide from Google Earth in August 2019 and November 2021. 
For each (descending and ascending) track, four points were selected 
to show deformation time series filtered by global change index 

(GCI) and local change index (LCI) (e and f). P1 and P5 meet both 
threshold criteria. P2 and P6 meet GCI threshold criteria but not LCI. 
P3 and P7 meet LCI threshold criteria but not GCI. P4 and P8 meet 
neither.
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ascending orbits, P1 and P5 meeting the GCI and LCI can 
better represent the monotonic deformation. P4 and P8, 
which conform to neither GCI nor LCI, are highly volatile. 
The second category is landslides that can be monitored by 
both the ascending and descending tracks and the GCI val-
ues have the same trend (GCI > 886 under descending and 
GCI > 1,596 under ascending / GCI < 133 under descending 
and GCI < 296 under ascending). Figure 12 shows another 
landslide detected by the descending and ascending tracks. 
There were some cracks on the slope in August 2019. Com-
pared with August 2019, we can see that there were many 
partial collapses on the slopes in December 2020. The dis-
placement information of landslide time series is shown in 
Fig. 12e and f. The third category is landslides that can be 

monitored by either the descending or ascending track. Typi-
cal landslides of this category are shown in Fig.10.

3.3.2 � Comparison of the New Method with the Traditional 
Method

Figure 13 are two violin plots of the last displacement 
images from the descending and ascending tracks. With 
means ( �desc. = −11.44 and �asc. = 6.79) and standard devi-
ations ( �desc. = 23.53 and �asc. = 29.99) from both tracks, 
we set two thresholds, that is, μ ± σ and μ ± 2σ, to filter 
out the deforming pixels not within these ranges. With the 
traditional method, 78.5%, 77.1% and 94.4%, 92.9% pixels 
were removed with the first (μ ± σ) and second (μ ± 2σ) 

Fig. 12   The cumulative displacement of a landslide under the 
descending (a) and ascending tracks (b). (c) and (d) are Google Earth 
images of the landslide in August 2019 and December 2020. For each 
(descending and ascending) track, four points were selected to show 

deformation time-series filtered by global change index (GCI) / local 
change index (LCI) (e and f). P1 and P5 meet both threshold criteria. 
P2 and P6 meet GCI but not LCI threshold criteria. P3 and P7 meet 
LCI but not GCI threshold criteria. P4 and P8 meet neither.
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thresholds for the descending and ascending tracks respec-
tively. We used straightforward thresholds to eliminate all 
smaller deformations in the result. In contrast, many large 
deformations (for example, < μ – 2σ or μ + 2σ) that meet 
those two traditional threshold crietria are removed by our 
method due to non-monotonicity in their time series.

We compared the spatial pattern of identified landslides 
in Fig. 14. There are lots of noises (especially the southern 
part of Fig. 14a) with the μ ± σ threshold, whereas a large 
part of the real deforming landslide was eliminated by the 
μ ± 2σ threshold (Fig. 14e). In comparison, our proposed 
thresholds can not only repress most of the background noise 
but also preserve real deforming landslide pixels (Fig. 14c 

Fig. 13   Violin plots of the last displacement images for the descending (a) and ascending (b) tracks. Traditional thresholds of μ ± σ and μ ± 2σ 
are shown as horizontal dotted/dashed lines. Displacement results filtered by our proposed method is shown as grey spindles within in the plots.

Fig. 14   Spatial pattern of identified landslides from two traditional thresholds (μ ± σ for (a) and μ ± 2σ for (b)) and the proposed method (c). 
The cumulative displacements of the Baizangcun landslide are zoomed in (d, e, f).
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and f). We did not show the time series of cumulative dis-
placements for the landslide in Figs. 14d–14f, because defor-
mation time series derived by our method are all monotonic 
pixels regardless of their last cumulative displacements (as 
demonstrated in Figs. 10, 11, 12).

4 � Discussion

InSAR has been widely used in deriving retrospective defor-
mations of occurred landslides or already-known slow-
moving landslides. Moving landslides typically have more 
monotonic deformation time series. However, how to locate 
monotonously changing locations in SBAS-InSAR results 
remains challenging. This work solved the problem by quan-
tifying the monotonicity of the time series of cumulative 
displacements.

4.1 � Effects of the Method to Detect Landslides 
in SBAS‑InSAR Results

It is difficult to identify moving landslides from time series 
of displacements derived by SBAS-InSAR. Although there 
are previous attempts to reduce background noises (Bian-
chini et al. 2012; Barra et al. 2017; Lu et al. 2019; Solari 
et al. 2019; Zhang, Zhu, et al. 2021), few works explored 
time series of the information to extract moving landslides. 
Although Urgilez Vinueza et al. (2022) used time series dis-
placements to derive acceleration/deceleration of landslides, 
the linear regression models in their work require dense 
SAR images and could easily neglect local outliers, which 
is also important to recognize landslide pixels. Based on the 
assumption that displacements of moving landslides should 
change monotonously, this work fully exploited time series 
of displacements to quantify changing trends in time series 
displacements. Using 3% and 97% percentile thresholds in 
GCI and LCI, we extracted moving landslides by filtering 
out > 96% non-monotonously changing displacements, 
which are unrelated to landslides. Distinct to other previous 
works that exploit spatial patterns (Bianchini et al. 2012; 
Lu et al. 2019; Solari et al. 2019; Zhang, Zhu et al. 2021), 
this proposed method is pixel-based, which can fully exploit 
time series deformations in single pixels. An advantage of 
this method is that it not only can detect large landslides 
covering many pixels but also works well for very small 
landslides of a few pixels. Compared to the original cumula-
tive displacements derived from the SBAS-InSAR, we can 
focus on slopes that are more likely to be moving landslides.

With the proposed method, more pixels in minor defor-
mation categories (for example, > 96% pixels with − 50 
mm–50 mm displacements) and a smaller number of pixels 
in larger deformation categories (for example, < -50 mm or 
> 50 mm displacements) were removed. It indicates that this 

method is more efficient to repress noises with minor defor-
mations. Most derived displacements in the original SBAS-
InSAR results are within this range (− 50 mm–50 mm) and 
extremely slow-moving landslides within this deformation 
range may be submerged. This method could extract these 
landslides from background noises. In addition, there are 
also pixels in larger deformation categories that are removed 
(for example, 91.71% removed in the ascending track for 
150–200 mm), indicating that not all large deformations are 
moving landslides. Monotonously changing deformations 
have always been used in existing literature to show mov-
ing landslides (Intrieri et al. 2018; Ouyang et al. 2019). By 
using this method, we can easily locate optimal pixels to 
demonstrate time series displacements of moving landslides.

4.2 � Implications for Optimally Monitored Slopes 
by InSAR

Theoretical maximum GCI/LCI indicates rigorous monoto-
nous decrease of displacements, whereas theoretical mini-
mum GCI/LCI indicates rigorous monotonous increase of 
displacements. In this work, we observed that the actual 
maximum values of GCI and LCI are identical to their 
theoretical maximum values. This finding suggests the 
presence of strict monotonicity in certain decreasing time 
series displacements. These monotonously decreasing pixels 
are landslides that move away from the sensor in the LOS 
direction. Take the ascending track as an example, these are 
probably moving slopes with east aspects that are parallel 
to the LOS direction. For these east facing slopes, the slope 
angle should be smaller than the complement of the inci-
dence angle, otherwise there are shadows in SAR images. 
Therefore, slopes with east aspects are optimal positions for 
the ascending track and slopes with west aspects are optimal 
positions for the descending track (Bianchini et al. 2012; 
Zhang et al. 2022).

On the other hand, minimum GCIs/LCIs are much larger 
than the theoretical minimums, meaning that there is no 
monotonous movement of landslides towards SAR sensors 
in the LOS direction. For the ascending track, landslides that 
move towards the sensor probably are located on west facing 
slopes, which should not be too steep to have layover effects 
on SAR images. The move of landslides on these west facing 
gentle slopes will result in a continuous decrease of distance 
between the moving block and the SAR sensors, which will 
lead to a continuous decrease of cumulative displacements 
(small GCI and LCI). Therefore, displacements with low 
GCIs indicate that north slopes are the second optimal slopes 
for the ascending track and south slopes are the second opti-
mal slopes for the descending track. These speculations are 
substantiated by plotting pixels that are retained by this 
method with aspects (Fig. 15). In addition, with time series 
displacements, InSAR could detect landslides with the size 
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of a few pixels. Considering SAR imaging mode, transla-
tional landslides and heads and toes of rotational landslides 
in the LOS direction may be the easiest type to be detected.

4.3 � A Caveat to Use Percentile Thresholds

To remove background noise, this work used 3% and 97% 
percentile thresholds in histograms of the GCI and LCI. 
Although the selection of thresholds is empirical, it is 
based on the assumption that the majority of the study 
area are stable and pixels at the tails of the LCI and GCI 
histograms are moving landslides. It is evident that stricter 
thresholds (for example, < 1% or > 99%) will remove more 
pixels and are more likely to identify moving landslides. 
In this work, we found that both histograms of the GCI 
are asymmetrical and applying the same tail thresholds 
may not be optimal. For example, as the actual minimum 
GCI is 28, deformations of some pixels with GCI smaller 

than the 3% threshold could be non-monotonous. Although 
the GCI thresholds are moderate criteria, they can remove 
96% noises. In contrast, histograms of the LCI are more 
symmetrical and could further repress non-landslide pix-
els. Although the proposed method could repress a major-
ity of noises with percentile thresholds, it should be used 
in regional studies instead of for individual slopes. This 
is because percentile thresholds depend on samples of the 
study area. Future studies should identify fixed thresholds 
for the GCI and LCI to pick up truly monotonously chang-
ing pixels.

4.4 � Comparisons to Pixel Offset Tracking Methods

InSAR is very sensitive to detect centimeter deforma-
tions in the LOS direction (Zhang et al. 2022). In particu-
lar, east and west aspects of gentle gradients (less than 

Fig. 15   Pixels retained by the proposed method plotted with aspects. 
Distributions of pixels with small (with a threshold of < 3%) and 
large (> 97%) GCIs on different aspects for the ascending track are 
plotted in (a) and (b). The optimal slopes for the ascending track are 
south-facing and the second optimal slopes are west-facing. Distribu-

tions of pixels with small (with a threshold of < 3%) and large (> 
97%) GCIs on different aspects for the descending track are plotted in 
(c) and (d). The optimal and second optimal slopes for the descend-
ing track are north and east aspects, respectively.
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complementary of the SAR incidence angle) are optimal 
slopes for InSAR of ascending and descending tracks, 
respectively. However, the result that there is an absence 
of minor displacements (< 30 mm) with the largest LCI 
points in Fig. 9 means that SBAS-InSAR could still have 
difficulty in identifying extremely slow-moving landslides 
even for its optimal slope aspects. The finding that the 
minimums of the GCI and LCI are much larger than 0 
indicates that the performance of InSAR deteriorates on 
second optimal aspects of the west and east aspects for the 
ascending and descending tracks, respectively. Therefore, 
monitoring extremely slow-moving landslides in other 
aspects would be more challenging.

The movement of landslides is three-dimensional, 
whereas InSAR is only capable of monitoring one-dimen-
sional motions of a certain (LOS) direction (Shi et al. 2018). 
This work further substantiates that mountainous terrains 
pose significant challenges for InSAR to monitor moving 
landslides. For example, there could be many omission 
errors by using InSAR to detect moving landslides because 
of the spatial configuration of SAR sensors and topography. 
In contrast, pixel offset tracking (POT) methods are sensitive 
to monitor horizontal two-dimensional motions, although 
the accuracy of POT depends on the spatial resolution of 
used images (Stumpf et al. 2017; Lacroix et al. 2018). Pre-
vious work shows that POT is capable of detecting surface 
change of 1/30–1/10 pixels (Leprince et al. 2007; Provost 
et al. 2022). For the 30 cm resolution WorldView imagery, 
POT can detect surface change of 10 mm–30 mm in the 
horizontal direction. Higher spatial resolution images can 
be easily taken by airborne vehicles, which means that more 
subtle surface changes can be detected for all slope configu-
rations. The above points indicate that joint use of InSAR 
and POT may be more efficient to monitor moving landslides 
in mountain environments.

5 � Conclusion

Cumulative displacements of landslides in MT-InSAR 
results should change monotonously with time. However, 
selecting pixels with monotonous displacements from 
MT-InSAR results can be difficult. This work proposed 
a method to quantify monotonicity of the time series of 
displacements in MT-InSAR results that can also be used 
to detect moving landslides. Different from the frequently 
used space cluster-based methods, the proposed method 
fully considers time series information for each pixel, 
which ensures that small landslides of a few pixels could 
also be detected. Using this method, we found that large 
deformations (> 50 mm or < − 50 mm) may not be mov-
ing landslides, whereas most small deformations (− 50 
mm–50 mm) are not landslides. This method can remove 

more than 96% displacements in the original SBAS-InSAR 
results. We further found that east and west aspects are 
the best slopes to show ideal time series of displacements 
for moving landslides for the ascending and descending 
tracks, respectively. Moving landslides on these slopes 
tend to show monotonously changing deformations in the 
SBAS-InSAR results. Due to the special mechanism of 
SAR imaging, monitoring of moving landslides on other 
slope aspects would be challenging.
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