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Abstract
With the acceleration of global climate change and urbanization, disaster chains are always connected to artificial systems 
like critical infrastructure. The complexity and uncertainty of the disaster chain development process and the severity of 
the consequences have brought great challenges to emergency decision makers. The Bayesian network (BN) was applied 
in this study to reason about disaster chain scenarios to support the choice of appropriate response strategies. To capture 
the interacting relationships among different factors, a scenario representation model of disaster chains was developed, fol-
lowed by the determination of the BN structure. In deriving the conditional probability tables of the BN model, we found 
that, due to the lack of data and the significant uncertainty of disaster chains, parameter learning methodologies based on 
data or expert knowledge alone are insufficient. By integrating both sample data and expert knowledge with the maximum 
entropy principle, we proposed a parameter estimation algorithm under expert prior knowledge (PEUK). Taking the rainstorm 
disaster chain as an example, we demonstrated the superiority of the PEUK-built BN model over the traditional maximum 
a posterior (MAP) algorithm and the direct expert opinion elicitation method. The results also demonstrate the potential of 
our BN scenario reasoning paradigm to assist real-world disaster decisions.

Keywords Bayesian network · Expert prior knowledge · Parameter learning · Rainstorm disaster chain · Scenario reasoning

1 Introduction

A disaster chain refers to the phenomenon that a series of 
secondary disasters are caused by a certain primary disas-
ter, forming a complex process of disaster transmission and 
amplification (Shi 1996). As an illustration, the Wenchuan 
Earthquake brought about several severe disasters such 
as secondary collapse, landslides, and debris flows, while 
Typhoon Lekima caused rainstorms and floods, residential 
structure damage, power failure, and so on. Disaster chains 
show uncertainty, ambiguity, and randomness. In addition, 
emergency decision makers may get increasingly perplexed 

and fail to make the best decisions due to the complexity of 
various disasters and the heterogeneity of information from 
several sources. The scenario-based decision-making meth-
odology has been widely used to address this issue, improve 
the readiness for disaster chains, and take proactive actions 
(Moehrle and Raskob 2015). Scenario reasoning helps to 
analyze the disaster developing process and review exist-
ing emergency response capabilities. A scenario-response 
paradigm can be an improvement over the conventional 
prediction-response paradigm, effectively increase disaster 
awareness, and enhance the ability to make emergency deci-
sions (Zhang and Liu 2012).

Disaster scenario reasoning can answer inquiries such 
as “What is the situation now?” and “What if the situa-
tion persists?” (Alexander 2013). There are three types 
of scenario reasoning methods for emergency manage-
ment: case-based, simulation-based, and network-based 
(Liu et al. 2018). Network-based methods are particularly 
widely used in disaster chains (Sakahira and Hiroi 2021). 
These methods model the relationship between disaster-
related elements in a networked manner, where elements 
like disaster events and response measures are nodes and 

 * Tao Chen 
 chentao.b@tsinghua.edu.cn

1 Institute of Public Safety Research, Department 
of Engineering Physics, Tsinghua University, 
Beijing 100084, China

2 School of Civil and Resource Engineering, University 
of Science and Technology Beijing, Beijing 100083, China

3 Institute of National Security and Development Strategic 
Studies, Beijing Normal University, Beijing 100875, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13753-023-00530-w&domain=pdf
www.ijdrs.com
www.springer.com/13753


1012 Huang et al. Reasoning Disaster Chains with Bayesian Network

correlations and causal relations are links. The Bayesian 
network (BN) is one of the probabilistic graphical mod-
els that define the interaction between nodes (a group of 
variables) as a directed edge of a conditional probabil-
ity distribution. The use of BN in conjunction with the 
scenario analysis method to establish scenario reasoning 
based on probability calculation has become a research 
hotspot in the field of emergency management in recent 
years. To predict and examine the chain reaction path and 
possible losses of rainstorm situations, Qiu et al. (2014) 
suggested a BN-based modeling method. A quantitative 
multi-risk management model using BNs was put forth by 
Liu et al. (2014) to assess the cascading hazard of the tsu-
nami triggered by a rockslide. Comes et al. (2015) intro-
duced group decision theory and multi-attribute decision 
theory into the construction of a Bayesian network to get 
the opinions of domain experts on the development trend 
of uncertain disasters. Han et al. (2019) combined the BN 
and the ArcGIS software to create a hazard chain assess-
ment model for the Changbai Mountains in China. When 
fresh evidence (beliefs, monitoring data), which may be 
updated by users using BNs, appears in a particular node, 
they can update not just the final outcomes but also all the 
information in the network (Hosseini and Ivanov 2020). 
By capturing the model’s uncertainty in this manner, the 
BN offers a nearly real-time scenario reasoning process.

In emergency decision-making research, the structure of 
BN is usually determined relying on expert knowledge since 
the algorithm might not be able to accurately identify and 
simulate hazards and their interactions (Chen and Pollino 
2012). It is known that the graphical structure’s complexity 
and dependability are essential components to its success. 
However, the more complex the structure of a BN is, the 
more difficult it is to learn the parameters (the conditional 
probability tables, CPTs). On the one hand, for emergen-
cies, datasets are often sparse, which lowers the precision 
of parameter estimates. On the other hand, it is challenging 
for the experts to deliver precise quantitative CPTs. A work-
able solution to this problem is to combine parameter learn-
ing with additional knowledge provided by experts (Zhou 
et al. 2016; Hou et al. 2020). Various methods have been 
created to include more qualitative constraints by domain 
expert knowledge. Convex optimization (de Campos and Ji 
2008) introduces constrained parameter spaces or penalty 
functions. In the limited parameter space of the maximum a 
posterior (MAP) algorithm, aualitative maximum a posterior 
(QMAP) creates a Dirichlet priori from a Monte Carlo ran-
dom sample (Chang and Wang 2010). The QMAP methods 
exhibit good estimation outcomes, assuming that it is pos-
sible to obtain all convex parameter constraints. However, 
practically speaking, this assumption is nearly impossible. It 
is frequently difficult to properly prepare for these compre-
hensive constraint sets because of the complexity of BNs in 

relation to emergencies and the limitations of domain knowl-
edge cognition.

In this study, to leverage expert-based information, we 
provided an algorithm for parameter learning—parameter 
estimation under expert prior knowledge (PEUK). The prior 
knowledge of CPTs is obtained from direct elicitation by 
asking experts to give confidence intervals using a prob-
ability scale. Then the maximum entropy principle is applied 
to balance expert knowledge and parameter learning. When 
the data learning outcomes perform better in the test set, 
PEUK tends toward the traditional MAP method; otherwise, 
it tends toward expert prior knowledge. Building on this pro-
posed algorithm, we formalized our disaster chain scenario 
reasoning solution with a Bayesian network. A scenario 
representation model of disaster chains—the hazard, emer-
gency, hazard-affected object, emergency response measure, 
consequence (HEOMC) framework—was developed, and 
the rainstorm chain was taken as an example to show the 
construction process of the model. With the scenario repre-
sentation model, the configuration, training, and application 
of a Bayesian network for scenario analysis and decision 
support are described. Our work offers two contributions: 
(1) Using a flexible and extensible BN model, a scenario 
representation model is created that improves our ability to 
simulate a disaster chain and provides a more practical level 
of preparedness; (2) By combining expert previous knowl-
edge and case data, the PEUK algorithm innovates the BN 
parameter learning process.

The rest of this article is divided into the following sec-
tions. Section 2 proposes the disaster chain scenario rep-
resentation model. Section 3 describes how to generate a 
BN for scenario reasoning and illustrates the benefits of the 
PEUK parameter learning algorithm. Section 4 discusses 
the impact of our method on the practice of the scenario-
response based disaster response strategy. Section 5 con-
cludes the article by considering potential paths for addi-
tional research.

2  Representation Model for Disaster Chain 
Scenario

Scenario is initially a depiction of a future condition and a 
tendency for an event to change from its current state to a 
future one. Recently, customizing scenario’s definition and 
representation has gained more attention in emergency man-
agement. Comes et al. (2011, 2015) defined scenario as a 
specific emergency circumstance, as well as its growth and 
effects. Wu et al. (2013) defined scenario as an ordered col-
lection of distinct instances that includes a description of the 
environment, context, actors, and actions.

The purpose of emergency management is to help deci-
sion makers protect items from catastrophe damage (Fan 



1013International Journal of Disaster Risk Science

et al. 2013). The effective collection of information about 
the affected objects and the disaster chain damages is the 
only way to make sound decisions. As a result, creating a 
representation model for each damaged object of the disaster 
chain is a critical effort in creating scenarios.

2.1  The Hazard, Emergency, Hazard‑Affected 
Object, Emergency Response Measure, 
Consequence (HEOMC) Representation Model

Considering a hazard affecting an object as a basic event, a 
disaster chain scenario in this study has five elements: initial 
hazard (denoted by H), emergency event (denoted by E), 
hazard-affected object (denoted by O), emergency response 
measure (denoted by M), and consequence (denoted by C). 
We formalized our disaster chain scenario construction 
method as the HEOMC framework, as seen in Fig. 1. Fig-
ure 1a shows the relationship between these five elements, 
and their detailed definitions are as follows:

(1) Initial hazard (H) A source of initial danger in the nat-
ural or human-made environment that can adversely 
affect human life, property, or various activities. In this 
study, rainstorm is taken as the initial hazard.

(2) Emergency (E) An event that occurs when a hazard-
affected object is acted upon by a hazard, such as a 
geologic hazard, waterlogging, landslide, and so on.

(3) Hazard-affected object (O) Spatial entities that are 
directly influenced by hazards, such as construction 
sites, water conservancy facilities, urban transportation 
infrastructure, people, and so on.

(4) Emergency response measure (M) Measures that are 
taken to control hazards and eliminate their influence 
on objects, which can be divided into two types—pre-
cautions and rescue measures.

(5) Consequence (C) Injuries and deaths, and property 
losses caused by hazards.

The disaster chain can be identified either through the 
causal relationship between successive occurrences of 
disaster events (Yu et al. 2020; Yu et al. 2023) or based 
on the spatial correlation of disasters (Balbi et al. 2016; 
Zhong et al. 2017). In our study, a disaster chain scenario 
can be represented as a combination of these five elements: 
Si = {H0,Oi,Ei,Mi,Oij,Eij,Mij,Oijk,Eijk,⋯ ,C} . We disen-
tangle the complex spatial and temporal relationships among 
disaster chains through hazard-affected objects, where haz-
ards or emergencies act on different hazard-affected objects, 
leading to new emergencies or different disaster conse-
quences. For instance, when a rainstorm acts on geological 
hazard zones, a new emergency caused by mudslide may 
occur and acts on roads, causing road damage, which can 
be regarded as a disaster chain; a rainstorm directly acts on 
the road and causes ponding and circuit breaking, which 
can be regarded as another disaster chain. Figure 1b shows 
a representation of disaster chains.

2.2  Rainstorm Chain Scenario Diagram

Based on the HEOMC framework, we took rainstorm as 
the initial hazard, analyzed its influence on various objects, 
and identified disaster chains to construct a scenario for 
the rainstorm. Six hazard-affected objects are considered, 

Fig. 1  The hazard (H), emer-
gency (E), hazard-affected 
object (O), emergency response 
measure (M), consequence (C) 
(HEOMC) framework of dis-
aster chain scenario construc-
tion method. a Relationship 
between the five elements of the 
HEOMC; b A representation of 
disaster chains
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including construction sites, urban transportation infrastruc-
ture, old bungalows and low-lying yards, water conservation 
facilities, geological hazard zones, and mining areas. Cor-
respondingly, possible induced emergencies include water-
logging, houses flooded and collapsed, floods, mudslides, 
dam breaks, and so on.

First, the rainstorm may cause floods in rivers and lakes. 
In this situation, the emergency response measure for water 
conservation facilities is to strengthen water regime monitor-
ing, carry out water resources dispatching, and strengthen 
facility patrol and protection; the emergency response meas-
ure for the hazard flood is to strengthen flood regulation, 
repair river embankments, and block crevasse. The floods 
may further affect urban lifeline systems, houses, and une-
vacuated residents, causing secondary disasters, economic 
losses, and casualties. When the flood acts on lifeline sys-
tems, it may result in a cut-off of water, power, and gas sup-
plies, further affecting the normal lives of urban residents. 
In this case, the emergency response measures include 
strengthening pipeline patrol and reinforcement, adjusting 
supply routes, repairing damaged pipelines, communicating 
with the affected residents, and taking emergency protec-
tion measures. Similarly, we identified the scenario composi-
tion of other rainstorm-induced disaster chains to generate 
a complete scenario structure diagram of the rainstorm, as 
shown in Fig. 2. The legends of Fig. 2 are shown in Table 1.

3  Bayesian Network Construction 
of Rainstorm Chain Scenario

Generally, there are three steps to create a Bayesian network 
(BN) for a problem domain: (1) Identify the BN variable and 
its state classification; (2) Identify the BN structure, that is, 

the causal relationship between BN variables; and (3) Learn 
the BN parameter, that is, the conditional probability table 
(CPT) for each BN variable. In this study, BN variables and 
structure were determined based on our proposed rainstorm 
scenario structure; BN parameters were estimated from both 
case data and expert knowledge generated by questionnaire 
surveys and the fuzzy set theory (Zadeh 1965). Details of 
these processes are described in the following subsections.

3.1  Bayesian Network (BN) Variables and Structure 
Identification

Referring to Fig. 2, we conducted a case study of typical 
rainstorms and determined the BN network of the rainstorm 
scenario, as shown in Fig. 3. In total, 57 scenario elements 
(BN variables) are considered, and the details are shown in 
Table 2. All of these BN variables, X =

{
X1,X2,⋯ ,X57

}
 , 

are assigned discrete values. The assignment rules are as 
follows:

(1) Hazard Rainstorm is divided into four risk states, blue, 
yellow, orange, and red, based on whether hourly rain-
fall depth, 6-h rainfall depth, or 24-h rainfall depth 
reaches the threshold (30, 50, 70), (50, 70, 100), (70, 
100, 150), and (100, 150, 200), and the value unit is 
mm. The thresholds are set according to the rainstorm 
warning rules for City B.

(2) Emergency The first rule is to divide based on risk 
level. Flood is divided into two states: low risk and 
high risk. If the rainfall is within the disaster-inducing 
threshold of small and medium-sized rivers, it is coded 
as low risk; otherwise, it is high risk. The other rule is 
to divide according to whether an incident occurs or 

Fig. 2  Scenario structure dia-
gram of the rainstorm
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Table 1  Legends of the scenario structure diagram for the rainstorm (Fig. 2)

Hazard-affected object (O) Emergency (E) Emergency response measure (M) Consequence (C)

O1 Construction sites E1 Construction sites waterlogged M11 Strengthen drainage facilities C1 Construction sites damage
M12 Drain floodwater and perform 

emergency repairs
O2 Urban transportation infra-

structure
E2 Waterlogging M21 Strengthen patrol and dredge 

drainage lines
M22 Drain floodwater and control 

traffic
O21 Vehicles and passengers E21 Vehicles submerged and pas-

sengers trapped
M211 Search for vehicles and pas-

sengers
C21 Vehicle damage and casualties

M212 Rescue victims
O3 Old bungalows, low-lying 

yards, and parks
E3 Houses flooded and collapsed M31 Eliminate hidden troubles and 

reinforce houses
M32 Repair houses and remove 

stagnant water
O31 Residents E31 Residents trapped M311 Evacuate and resettle people C31 Casualties

M312 Search for and rescue 
victims

O4 Water conservation facilities E4 Flooding M41 Strengthen water regime 
monitoring, carry out water 
resources dispatching, and 
strengthen patrol and protection

M42 Strengthen flood regulation, 
repair river embankments, block 
crevasse, and open flood diver-
sion areas

O41 Lifeline systems E41 Water/power/gas/heat/commu-
nication cutoff

M411 Strengthen pipeline patrol 
and reinforcement and adjust 
routing

M412 Repair damaged pipeline and 
adjust routing

O411 Residents M4111 Communicate with affected 
residents and perform emer-
gency repairs

C411 Disrupted living

O42 Houses/farmland/roads/
bridges

C42 Inundation and damage

O43 Unevacuated residents E43 People trapped M431 Evacuate and resettle people 
in flood-threatened areas in 
advance

C43 Casualties

M432 Search for and rescue 
victims

O5 Geological hazard zones E5 Mudslides, collapse, and other 
geological disasters

M51 Strengthen water content 
monitoring, slope displacement 
monitoring, and patrol and 
protection

M52 Carry out disaster investiga-
tion and management to prevent 
the disaster from spreading

O51 Houses/farmland/lifeline 
systems

C51 House/farmland/lifeline system 
damage

O52 Unevacuated residents E52 People trapped or buried M521 Strengthen monitoring and 
early warning, and transfer 
people in time

C52 Casualties

M522 Rescue victims
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not. For example, if the construction is waterlogged, it 
is coded as yes; otherwise, no.

(3) Hazard-affected object The first rule is to divide based 
on risk level. Urban transportation infrastructure is 
divided into three states: low risk, medium risk, and 
high risk. For urban transportation infrastructure, if the 
rainfall intensity is within the design standard of all 
roads, it is coded as low risk; if the rainfall intensity 
exceeds the branch road design standard, it is medium 
risk; and if the rainfall intensity exceeds the trunk road 
design standard, it is high risk. The other rule is based 

on the state of the hazard-affected object itself, that is, 
whether it exists, or the degree of its vulnerability. For 
example, lifeline systems are divided into yes or no, 
and the population of flood diversion areas is divided 
into sparse and dense.

(4) Emergency response measure Based on whether the 
emergency response measure is carried out, it can be 
divided into two states: yes or no.

(5) Consequence Based on whether the consequence 
occurs, it can be divided into two cases: yes or no.

Table 1  (continued)

Hazard-affected object (O) Emergency (E) Emergency response measure (M) Consequence (C)

O6 Mining areas (tailing ponds) E6 Dam break M61 Identify hidden dangers and 
inspect dredging and flood 
discharge facilities

M62 Cofferdam blocking
O61 Unevacuated residents E61 People trapped or buried M611 Strengthen monitoring and 

early warning, and transfer 
people in time

C61 Casualties

M612 Search for and rescue 
victims

Fig. 3  Bayesian network (BN) 
of the rainstorm scenario
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Table 2  Bayesian network (BN) variables of the rainstorm scenario and their states

No. BN variables States of variables

1 Rainstorm s1: blue (hourly rainfall depth ≥ 30 mm, 6-h rainfall depth ≥ 50 mm, 
or 24-h rainfall depth ≥ 70 mm);

s2: yellow (hourly rainfall depth ≥ 50 mm, 6-h rainfall depth ≥ 
70 mm, or 24-h rainfall depth ≥ 100 mm);

s3: orange (hourly rainfall depth ≥ 70 mm, 6-h rainfall depth ≥ 
100 mm, or 24-h rainfall depth ≥ 150 mm);

s4: red (hourly rainfall depth ≥ 100 mm, 6-h rainfall depth ≥ 
150 mm, or 24-h rainfall depth ≥ 200 mm)

2 Construction sites s1: no; s2: yes
3 Strengthen drainage facilities s1: yes; s2: no
4 Construction sites waterlogged s1: no; s2: yes
5 Drain floodwater and perform emergency repairs s1: yes; s2: no
6 Construction sites damage s1: no; s2: yes
7 Urban transportation infrastructure s1: low risk (rainfall intensity is within the design standard of all 

roads);
s2: medium risk (rainfall intensity exceeds the design standard of 

branch roads);
s3: high risk (rainfall intensity exceeds the design standard of trunk 

roads)
8 Strengthen patrol and dredge drainage lines s1: yes; s2: no
9 Waterlogging s1: general; s2: serious
10 Drain floodwater and control traffic s1: yes; s2: no
11 Vehicles and passengers s1: none; s2: few; s3: many
12 Warn, and evacuate vehicles and passengers s1: yes; s2: no
13 Vehicles submerged and passengers trapped s1: no; s2: yes
14 Rescue in time s1: yes; s2: no
15 Casualties s1: no; s2: yes
16 Old bungalows, low-lying yards, and parks s1: no; s2: yes
17 Eliminate hidden troubles and reinforce houses s1: yes; s2: no
18 Houses flooded and collapsed s1: no; s2: yes
19 Repair houses and remove stagnant water s1: yes; s2: no
20 Evacuate and resettle people s1: yes; s2: no
21 Residents trapped s1: no; s2: yes
22 Search for and rescue victims s1: yes; s2: no
23 Casualties s1: no; s2: yes
24 Water conservation facilities s1: low risk (rainfall is within the disaster-inducing threshold);

s2: high risk (rainfall exceeds the disaster-inducing threshold)
25 Dredging and patrol s1: yes; s2: no
26 Flooding s1: low risk (rainfall is within the disaster-inducing threshold of small 

and medium-sized rivers);
s2: high risk (rainfall exceeds the disaster-inducing threshold of small 

and medium-sized rivers)
27 Regulate flood and block crevasse s1: yes; s2: no
28 Population of flood diversion areas s1: sparse; s2: dense
29 Evacuate and resettle people s1: yes; s2: no
30 People trapped s1: no; s2: yes
31 Timely rescue and treatment s1: yes; s2: no
32 Casualties s1: no; s2: yes
33 Lifeline systems s1: no; s2: yes
34 Patrol, reinforce pipelines, and adjust routing s1: yes; s2: no
35 Lifeline systems cutoff s1: no; s2: yes
36 Communicate with affected residents and perform emergency 

repairs
s1: yes; s2: no
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3.2  Bayesian Network (BN) Parameter Estimation

The purpose of this section is to calculate the conditional 
probability �ijk = P

(
Xi = k|Pa

(
Xi

)
= j

)
 , which represents 

the likelihood that Xi will take the kth value and its par-
ent node Pa

(
Xi

)
 will adopt the jth state configuration. A 

parameter learning algorithm—parameter estimation 
under expert prior knowledge (PEUK)—was proposed. 
The PEUK has three steps. First, we collect questionnaire 
results from experts and take advantage of the fuzzy set 
theory to quantify the elicited statements as conditional 
probabilities. Then, the classical maximum a posteriori 
(MAP) algorithm (Koller and Friedman 2009) is applied 
to estimate the conditional probabilities from case data. 
Third, the final conditional probabilities are calculated 
according to the maximum entropy principle (MEP).

3.2.1  Parameter Estimation Under Expert Prior Knowledge 
(PEUK) Algorithm Overview

Step 1 Calculate the expert knowledge-based parameter 
�∗
ijk
(K).

The BN nodes are classified into two categories. The 
first type lacks parent nodes and requires specialists to give 
prior probability based on professional experience, such as 
Node 1 (Fig. 3). The second type is represented by Node 
4 (Fig. 3), whose conditional probabilities are affected by 
their parent nodes. We use a questionnaire survey to col-
lect qualitative statements of CPTs, and then use the fuzzy 
set theory to process the results.

The numerical probability scale is used to elicit single 
probabilities. Experts are required to judge probabilities 
with a verbal description. Seven intervals are defined, see 
Fig. 4a. The translation of the verbal probability scale into 
fuzzy sets is provided in Fig. 4b (Rohmer 2020). For a 
fuzzy number, X̃ = (a, b, c) as seen in Fig. 5, is referred to 
as a triangular fuzzy number, and its membership function 
is defined by Eq. 1, where a, b, and c indicate the low-
est, most likely, and top least likely values, respectively. 
Given two triangular fuzzy numbers, Ã1 = (a1, b1, c1) and 
Ã2 = (a2, b2, c2) , Eq. 2 defines the operators between Ã1 
and Ã2 , which includes addition, subtraction, multiplica-
tion, and division.

Table 2  (continued)

No. BN variables States of variables

37 Disrupted living s1: no; s2: yes
38 Houses/farmland/roads/bridges s1: no; s2: yes
39 House/farmland/road/bridge inundation and damage s1: no; s2: yes
40 Geological hazard zones s1: low risk; s2: medium risk; s3: high risk
41 Strengthen water content monitoring, slope displacement monitor-

ing, and patrol and protection
s1: yes; s2: no

42 Geological disasters s1: no; s2: yes
43 Carry out disaster investigation and management s1: yes; s2: no
44 Houses/farmland/lifeline systems s1: no; s2: yes
45 House/farmland/lifeline system damage s1: no; s2: yes
46 Strengthen monitoring and early warning, and transfer people in 

time
s1: yes; s2: no

47 People trapped or buried s1: no; s2: yes
48 Rescue victims in time s1: yes; s2: no
49 Casualties s1: no; s2: yes
50 Mining areas (tailing ponds) s1: no; s2: yes
51 Identify hidden dangers and inspect dredging and flood discharge 

facilities
s1: yes; s2: no

52 Dam break s1: no; s2: yes
53 Strengthen monitoring and early warning, and evacuate people in 

time
s1: yes; s2: no

54 Block cofferdam s1: yes; s2: no
55 People trapped or buried s1: no; s2: yes
56 Rescue victims in time s1: yes; s2: no
57 Casualties s1: no; s2: yes
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Assuming the mth expert regards that the probability of 
�∗
ijk,m

 resides in the l th interval ,  specif ied by 
Ãlm(l = 1, 2,⋯ , 7) , Eq. 3 is used to calculate the fuzzy 

(1)F(x) =

⎧
⎪⎪⎨⎪⎪⎩

0, x ≤ a
x−a

b−a
, a ≤ x ≤ b

1, x = b
c−x

c−b
, b ≤ x ≤ c

0, x ≥ c

(2)

⎧⎪⎪⎨⎪⎪⎩

�A1 ⊕ �A2 = (a1 + a2, b1 + b2, c1 + c2)
�A1Θ

�A2 = (a1 − a2, b1 − b2, c1 − c2)
�A1 ⊗ �A2 = (a1 × a2, b1 × b2, c1 × c2)
�A1∅

�A2 = (
a1

c2

,
b1

b2

,
c1

a2

)

probability of �∗
ijk,m

 . This fuzzy probability is further trans-
formed to an exact value using the center-of-area defuzzi-
fication method by Eq. 4.

Step 2 Calculate the data-based parameter �∗
ijk
(D).

In the case of a large enough sample size, the maximum 
likelihood estimation (MLE) (Niculescu et al. 2006) is 
used to estimate the value of a single parameter θijk 
(denoted as �∗

ijk
 ) as:

where Nijk represents the number of cases in the dataset 
where variable Xi has the kth value and its parent, Pa(Xi), has 
the jth value. When a comprehensive Bayesian solution is 
unfeasible, the Dirichlet prior ( P(�) ∝

∏n

i=1

∏qi
j=1

∏ri
k=1

�
�ijk
ijk

 ) 
(Koller and Friedman 2009) has proposed the standard MAP 
algorithm to address the problem. αijk represents the equiva-
lent sample size for Nijk, in which aij =

∑ri
k=1

aijk . The likeli-
hood equivalent uniform Bayesian Dirichlet (EDeu) prior 
and the flat prior of αijk are commonly used. For a single 
parameter, θijk, its MAP estimate is:

In this study, we set �ijk =
1

riqi
.

When the sample size is small, MLE is usually inac-
curate. Koller and Friedman (2009) defined a method for 

(3)�̃∗
ijk,m

= Ãlm ≅ (aij,m, bij,m, cij,m)

(4)�∗
ijk,m

(K) = Val(�̃∗
ijk,m

) =
aij,m + 2bij,m + cij,m

4

(5)�∗
ijk

=
Nijk∑ri
k=1

Nijk

=
Nijk

Nij

(6)�∗
ijk

=
Nijk + �ijk

Nij + �ij

Fig. 4  a An example of a prob-
ability intended to aid expert 
conditional probability table 
(CPT) elicitation; b Fuzzy set 
translation of the probability 
qualified in (a) (μ is the degree 
of membership).

Fig. 5  Triangular fuzzy number X̃ ’s membership function
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computing the sample complexity bound (PAC-bound) for 
learning the parameters of a fixed BN structure:

where M is the number of samples quadratically to the error 
1∕� , � is a measure of the skewness of the distribution with 
the confidence 1 − � , d is the maximum number of parent 
nodes in BN, � is the KL divergence, and n is the total num-
ber of network nodes in the BN. Here d = 4 and n = 57 . � 
and � are theoretical values related to the sample distribu-
tion. Our sample is discretized so that it is not possible to 
solve for these two values. For simplicity, both are assumed 
to be 1. Setting � = 0.05 and � = 0.01 , we get that M ≥ 1907. 
That is, we need a bit more than 1907 samples to confidently 
estimate the probability of an event to within 5% error.

Step 3 Calculate the PEUK parameter �∗
ijk
(PEUK).

To calculate the PEUK parameter, the maximum entropy 
principle (MEP) is used, with the fundamental tenet that 
the probability distribution that most accurately captures the 
current level of knowledge has the highest entropy. Based on 
a model using MEP, it is suggested that the parametric form 
for the model p ∈ C might be defined as follows (Berger 
et al. 1996):

where C is a collection of the probability distributions that 
satisfy the constraint requirements, and p(x)p(y|x) is the joint 
probability of the random variables related to events. The 
conditional distribution’s mathematical measure p(y|x) is 
supplied by the conditional entropy.

We involve M domain experts to obtain the constrained 
knowledge. According to MEP, if BN candidate parameters 
satisfy the constrained knowledge, they have an equal proba-
bility of approaching the real BN parameters. The maximum 
entropy principle helps to address the issue of parameter 
estimation in the statistical averaging model naturally. Then, 
for a BN parameter θijk, its estimation is:

where 
∑M

m=1

�∗
ijk,m

(K)

M
 is the expert knowledge-based parameter 

derived from MEP, and � ∈ [0, 1] is the parameter weight 
balance factor. Here we set � =

acc(K)

acc(K)+acc(D)
 . acc(K) and 

acc(D) represent the prediction accuracy of BN models with 
parameters learned only from expert knowledge and case 
data, respectively. Assuming acc(K) is guaranteed at 0.8. 
acc(D) is related to the sample size, and the larger the sample 
size, the higher the acc(D) . If sufficient sample data are 

(7)M ≥
1

2

1

�2(d+1)
(1 + �)2

�2
log

n�d+1

�

(8)

p∗ = arg max
p∈C

H(p) = arg max
p∈C

−
∑

x,y
p(x)p(y|x )logp(y|x )

(9)�∗
ijk
(PEUK) = �

M∑
m=1

�∗
ijk,m

(K)

M
+ (1 − �)�∗

ijk
(D)

provided, acc(D) ≈ 1 and � ≈ 0.55 , the estimation will be 
more biased towards the data learning results. If the sample 
size is far from adequate, consider the extreme case where 
acc(D) ≈ 0 , then � ≈ 1 , which means the estimation will 
adopt the expert estimates.

3.2.2  Evaluation of the Parameter Estimation Under Expert 
Prior Knowledge (PEUK) Algorithm

This section evaluates our BN model with the PEUK algo-
rithm. We compare its performance for reasoning the conse-
quence of rainstorm with two baseline models—the BN con-
structed only by expert knowledge elicited from the fuzzy 
set theory, and the BN constructed only by data learning.

The experimental data were acquired from the investiga-
tion reports and news of rainstorm events that occurred in 
City B in North China in recent 60 years. One event may be 
divided into multiple cases according to the different admin-
istrative regions involved. In total, 122 rainstorm cases were 
obtained, each of which was coded by BN variables with 
discrete values. According to the PCA-bound theory, it is 
clear that as the number of the cases decreases, the inverse 
of the error increases quadratically. In this study, we ran-
domly selected 98 cases (80% of all cases) as our training 
data to learn the data-based BN parameter �∗

ijk
(D).

Three experts were invited to elicit the expert knowledge-
based BN parameter �∗

ijk
(K) . These experts were from the 

Emergency Management Agency in City B, all of whom had 
been working for more than 10 years and had extensive 
experience with rainstorms. Besides, the homogeneity, dif-
ferences, and opposites of expert knowledge were synthe-
sized through the fuzzy set theory in order to reduce the 
uncertainty of individual experts.

The PEUK parameter �∗
ijk
(PEUK) was calculated by Eq. 9. 

Then, three BN models for reasoning rainstorms with differ-
ent parameters were constructed, which are  BNE,  BND, and 
 BNPEUK.

The other 24 cases were reserved for testing the effective-
ness of these three BN models. Performance was measured 
by the results of nine consequence variables, including Node 
6 construction sites damage, Node 15 casualties (caused by 
waterlogging), Node 23 casualties (caused by house col-
lapsing), Node 32 casualties (caused by flooding), Node 37 
disrupted living, Node 39 inundation and damage, Node 45 
house/farmland/lifeline system damage, Node 49 casualties 
(caused by geological disasters), and Node 57 casualties 
(caused by dam break), as shown in the orange nodes in 
Fig. 3. The performance metrics are overall accuracy of all 
consequence variables, recall, precision, and F1 score.
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Figure 6 shows the BN models’ prediction performance 
for 24 testing cases, from which we can draw the following 
findings:

(1) BND performs the worst in terms of overall accuracy. 
The results of Node 49 and Node 57 show that it cannot 
deduce the consequences of the dam break scenario. 
This is consistent with our expectations since our train-
ing data are sparse and there are almost no dam break 
cases.

(2) In terms of the results of Node 32 and Node 39,  BNE 
performs slightly worse than the other two BN models. 
That is because both Node 32 and Node 39 are conse-
quence nodes of the flood scenario, which is a common 
secondary event of a rainstorm. There are adequate 
flood cases in our training data so that the accuracy of 
these parameters learned from the data is high.

(3) Overall,  BNPEUK performs the best.  BNPEUK imbibes 
advantages of both  BND and  BNE while having gen-
eralization ability for sparse variables and sufficient 
variables at the same time.

4  Scenario Analysis and Discussions

In this section,  BNPEUK is used to analyze the effectiveness 
of emergency response measures. Specifically, for the six 
disaster chains of the rainstorm considered in this study, we 
compare the consequences under different scenarios com-
posed of different emergency response measures to find out 
the optimal measures to reduce disaster consequences.

4.1  Scenario Analysis

(1) Construction sites waterlogged

In the construction sites waterlogged disaster chain, Node 
2 construction sites is the hazard-affected object, Node 4 
construction sites waterlogged is the emergency, Node 3 
strengthen drainage facilities and Node 5 drain floodwater 
and perform emergency repairs are emergency response 
measures, and Node 6 construction sites damage is the con-
sequence. By adjusting the states of Node 3 and Node 5 
to get different combinations of emergency response meas-
ures, four scenarios of construction sites waterlogged are 
obtained: S11, S12, S13, and S14. S11 indicates that no 
emergency response measure is taken, that is, Node 3 = s2 
and Node 5 = s2. S12 indicates that the preventive measure, 
strengthening drainage facilities, is taken while the rescue 
is not, that is, Node 3 = s1 and Node 5 = s2. S13 indicates 
that only the rescue measure, draining floodwater and per-
form emergency repairs, is taken, that is, Node 3 = s2 and 
Node 5 = s1. S14 indicates both the precaution and rescue 
measures are taken, that is, Node 3 = s1 and Node 5 = s1. 
We analyze the consequences of construction sites damage, 
that is, the posterior probability of Node 6, that may result 
from these four scenarios for different rainstorm risk states, 
as shown in Fig. 7.

The probability of construction sites damage in S12, S13, 
and S14 are much lower than that in S11, which means that 
strengthening drainage facilities and draining floodwater 
and perform emergency repairs can effectively reduce the 
impact. When the rainstorm is at the blue/yellow level, the 
consequence of S12 is better than that of S13, while when 

Fig. 6  Prediction performance of the 24 testing cases by three Bayesian network (BN) models,  BNE,  BND, and  BNPEUK
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the rainstorm is at the orange/red level, it is the opposite. 
That is, in order to reduce the damage of construction sites, 
precautions should be emphasized when the rainstorm level 
is low, and rescue measures should be emphasized when the 
rainstorm level is high.

(2) Waterlogging of transportation infrastructure

We adjust the states of Node 8, Node 10, Node 12, and Node 
14 and generate eight scenarios of waterlogging of transpor-
tation infrastructure, S21–S28. S21 indicates that no emer-
gency response measure is taken. S22, S23, and S24 repre-
sent that some precautions are taken while rescue measure is 
not. S25, S26, and S27 represent that some rescue measures 
are taken while precaution is not. S28 indicates all precau-
tions and rescue measures are taken. The consequences of 
these scenarios are shown in Fig. 8. Compared with the 
baseline scenario S21, the probability of casualties caused 
by waterlogging in S22–S24 is reduced, but not obvious, 
while that in S25–S27 is significantly reduced. It implies that 
preventive measures like dredging drainage lines and issuing 
traffic warnings can have some effects, however, due to the 
necessary travel needs like commuting, the traffic risk still 

exists, resulting in the risk of vehicle trapped and casualties. 
In these scenarios, rescue measures like draining floodwater 
and controlling traffic and rescuing trapped people in time 
should be enhanced in particular.

(3) Houses flooded and collapsed

Seven scenarios, S31–S37, are generated for this disaster 
chain, by adjusting the states of Node 17, Node 19, Node 
20, and Node 22. S31 indicates that no emergency response 
measure is taken. S32, S33, and S34 respectively represent 
that one kind of precaution is taken. S35 represents that the 
rescue measure is taken and S36 represents that all precau-
tions are taken. S37 indicates that all precautions and rescue 
measures are taken. The consequences of these scenarios 
are shown in Fig. 9. The probability of casualties caused by 
house collapse in S32 and S33 is reduced compared with 
that in S31, which means precautions like eliminating hidden 
troubles, reinforcing houses, repairing houses, and remov-
ing stagnant water play a constructive role. Moreover, the 
probability of casualties in S34 is most significantly reduced. 
That is, evacuating and resettling people is the most effec-
tive measure to be implemented in house collapse scenarios.

Fig. 7  Probability of construc-
tion sites damage

Fig. 8  Probability of casual-
ties caused by waterlogging of 
transportation infrastructure
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(4) Flooding

For flooding, there are three kinds of consequences: casual-
ties, disrupted living, and inundation and damage of houses, 
farmland, roads, and bridges. We construct scenarios for 

each consequence and obtain 18 scenarios in total, as shown 
in Figs. 10, 11, and 12. Of the 7 scenarios in Fig. 10, S41 
is the baseline scenario, that is, no emergency response 
measure is taken. S42, S43, S44, and S45 are each with one 
of the four emergency response measures taken: dredging 

Fig. 9  Probability of casualties 
caused by house collapse

Fig. 10  Probability of casualties 
caused by flooding

Fig. 11  Probability of disrupted 
living
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and patrol, regulating flood and block crevasse, evacuat-
ing and resettling people, and timely rescue and treatment. 
S46 is with three precaution measures, and S47 is with all 
measures. By comparing the results of S42–S45, it can be 
seen that the probability of casualties in S45 is significantly 
reduced compared with the baseline scenario S41, followed 
by S44, S43, and finally S42. That is, timely rescue is the 
most effective measure to decrease flood-induced injury and 
death, followed by evacuating people. For disrupted living, 
the consequence in S412 is significantly lighter (see Fig. 11), 
which means that communicating with the affected residents 
is effective. The probability of house/farmland/road/bridge 
damage in S415 is reduced significantly (see Fig. 12), which 
implies that performing emergency repairs should be empha-
sized under this circumstance.

(5) Geological disasters

There are two kinds of consequences of geological disasters: 
house/farmland/lifeline system damage and casualties. For 
each consequence, through adjusting the states of Node 41, 

Node 43, Node 46, and Node 48, 11 scenarios are gener-
ated, as shown in Figs. 13 and 14. When the rainstorm is 
at the blue/yellow level, the consequence of S52 and S56 is 
better than that of S53 and S57, while when the rainstorm 
is at the orange/red level, it is the opposite. That is, in order 
to reduce the damage of geological disasters, water content 
monitoring, slope displacement monitoring, patrol, and 
protection should be emphasized when the rainstorm level 
is low, and disaster investigation and management should 
be emphasized when the rainstorm level is high. Another 
noteworthy fact is that the probability of casualties in S59 
does not decrease significantly as that in S58, which means 
that rescuing victims is not very effective. As rainstorm-
induced geological disasters usually occur in remote areas, 
once people are trapped, it is difficult to rescue in time, so 
early warning and evacuation are more important.

(6) Dam break

Generally, the probability of dam break events is very low. 
Here we assume that the rainstorm occurs in a mining area 

Fig. 12  Probability of house/
farmland/road/bridge inundation 
and damage

Fig. 13  Probability of house/
farmland/lifeline system dam-
age by geological disasters
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or tailings pond (Node 50 is set to s2). By adjusting the 
states of precaution nodes (Node 51 and Node 53) and rescue 
nodes (Node 54 and Node 56), eight scenarios (S61–S68) 
are obtained. The consequences of these scenarios are shown 
in Fig. 15. It can be seen that the probability of casualties 
in S62, S63, and S64 is reduced more significantly than in 
others. This shows that precautions like identifying hidden 
dangers, inspecting dredging and flood discharge facilities, 
monitoring, early warning, and transferring people in time 
should be implemented in dam break scenarios.

4.2  Result Analysis and Discussion

Through the scenario analysis, the following conclusions 
can be drawn.

(1) In order to reduce casualties, it is very important to 
transfer people and carry out a rescue effort in time. For 
waterlogging, draining, controlling traffic, and rescuing 
in time should be implemented; For house collapse, 
geological disaster, and dam break, early warning and 
timely transfer of people are needed.

(2) To reduce the damage of construction sites and infra-
structures, when the rainstorm level is low, it is par-
ticularly important to strengthen preventive measures 
like regulating flood, eliminating hidden troubles, and 
reinforcing houses and pipelines; When the rainstorm 
level is high, rescue measures like performing emer-
gency repairs are particularly important.

(3) In order to reduce the impact on people’s living, it is 
necessary to communicate with the affected residents 
and take safety measures.

To further verify the validity of the method, we take 
five typical rainstorms as examples to compare the differ-
ences between the predicted and actual results, as shown 
in Fig. 16a. It can be concluded that the estimated results 
based on BN are basically consistent with the actual results, 
which proves that the proposed method is of great theoreti-
cal and practical significance for emergency management 
decision makers to grasp the overall situation of the rain-
storm, identify the key nodes, and take emergency response 
measures in time. By regulating the response node status of 
the five storm disaster BN networks, it is analyzed that if all 
the emergency response measures are in place during each 

Fig. 14  Probability of casualties 
caused by geological disasters

Fig. 15  Probability of casualties 
caused by dam break
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rainstorm response, there is some room for further reduc-
tion in the consequences and losses, as shown in Fig. 16b. 
For example, in response to Case 1, if all affected residents 
are transferred and timely rescue and treatment measures 
are taken, then the probability of casualties will be reduced 
from 15.5 to 1.12%; in response to Case 3, if all the drainage 
capacities are pre-positioned in place and water is pumped 
out in a timely manner, then the probability of waterlogging 
on roads will be reduced from 30.8 to 19.6%. Although these 
estimated values are not entirely accurate, they do indicate 

to some extent that the emergency response strategy can still 
be further optimized.

The scenario reasoning method proposed in this study 
can be used for strategy optimization in the rescue process 
of rainstorms as well as emergency drills. However, it still 
has limitations. In our constructed BN model, the discretiza-
tion of parameter values is relatively simple, and only the 
presence or absence of most emergency response measures 
is considered, so only qualitative strategy suggestions can 
be given, which cannot be quantified. Besides, all the cases 
and experts in this study are from City B, leading to the 
limitation that our established BN model is only suitable 

Fig. 16  Comparison of the Bayesian network (BN) reasoning results (a) and actual disaster impacts (b) for five typical rainstorms
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for City B and some parameters may have to be adapted if 
applied to other cities.

5  Conclusion

The complexity and uncertainty of disaster chains bring 
about the difficulty of quickly making the most appropri-
ate emergency decisions depending entirely on expert 
knowledge. To address this issue, a scenario-based deci-
sion approach is a good choice. In this study, we proposed 
a Bayesian network-based scenario reasoning method for 
disaster chains. The graphical nature of BN representation 
enables the interacting relationships among key factors to 
be easily understood by emergency decision makers, and 
it can capture the uncertainty of the model and provide an 
almost real-time scenario reasoning procedure. To overcome 
the bottleneck of BN parameter learning, we proposed the 
PEUK algorithm, which applies the maximum entropy prin-
ciple to combine data learning and expert knowledge. Com-
pared with the classical MAP algorithm and the direct expert 
opinion elicitation approach, our proposed PEUK approach 
performs the best in disaster consequence reasoning. Rain-
storm events are taken as an example to show the process 
of model construction and scenario analysis. The results 
show that our approach with BN has important theoretical 
and practical significance for emergency decision makers to 
understand the overall situation of rainstorm disaster chains, 
identify key nodes, and take emergency response measures 
in time.

Further research can be carried out from two aspects. 
First, a disaster such as a rainstorm is unevenly distributed 
in time and space, which suggests that we can divide the 
administrative region into finer spatial grids, consider the 
evolution of disasters in different periods, and then carry 
out multi-objective dynamic decision making. Second, more 
disaster cases should be collected to modify the CPTs, so 
as to make the BN network more scientific and better guide 
practice.
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