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Abstract
Extreme precipitation-induced landslide events are projected to increase under climate change, which poses a serious threat 
to human lives and property. In this study, a global-scale landslide risk assessment model was established using global land-
slide data, by considering landslide hazard, exposure, and vulnerability. The global climate model data were then employed 
to drive the established global landslide risk model to explore the spatial and temporal variations in future landslide risk 
across the globe as a result of extreme precipitation changes. The results show that compared to the 30-year period from 
1971 to 2000, the average annual frequency of landslides triggered by extreme precipitation is projected to increase by 7% 
and 10%, respectively, in the future 30-year periods of 2031–2060 and 2066–2095. The global average annual casualty risk 
of landslides is projected to increase from about 3240 to 7670 and 8380, respectively (with growth rates of 140% and 160%), 
during the 2031–2060 and 2066–2095 periods under the SSP2-4.5 scenario. The top 10 countries with the highest casualty 
risk of landslides are China, Afghanistan, India, the Philippines, Indonesia, Rwanda, Turkey, Nepal, Guatemala, and Brazil, 
60% of which are located in Asia. The frequency and intensity of extreme precipitation will increase under climate change, 
which will lead to an increase in casualties from landslides in mountainous areas globally, and this risk should be taken 
seriously. The present study was an attempt to investigate and quantify the impact of global landslide casualty risk under 
climate change, which still has uncertainty in terms of outcomes, and there remains a need for further understanding in the 
future of the propagation of uncertainty between the factors that affect the risk.
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1  Introduction

Landslides are widely distributed around the world and have 
serious impacts on human society every year (Petley et al. 
2007; Budimir et al. 2015). According to the statistics of the 

Emergency Events Database (EM-DAT), the 631 landslide 
disaster events recorded from 1980 to 2017 caused 44,541 
casualties (CRED 2019). According to the statistics of the 
global catastrophic landslide database, which spans the 
years 2004 to 2010 and was established by Petley (2012), 
an average of 374 catastrophic landslides occurred every 
year worldwide in that period, causing approximately 4617 
casualties annually. Extreme precipitation is an important 
triggering factor of landslides. The Intergovernmental Panel 
on Climate Change (IPCC) Sixth Assessment Report (AR6) 
noted that the warming of the global climate system is clear 
(IPCC 2021), and the thermodynamic effects of climate 
change may cause the frequency and intensity of extreme 
precipitation events to increase (Kharin et al. 2013; Westra 
et al. 2014), which may affect the occurrence of landslides in 
some regions of the world with high reliability (Gariano and 
Guzzetti 2016, 2022). Therefore, projections of global land-
slide casualty risks of precipitation extremes under climate 
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change scenarios are essential for formulating scientific 
landslide mitigation strategies.

Risk assessments mainly include three elements: hazard, 
exposure, and vulnerability (IPCC 2011). Research on land-
slides is the basic premise for projections of populations at 
risk of landslides. Some scholars have studied the impacts 
of climate change on landslides in different countries or 
regions. For example, studies in the British Derbyshire 
region (Dixon and Brook 2007), the Barcelonnette region 
of France (Jakob and Lambert 2009), Canada (Turkington 
et al. 2016), the Val d’Aranand region of Spain (Hürlimann 
et al. 2022), and China (Lin et al. 2020; Lin et al. 2022) have 
shown that climate change will lead to more frequent land-
slide occurrences and wider landslide impacts in the future. 
However, other researchers have conducted some landslide 
studies and shown that climate change will cause fewer land-
slides and slower movements in the future (Buma and Dehn 
2000; Collison et al. 2000; Coe 2012; Rianna et al. 2014). In 
addition, some researchers have shown that the impacts of 
climate change on future landslides are uncertain or cannot 
be accurately assessed (Ciabatta et al. 2016; Alvioli et al. 
2018). These works reveal significant regional differences 
and large uncertainties in studies of the impacts of climate 
change on landslides. Moreover, there is still insufficient 
research regarding how precipitation extremes under climate 
change scenarios influence landslides on a global scale.

A historical landslide casualty database provides a basis 
for projecting future casualties of landslides. At present, 
there are two types of global-scale landslide databases. One 
type includes data collected by national or international 
organizations such as the EM-DAT provided by the Cen-
tre for Research on the Epidemiology of Disasters (CRED) 
and the Global Landslide Catalog (GLC) database pro-
vided by the National Aeronautics and Space Administra-
tion (NASA). The other type comprises data collected and 
sorted by researchers. Froude and Petley (2018) established 
a 2004–2014 landslide disaster event database. Gómez 
et al. (2023) merged and depurated the EM-DAT, GLC, and 
the Disaster Inventory System (DesInventar) to obtain the 
Global Fatal Landslide Database (GFLD). However, due 
to the different data collection methods followed by differ-
ent institutions and researchers, the collated landslide data 
differ. Some researchers have also tried to build models 
to assess the impacts of global or regional-scale landslide 
disasters on casualties. Nadim et al. (2006) considered the 
factors that influence landslides, including precipitation, 
lithology, topography, seismic activity, and soil moisture, 
to depict global landslide hazard “hot spots” by weighted 
stacking. Then, the “hot spot” results were combined with 
grid population of the world (GPW) provided by Columbia 
University to assess the global level of populations at risk of 
landslides. Yang et al. (2015) assessed the hazard of global 
landslides and then integrated the results with LandScan 

2010 global population data to assess the global population 
at risk of landslides. Gariano et al. (2017) investigated the 
future variations in the impact of rainfall-induced landslides 
on the population of Calabria. They found a + 80.2% and 
+ 54.5% increase in the impact on the population for the 
period 2036–2065, under the RCP4.5 and RCP8.5 scenarios, 
respectively. Emberson et al. (2020) estimated populations 
that were exposed to global landslides from 2001 to 2019 
based on satellite precipitation data and the Landslide Haz-
ard Assessment for Situational Awareness (LHASA) model. 
At present, existing global-scale assessment studies of popu-
lations at risk of landslides have not considered changes in 
future landslide risks of precipitation extremes under climate 
change scenarios.

In general, the annual average casualties caused by 
landslides are severe worldwide. However, the types, 
extents, locations, and frequencies of future landslides are 
still unclear under extreme precipitation change (Gariano 
and Guzzetti 2016), and this ambiguity will undoubtedly 
increase the difficulty and uncertainty associated with man-
aging future landslide population risks. Therefore, this study 
used the Coupled Model Intercomparison Project (CMIP5) 
multi-downscaling General Circulation Models (GCM) daily 
precipitation data from the climate change Representative 
Concentration Pathway 4.5 (RCP4.5) scenario to project 
future changes in the frequency of extreme precipitation-
triggered landslides and then combined future population 
data from the Shared Socioeconomic Pathway 2 (SSP2) sce-
nario to assess the potential changes in global casualties of 
landslides in the future. The contributions of this study are 
the inclusion of extreme precipitation under climate change 
in the landslide risk assessment model and the realization of 
the quantitative assessment of future casualty risk of land-
slides induced by extreme precipitation.

2 � Data and Method

The data used in this study contain global landslide and 
casualty data, influencing factors of landslide susceptibility, 
precipitation data, and population data. The research meth-
odology includes the logistic regression model for landslide 
susceptibility, thresholds of extreme precipitation that trig-
gers landslides, and population exposure and vulnerability 
calculations.

2.1 � Data

The global landslide and casualty data provided by Lin et al. 
(2017), which combined two existing global landslide inven-
tories—the World Geological Hazard Inventory created by 
the Academy of Disaster Reduction and Emergency Man-
agement of Beijing Normal University (ADREM, BNU), 
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and the global landslide inventory provided by NASA (see 
Kirschbaum et al. 2010 and Kirschbaum et al. 2015 for 
details). They used the time of the landslide occurrence as 
the crucial standard—when two landslide events occurred 
at different times (months), they were both included in the 
new database. If two events had the same occurrence time 
and their locations were close, investigation of details in 
the two landslide events could determine whether they were 
the same landslide. If that was the case, the record with the 
higher spatial resolution was included. This study selected 
the landslide events triggered by rainfall.

For the influencing factors of landslide susceptibility, this 
study considered lithology, slope, elevation, soil moisture, 
soil type, and vegetation cover based on the studies of Nadim 
et al. (2006), Hong et al. (2007), Nadim et al. (2013), Lin 
et al. (2017), Stanley and Kirschbaum (2017), and Lin and 
Wang. (2018). Since the spatial correlation between slope 
and elevation exceeds 0.38, slope was selected in this study, 
and elevation was excluded. After incorporating soil type 
data into the landslide susceptibility model, the model did 
not pass the significance test (P > 0.1) and thus soil type 
was excluded. Ultimately, slope, lithology, vegetation cover 
index, and soil moisture were chosen to construct a landslide 
susceptibility model. Slope data were from SRTM30, which 
is a global elevation dataset provided by NASA.1 Lithol-
ogy data were from the Geological Map of the World at 
1/25,000,000 scale published by the Commission for the 
Geological Map of the World and UNESCO (CGMW2000).2 
Vegetation cover index data are from the European Space 
Agency (Globcover 2000). Soil moisture data can be down-
loaded from the Internet3 (Centre for Climatic research, Uni-
versity of Delaware).

Precipitation data were obtained from the Integrated 
MultisatellitE Retrievals for Global Precipitation Measure-
ment (IMERG) data for 2000–2018 and the multi-GCM 
daily precipitation data for the historical (1971–2000) and 
future (2031–2060 and 2066–2095) periods derived from 
the NASA Earth Exchange-Global Daily Downscaled 

Projections (NEX-GDDP) dataset.4 The GCM dataset 
provides daily precipitation data for 21 GCMs in the his-
torical (1950–2005) and future (2006–2100) periods under 
the RCP4.5 and RCP8.5 scenarios (some models such as 
ACCESS1-0, bcc-csm1-1, and so on forecast daily precipi-
tation for the future only up to 2095). This dataset has been 
indicated to be suitable for studies on climate change impact 
assessments in different regions of the world (Mandapaka 
and Lo. 2018; Lin et al. 2020). To reduce the redundancy 
and uncertainty resulting from the GCMs used in this study, 
the daily precipitation data of 13 GCMs (Table 1) from dif-
ferent institutions were selected (Zhang et al. 2021).

The global population data were obtained from Lands-
can-Oak Ridge National Laboratory (ORNL) in the United 
States5 for 2000–2018 and the 1980–2100 population data 
from the SSP2 scenario published by the International 
Institute for Applied Systems Analysis (IIASA) in Austria.6 
The SSPs refer to the reference pathways of future socio-
economic development and were developed based on the 
RCPs; five scenarios are included: SSP1 (sustainability), 
SSP2 (middle of the road), SSP3 (regional rivalry), SSP4 
(inequality), and SSP5 (fossil-fueled development) (O’Neill 
et al. 2014; O’Neill et al. 2017). Based on the RCP4.5 and 
RCP8.5 and SSP1–SSP5 scenarios, a 2×5 matrix can be 
generated. However, in some portfolios (such as SSP5-4.5, 
SSP1-8.5, and so on), these scenarios hardly emerge. Many 
existing studies selected data from the portfolios of SSP2-
4.5 and SSP3-8.5, which have been widely compared and 
analyzed (Liu et al. 2020). The SSP2-4.5 scenario indicates 
moderate carbon emissions and moderate population growth, 
which is consistent with typical patterns of historical experi-
ence observed over the past century (O’Neill et al. 2017). In 
our study, the climate change SSP2-4.5 combined scenario 
was chosen to project landslide population risks. Detailed 
descriptions of these datasets are shown in Table 2.

Table 1   Basic information 
of the 13 General Circulation 
Models (GCMs) used in this 
study

Model/country Model/country Model/country

ACCESS1-0/Australia CNRM-CM5/France MIROC5/Japan
BCC-CSM1-1/China GFDL-ESM2G/United States MPI-ESM-MR/Germany
CanESM2/Canada INMCM4/Russia MRI-CGCM3/Japan
CCSM4/United States IPSL-CM5A-LR/France NorESM1-M/Norway
CESM1-BGC/United States

1  earth​env.​org/​topog​raphy
2  https://​ccgm.​org/​en/​catal​ogue/
3  https://​clima​te.​udel.​edu/​data/

4  https://​datas​erver.​nccs.​nasa.​gov/​thred​ds/​catal​og/​NEX-​GDDP/
5  https://​lands​can.​ornl.​gov/
6  https://​secure.​iiasa.​ac.​at/​web-​apps/​ene/​SspDb/​dsd?​Action=​htmlp​
age&​page=​about

http://www.earthenv.org/topography
https://ccgm.org/en/catalogue/
https://climate.udel.edu/data/
https://dataserver.nccs.nasa.gov/thredds/catalog/NEX-GDDP/
https://landscan.ornl.gov/
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
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2.2 � Method

Figure 1 shows the flowchart of this study. First, the logistic 
regression model was used to construct the landslide sus-
ceptibility model, and the accuracy of the model was vali-
dated and analyzed. Next, the annual average frequency of 
the 7-day antecedent rainfall index (ARI) exceeding the 95th 
percentile threshold (defined as the 95th percentile of ARI 
values for IMERG rainfall data from 2000–2014) was cal-
culated for each grid globally from 2000–2018. The grids 
beyond the extreme precipitation threshold were combined 
with grids of very high, high, and moderate landslide sus-
ceptibility, and the average annual frequency of precipita-
tion-triggered landslides was obtained. Then, the annual 
population exposure to landslides was calculated using 
the population data from LandScan for 2000–2018 and the 
results of precipitation-triggered landslides. The global land-
slide casualty data were used to calculate the average annual 
casualty rate on a national scale based on the annual popula-
tion exposure to landslides.

Second, based on the historical (1971–2000) and future 
(2031–2060 and 2066–2095) rainfall data of multiple GCMs 
under the RCP4.5 scenario and the population data under 
the SSP2 scenario, the annual average population exposure 
(1971–2000, 2031–2060, and 2066–2095 under the SSP2-
4.5 scenario) could be obtained by using the above calcu-
lation method. Then, this result was used to multiply the 
landslide disaster casualty rate to obtain the average annual 
landslide casualty risk for 1971–2000, 2031–2060, and 
2066–2095 under the SSP2-4.5 scenario. It is important to 
note that, the global landslide casualty data (average annual 
casualty for 2000–2018 on a national scale) were used to 
correct the average annual casualty for 2000–2020 under 

the SSP2-4.5 scenario, and the result was used to correct the 
annual average landslide population risk on a national scale 
during the 1971–2000, 2031–2060, and 2066–2095 periods 
under the SSP2-4.5 scenario.

2.2.1 � Logistic Regression Model

Logistic regression is a commonly used statistical analy-
sis model for binomial categorical dependent variables and 
describes the relationship between the dependent variable (1 
for occurrence and 0 for nonoccurrence) and multiple causal 
factors (X1, X2, ..., Xi). This model is commonly fitted in a 
stepwise manner (Budimir et al. 2015). The general form of 
a logistic regression model is:

where P is the probability of landslides, β0 is a constant, x1
,x2 , …,x

i
 are the independent variables related to the explan-

atory factors, �1,�2 , …,�
i
 are the regression coefficients for 

the explanatory factors.
Data from landslide sites (8873) and randomly gener-

ated landslide nonoccurrence sites (8700) were included as 
independent variables in the model (1 for landslide occur-
rence and 0 for nonoccurrence of landslide). The land-
slide nonoccurrence sites were generated from the global 
non-landslide susceptibility map (Jia et al. 2021), which 
provides locations where the global likelihood of landslide 
occurrence is null or negligible. Slope, lithology, ground 
motion, land use type, and soil moisture were selected to 
construct the global landslide susceptibility. The highest 

(1)P =
exp(�0 + �1x1 + �2x2 +⋯ + �

i
x
i
)

1 + exp(�0 + �1x1 + �2x2 +⋯ + �
i
x
i
)

Table 2   Datasets involved in this study

a Landslides in this study refer to landslide disasters in a broad sense, including slides, rockfalls, and debris flows (Hungr et al. 2014).

Dataset Data content Data source

Global landslide database 8873 landslidea events Lin et al. (2017)
Influencing factors of
landslide susceptibility

Slope earth​env.​org/​topog​raphy
Lithology https://​ccgm.​org/​en/​catal​ogue/ 
Soil moisture https://​clima​te.​udel.​edu/​data/
Vegetation cover index https://​joint-​resea​rch-​centre.​ec.​

europa.​eu/​scien​tific-​tools-​datab​
ases_​en

Global precipitation data Integrated MultisatellitE Retrievals for Global Precipitation 
Measurement (IMERG)

https://​disc.​gsfc.​nasa.​gov/​datas​ets/

13 GCMs from NASA Earth Exchange / Global Daily Down-
scaled Projections (NEX-GDDP)

https://​www.​nasa.​gov/​nex

Global population data LandScan https://​lands​can.​ornl.​gov/
SSP2 scenario https://​secure.​iiasa.​ac.​at/​web-​apps/​

ene/​SspDb/​dsd?​Action=​htmlp​
age&​page=​about

http://www.earthenv.org/topography
https://ccgm.org/en/catalogue/
https://climate.udel.edu/data/
https://joint-research-centre.ec.europa.eu/scientific-tools-databases_en
https://joint-research-centre.ec.europa.eu/scientific-tools-databases_en
https://joint-research-centre.ec.europa.eu/scientific-tools-databases_en
https://disc.gsfc.nasa.gov/datasets/
https://www.nasa.gov/nex
https://landscan.ornl.gov/
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about


755International Journal of Disaster Risk Science

1 3

grid resolution of data available for this study was 1 km, 
so the influencing factors of landslides were resampled to 
1 km in Arcgis 10.6 in accordance with the proximity prin-
ciple. In this study, 70% of data from randomly selected 
landslide and non-landslide samples were used as training 
samples and substituted into the logistic regression model. 

Detailed descriptions and processes of these datasets are 
shown in Table 3.

2.2.2 � Extreme Precipitation that Triggers Landslides

Extreme precipitation is an important factor in triggering 
landslides. Since there are significant differences in extreme 

Fig. 1   Flowchart of the landslide casualty risk assessment of precipitation extremes under a climate change scenario in this study. ARI = Ante-
cedent rainfall index.
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precipitation conditions in different climatic zones globally, 
the extreme precipitation thresholds for triggering landslides 
should take into account regional variability. There have 
been many different treatments on how to represent the land-
slide-triggering rainfall threshold (Caine 1980; Piciullo et al. 
2018; Guzzetti et al. 2020). Kirschbaum and Stanley (2018) 
used continuous daily precipitation data from IMERG 
(2000–2014) to calculate precipitation for multiple time 
windows using a weighted index for each grid and assigned 
an extreme threshold to each grid using the 95th percen-
tile of the ARI (Fig. 2). Then, using 949 global landslide 
events from 2007 to 2013, Kirschbaum et al. (2015) vali-
dated the results of the established extreme ARI thresholds 

for triggered landslides over multiple time windows using 
the results of global landslide susceptibility and found the 
best validation results using a 7-day window and a weighted 
exponent of -2. In some very dry areas, the 95th percen-
tile ARI is still low. In order to avoid erroneous predictions 
in desert regions, Kirschbaum and Stanley (2018) adopted 
a conservative minimum ARI threshold of 6.6 mm. They 
validated their global 7-day weighted ARI extreme precipi-
tation threshold for landslide-triggering by using the 4930 
rainfall-induced landslides that have occurred in the GLC, 
and the result shows that there were about 30% true positive 
rates (TPR) for induced landslides in areas of moderate and 
high susceptibility, and 40% TPR for induced landslides in 

Table 3   Input variables used in the logistic regression analysis

Dependent variable: landslide location Map details

Global Landslide sites Point data

Independent variables: Map details

Slope
Classification method: refer to Nadim et al. (2006)
(1. 0°–1°; 2. 1°–8°; 3. 8°–16°; 4. 16°–32°; 5. > 32°)

1 km

Lithology
Classification method: see Nadim et al. (2006)
(0. Undifferentiated facies, Ophiolitic complex, Endogenous rocks, Oceanic crust; 1. Extrusive volcanic rocks: Precambrian, Pro-

terozoic, Paleozoic and Archean; Endogenous rocks (plutonic and/metamorphic): Precambrian, Proterozoic, Paleo Archean; 2. 
Old sedimentary rocks: Precambrian, Archean, Proterozoic, Paleozoic; Extrusive volcanic rocks: Paleozoic, Mesozoic; Endog-
enous rocks: Paleozoic, Mesozoic, Triassic, Jurassic, Cretaceous; 3. Sedimentary rocks: Paleozoic, Mesozoic, Triassic, Jurassic, 
Cretaceous; Extrusive volcanic rocks: Mesozoic, Triassic, Jurassic, Cretaceous; Endogenous rocks: Meso-Cenozoic, Cenozoic; 4. 
Sedimentary rocks: Cenozoic, Quaternary; Extrusive volcanic rocks: Meso-Cenozoic; 5. Extrusive volcanic rocks: Cenozoic)

Polygon
(rasterized
into 1 km)

Soil moisture index
Classification method: see Nadim et al. (2006)
(1. -1.0 to -0.6; 2. -0.6 to -0.2; 3. -0.2 to 0.2; 4. 0.2 to 0.6; 5. 0.6 to 1.0)

5 km
(rasterized
into 1 km)

Vegetation cover index
Classification method: see Jaedicke et al. (2014)
(0. Water; 1. Urban; 2. Forest; 3. Grassland; 4. Farmland; 5. Bare surface)

1 km

Fig. 2   Global 95th percentile of the extreme antecedent rainfall index (ARI). Source Kirschbaum and Stanley (2018).
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the Nepal landslides database established by Petley et al. 
(2007). The extreme precipitation thresholds for triggering 
landslides on a global scale constructed by Kirschbaum and 
Stanley have proved to be applicable, which is detailed in 
Kirschbaum and Stanley (2018). It is important to emphasize 
that the 7-day weighted ARI extreme precipitation-induced 
landslides are mainly shallow and intermediate landslides. 
The specific equation of ARI is:

where t is the number of days before the present, Pt is the 
precipitation at time t, and Wt = (t + 1)−2.

Annual frequencies of 7-day weighted ARI values 
exceeding the 95th percentile were calculated for IMERG 
2000–2018, the NEX-GDDP historical period (1971–2000), 
and future periods (2031–2060 and 2066–2095) under the 
RCP4.5 scenario. The spatial resolutions of the IMERG 
daily precipitation and NEX-GDDP daily precipitation data 
are 1 km and 25 km, respectively, and the NEX-GDDP daily 
precipitation data spatial resolution was increased using 
proximity sampling to be consistent with the global land-
slide susceptibility (1 km):

where Fv is the annual frequency of 7-day weighted ARI 
values above the 95th percentile weighted ARI, and ARIi is 
the 7-day weighted ARI value for IMERG 2000–2018, the 
NEX-GDDP historical (1971–2000) and future (2031–2060 
and 2066–2095) periods, i = 1, 2, …, 30. The ARI95th is the 
95th percentile 7-day weighted ARI values during IMERG 
2000–2014. The annual frequency of landslide disasters trig-
gered by extreme precipitation at each grid (1 km×1 km) 
was obtained when 7-day weighted ARI values exceeded the 
95th percentile extreme threshold and was overlaid with a 
very high, high, and moderate landslide susceptibility grid. 

2.2.3 � Population Exposure and Population Vulnerability

Landslide population exposure is closely related to land-
slide susceptibility. According to Jaedicke et al. (2014), 
Eq.  4 was used to calculate the landslides population 
exposure corresponding to different landslide susceptibil-
ity classes (Jaedicke et al. used this method to calculate 
the population exposed to landslides in Europe and further 
obtained the population risk, and the method was validated 
based on the actual landslide casualties, showing that the 
model works well). By combining these results with the 
annual frequency of landslides triggered by extreme pre-
cipitation in Sect. 3.2, the annual population exposure 
to landslides was obtained. Since the 95th percentile 

(2)ARI =

∑6

t=0
P
t
w
t

∑6

t=0
w
t

(3)F
v
= ARI

i
−ARI95th

precipitation threshold for triggering landslides covers 
60°N–60°S (Kirschbaum and Stanley 2018), the popula-
tion exposure for extreme precipitation-triggered land-
slides also covers countries at 60°N–60°S, with the popu-
lation exposure to landslides in the northern parts of some 
countries, such as northern Canada and northern Russia, 
not included. Referring to Emberson et al. (2020), the 
population exposure to landslides calculated in this study 
is the total exposed population impacted by the annual 
number of landslides triggered by extreme precipitation:

where PExp is the population exposure to landslides and very 
high, high, moderate, and low represent the landslide sus-
ceptibility classes.

As the exposed populations obtained above are grid 
results (a combination of grids exceeding extreme precipi-
tation thresholds and grids with very high, high, and moder-
ate susceptibility to landslides), the exposed populations at 
the grid scale need to be summed to the national scale. The 
annual average population vulnerability to landslides on a 
national scale was calculated using the landslide casualty 
data from 2000–2018 in the global landslide database (the 
catastrophic landslide events north of 60°N were excluded to 
be consistent with the extent of population exposure to land-
slides) and Eq. 5. The spatial resolutions of the population 
data in the Landscan and SSP2 are 1 km and 5 km, respec-
tively, and the SSP2 scenario population was resampled to 
1 km using the average distribution method in Arcgis10.6 in 
accordance with the proximity principle:

where Vul is the landslides vulnerability on a national scale, 
and K is the casualties caused by landslides on the same 
scale.

2.2.4 � Casualty Risk Assessment

According to Eq. 6, the risk of future casualties from land-
slides under climate change scenarios can be realized. It should 
be emphasized that the daily precipitation data for 13 GCMs 
under the RCP4.5 scenario and projected future population 
data under the SSP2 scenario deviate from actual future pre-
cipitation and population data, thus the assessed future land-
slide casualty risk deviates from the actual future scenario. To 
reduce this bias, the collected casualty data for 96 countries 
during 2000–2018 were used to revise the average annual 
casualty risk to landslides during the same period under the 
SSP2-4.5 scenario on a national scale. Then, the revised value 
in different countries was used to revise the landslide casualty 

(4)
PExp = Very high × 1 + high × 0.3 +moderate × 0.1 + low × 0

(5)Vul = K∕PExp
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risk during the 1971–2000, 2031–2060, and 2066–2095 peri-
ods under the SSP2-4.5 scenario:

where KFut is the future landslide casualties under the SSP2-
4.5 scenario on a national scale, and PFut-Exp is the future 
population exposure to landslides.

3 � Results

Using the above data and methods, the study obtained the 
spatial distribution of global landslide susceptibility, land-
slide population exposure and vulnerability, changes in land-
slide frequency due to extreme precipitation under the climate 
change RCP4.5 scenario, and prediction of landslide casualty 
risk under the SSP2-4.5 scenario.

3.1 � Global Landslide Susceptibility

The results of the logistic regression model are shown in 
Eq. 6. The validation results of the logistic regression model 
are shown in Table 4. Bold text indicates landslides and non-
landslides that were correctly simulated by the logistic regres-
sion model. In the 70% training set, the percentage of correct 
predictions for landslides was 69.2%, in the 30% validation 
set, the percentage of correct predictions was 72.8% and the 
area under the ROC curve (AUC) value of the model was 0.71, 
and the value of each influencing factor passed the significance 
test (p < 0.05). The accuracy of the logistic regression model 
was reasonable:

where P is the probability of landslides, and S, L, VC, 
and SM represent the landslide explanatory factors of 
slope, lithology, vegetation cover index, and soil moisture, 
respectively.

The factors influencing landslide susceptibility were 
brought into Eq. 6 to obtain global landslide susceptibility. 
Based on the principle of logistic regression models (where 

(6)KFut = Vul × PFut−Exp

(6)
P =

Exp(−0.323 + 0.516 ∗ S + 0.035 ∗ L − 0.428 ∗ VC + 0.164 ∗ SM)

1 + Exp(−0.323 + 0.516 ∗ S + 0.035 ∗ L − 0.428 ∗ VC + 0.164 ∗ SM)

landslides are likely to occur when the probability value is 
> 0.5), and using natural breaks in Arcgis10.6 to classify 
landslide susceptibility, the results identify the four levels 
with segmentation points of 0.5, 0.66, and 0.79 to predict the 
occurrence of landslides. As shown in Fig. 3 (the grid size is 
1 km × 1 km), areas with very high landslide susceptibility 
are mainly distributed in the Cordillera in North America 
and South America, the Alps and Scandinavia in Europe, 
and the Himalayas, the northern Mongolian plateau, and the 
Malay Archipelago in Asia.

3.2 � Global Landslide Population Exposure 
and Vulnerability

Figure 4 shows the average annual population exposure 
and vulnerability to landslides on a national scale from 
2000–2018. The population exposure to landslides is 
mainly distributed in Mexico in Central America, and 
Pakistan, India, China, Indonesia, and Japan in Asia. 
Among the 96 countries considered, 24% had a land-
slide vulnerability of over 1 casualty per million people, 
which means one casualty for every one million exposure 
population to landslides, and 47% of the countries had a 
landslide vulnerability between 0.1 and 1 ppm. The top 
10 countries with the highest annual average vulnerabil-
ity to landslides, as measured by casualties per million 
people, are Côte d’Ivoire (18.4), Rwanda (6.8), Uganda 
(5.6), Burundi (5.2), Haiti (5), Brazil (4.2), Jamaica (3.2), 
the Philippines (3), Turkey (2.8), and China (2.4). For the 
average annual casualties from landslides collected from 
2000–2018, the 10 highest countries were China, India, 
the Philippines, Indonesia, Turkey, Rwanda, Afghanistan, 
Brazil, Nepal, and Colombia, all of which had 120 or more 
casualties. Some of these countries have a wide distribu-
tion of mountainous areas (China, India, Nepal, Turkey), 
or are affected by extreme precipitation (Indonesia, the 
Philippines, Brazil), causing the average annual frequency 
and casualty rate of landslides to be high.

Table 4   Modeling results of the logistic regression for landslide susceptibility

Modeling (70%) Validation (30%)

Projection of land-
slides

Percent correct Projection of land-
slides

Percent correct

Yes No Yes No

Actual landslides Yes 4298 1913 69.2% Actual landslides Yes 1939 723 72.8%
No 1849 4241 69.6% No 803 1807 69.2%



759International Journal of Disaster Risk Science

1 3

3.3 � Change in the Frequency of Landslides 
Triggered by Extreme Precipitation 
under the Climate Change RCP4.5 Scenario

Figure 5 shows the change in the frequency of extreme pre-
cipitation-triggered landslides in 2031–2060 and 2066–2095 
compared to 1971–2000. Under the climate change RCP4.5 
scenario, the increase in extreme precipitation in the future 
is projected to trigger more landslides, and the increase is 

projected to be more significant in the late twenty-first cen-
tury than in the mid-twenty-first century. Compared to the 
1971–2000 period the average annual frequency of land-
slides increases by 7% and 10% during the 2031–2060 and 
2066–2095 periods, respectively. Asia and Africa have the 
most significant change in rainfall-induced landslides, with 
13% and 20% increases, respectively, in 2066–2095. The 
regions where the average annual frequency of landslides 
will increase most significantly are the northwestern side 

Table 5   Top 20 countries 
with high landslide population 
risk during the 1971–2000, 
2031–2060, and 2066–2095 
periods and change from the 
1971–2000 level under the 
SSP2-4.5 scenario

Country 1971–2000 2031–2060 2066–2095

Casualties Casualties Change (%) Casualties Change (%)

China 1070 1670 56 1160 8
India 360 760 111 690 92
Turkey 220 450 104 420 91
Philippines 170 470 176 690 265
Indonesia 160 380 137 370 131
Afghanistan 150 630 320 880 487
Brazil 140 200 43 230 64
Rwanda 130 520 300 790 508
Nepal 100 260 160 290 190
Guatemala 70 150 114 180 157
Colombia 60 140 133 150 150
Myanmar 50 120 140 110 10
Pakistan 50 110 120 80 60
Ethiopia 40 100 150 130 225
Peru 40 60 50 50 25
Uganda 30 140 367 180 500
Bangladesh 20 120 500 130 550
Burundi 20 60 200 50 150
Vietnam 10 60 500 90 800
Yemen 10 50 400 90 800
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Fig. 3   Spatial distribution of global landslide susceptibility
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of the Andes, the Hengduan Mountains in China, and the 
Malay Archipelago, which will have serious implications 
for future population risk in these regions.

3.4 � Projection of Landslide Casualty Risk 
under the SSP2‑4.5 Scenario

The results showed that the average annual casualty risk 
caused by landslides was projected to increase from 3240 
during the 1971–2000 period to 7670 and 8380 during the 
2031–2060 and 2066–2095 periods, and the growth rates 
will be 140% and 160%, respectively, under the SSP2-4.5 
scenario. The top 20 countries with high landslide popula-
tion risks (cumulatively account for more than 85% of the 
risk in the 96 countries) are shown in Table 5. The aver-
age annual casualties due to landslides in Asian countries 
are consistently high, particularly the estimated number of 
landslide casualties in China (1670), India (760), Afghani-
stan (630), the Philippines (470), and Indonesia (380) during 

the 2031–2060 period under the SSP2-4.5 scenario. Com-
pared to the 1971–2000 period, Asia has the most significant 
increase in annual average casualties of landslides in the 
mid- and late twenty-first century. Among them, the average 
annual casualties in the above countries increased by more 
than 200 during the 2031–2060 period under the SSP2-4.5 
scenario. The reason is that changes in the future population 
scale play an important role, with China, India, and Indone-
sia projected to be the most populous countries, which are 
also located in high-risk landslide areas, causing the casu-
alties of landslides to be the most significant. Compared to 
1971–2000, Bangladesh, Vietnam, and Yemen show higher 
change in landslide casualties, and the numbers in all of 
these countries exceed 500% during the 2066–2095 period, 
so these countries belong to potentially high casualty risk 
countries. In the future, countries with high casualties and 
high growth rates should further strengthen their disaster 
warning and management capabilities to reduce the popula-
tion losses resulting from landslides.

Fig. 4   Average annual population exposure and vulnerability to landslides on a national scale, 2000–2018 (country name abbreviations used the 
International Standards Organization (ISO) 3-digit alphabetic codes)
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Figure  6 shows the impact of landslide susceptibil-
ity, population exposure, and vulnerability on the top 20 
countries with high casualty risk to landslides during the 

2066–2095 period under the SSP2-4.5 scenario. Each impact 
factor (landslide susceptibility, population exposure, and 
vulnerability) value for the 20 countries was ranked, with 

Fig. 5   Changes in the average annual frequency of extreme precipitation-triggered landslides under the RCP4.5 scenario (ensemble average of 
multiple models) in 2031–2060 and 2066–2095 compared to 1971–2000

Fig. 6   The impact of landslide susceptibility, exposed population, and vulnerability on landslide casualty risk during the 2066–2095 period 
under the SSP2-4.5 scenario
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the top 1–6 countries classified as having a high impact, 
those ranked 7–13 as having a medium impact, and those 
ranked 14–20 as having a low impact. High susceptibility 
to landslides has a significant impact on casualties in Nepal, 
Guatemala, Myanmar, and Peru, and all of these countries 
have a probability of landslide susceptibility exceeding 
0.75. The high casualty risk of future landslides in China, 
Afghanistan, and India is mainly due to the high popula-
tion exposure to landslides, and in all of these countries the 
total number of repeatedly exposed population exceeds 970 
million per year. Countries such as Uganda, Turkey, and 
Burundi are more likely to be affected by high vulnerabil-
ity to landslide disasters (more than 2.8 casualties per mil-
lion people). The high casualty risk in Brazil is affected by 
both a highly exposed population and a high vulnerability 
to landslides. The Philippines and Rwanda are affected by 
high landslide vulnerability, high population exposure, and 
high vulnerability to landslides.

4 � Discussion

In the reports published by the IPCC Working Group II in 
2007 (Parry et al. 2007) and 2014 (Barros et al. 2014), the 
issues of local and regional landslides were specifically men-
tioned, but no overview of global landslides was included. 
This study incorporates extreme precipitation under climate 
change scenarios into a landslide risk assessment model, 
enabling a quantitative assessment of future global casualty 
risk. This section discusses the uncertainty, the contribution 
of our study compared to previous studies, and the advan-
tages/disadvantages of the used study approaches.

4.1 � Uncertainty Analysis

Based on the study of historical short-period landslide 
susceptibility, this study projected the change in the 
annual frequency of landslides triggered by extreme pre-
cipitation during the 2031–2060 and 2066–2095 periods 
under the RCP4.5 scenario compared with that during 
the 1971–2000 period. The daily precipitation data from 
the 13 GCMs from different institutions with simulated 
variations in extreme precipitation are projected to have 
an increasing trend in the future, for which the most sig-
nificant increase is near the equator (Malay Archipelago) 
and in southern China. According to Sooraj et al. (2015), 
the Asian summer monsoon will have a more intense 
impact on the Malay Archipelago and southern China in 
the future, leading to an increase in precipitation. As a 
result, the predicted frequency of landslides triggered by 
extreme precipitation also has an increasing trend. How-
ever, due to uncertainties in climate model precipitation 
data (imperfections in climate models, uncertainties in 
emission scenarios, differences in downscaling methods), 
the results of global climate simulations conducted by 
different institutions vary (Crozier 2010; Melchiorre and 
Frattini 2012; Villani et al. 2015). As shown in Table 6, 
compared with the 1971–2000 period, the 2066–2095 
period demonstrates changes in landslide frequency rang-
ing from 5% (CanESM2) to 15% (ACCESS1-0), the bold 
text indicates the ensemble average changes in landslide 
frequency of the 13 models. Figure 7 shows the consist-
ency of change in the modeling results of annual average 
landslide frequency triggered by extreme precipitation 
during the 2066–2095 period compared with that during 

Fig. 7   13 General Circulation Model (GCM) consistency of change in annual average landslide frequency during the 2066–2095 period com-
pared with that during the 1971–2000 period under the RCP4.5 scenario
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the 1971–2000 period under the RCP4.5 scenario. The 13 
models showed a reasonable degree of consistency in their 
projected increases and decreases—in Fig. 7, regions with 
more than 10 of these models showing an increase in the 
projected values occupy the largest area, and are mainly 
distributed in northwestern North America and northwest-
ern South America, the Himalayas, and northern Asia; 
regions with more than 8 models showing an increase in 
the projected values have a much smaller area, and are 
mainly distributed in northeastern North America and 
Europe; while regions with more than 8 models showing 
a decrease are small in area, and are mainly distributed in 
Central America and southwestern South America, and 
regions with roughly equal number of models showing 
an increase and a decrease (“uncertain”) spread broadly. 
Table 6 and Fig. 7 illustrate that using only a single GCM 
to project the future casualties caused by landslides under 
the climate change scenario results in some uncertainties. 
The ensemble average of the projection results of multiple 
models can be used to reduce the uncertainty caused by a 
single GCM to a certain extent.

The accuracy of hourly precipitation-induced landslides 
will be higher than that of daily precipitation—for example, 
when persistent heavy precipitation occurs, more than one 
landslide event may occur at the same landslide site in a day 
(Ma et al. 2023), thus using daily precipitation may under-
estimate the frequency of extreme precipitation-induced 
landslides. However, for the current predicted precipitation 
from general circulation models, the spatial resolution of 
hourly precipitation is coarse, usually 50 km, and cannot 
be applied to the analysis of landslides induced by extreme 
precipitation globally. Therefore, the daily precipitation data 
from the GDDP provided by NASA were used in this study. 
The analysis of future landslide frequency change compared 
to the historical period can reduce some errors.

The casualty rate for landslides was calculated based on 
historical landslide casualty data, which is the main basis for 
projecting future population risks to landslides (Emberson 
et al. 2020). The existing global landslide databases (Petley 

2012; Lin et al. 2017; Farahmand and AghaKouchak 2013) 
are based on major landslide events, and the records of small, 
noncatastrophic landslide events are generally lacking; in 
addition, there is a lack of casualty records of landslides 
triggered by earthquakes and tropical cyclones, for example, 
the 8.0 magnitude Wenchuan Earthquake in China in 2008, 
which triggered landslides that caused more than 10,000 cas-
ualties, and the 1998 landslide triggered by Hurricane Mitch 
at the Casita volcano in Nicaragua, which killed more than 
2500 people—this inevitably leads to underestimations of 
the casualty rate for landslides. More work needs to be done 
in the future to improve the quantity, quality, and integrity 
of global landslide databases (Van Den Eeckhaut and Hervás 
2012). Therefore, the relative change of future landslide cas-
ualties obtained in this study is more representative. Due to 
the uncertainties inherent in multiple climate models, there 
is also some variation in the change of casualty risk based 
on different models (Fig. 8). In the 13 GCMs, compared 
to 1971–2000, the ACCESS1-0 model simulated a higher 
increase rate in casualties of extreme rainfall-induced land-
slides, and the CanESM2 model simulated a lower increase 
rate during 2066–2095 under the SSP2-4.5 scenario. Within 
the 95% confidence interval, Afghanistan, Nepal, Pakistan, 
and Uganda have the highest confidence levels (Fig. 8). This 
means that the 13 GCMs simulated casualty risk for these 
countries with less variability, while other countries have 
larger confidence intervals, exceeding the allowable margin 
of error, showing larger differences in the assessed results 
by different models.

4.2 � Contribution and Limitations of this Study

In the modeled global landslide susceptibility, it was found 
that the very high landslide susceptibility areas are mainly 
distributed in the Cordillera in North America and South 
America, the Alps and Scandinavia in Europe, and the 
Himalayas, the northern Mongolian plateau, and the Malay 
Archipelago in Asia. This distribution is generally consist-
ent with the spatial distribution of global high landslide 

Table 6   Change in landslide 
frequency during the 2031–
2060 and 2066–2095 periods 
compared with that during the 
1971–2000 period under the 
RCP4.5 scenario (%)

General circulation model (GCM) 2031–2060 2066–2095 General circula-
tion model 
(GCM)

2031–2060 2066–2095

Ensemble average of multimodel 7 10 CFDL-ESM2G 6 8
ACCESS1-0 12 15 INMCM4 2 7
BCC-CSM1-1 5 9 IPSL-CM5A-LR 12 14
CanESM2 5 5 MIROC5 14 14
CCSM4 4 7 MPI-ESM-MR 5 6
CESM1-BGC 6 12 MRI-CGCM3 5 6
CNRM-CM5 4 7 NorESM1-M 11 15
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susceptibility areas obtained by Nadim et al. (2006), Hong 
et al. (2007), Farahmand and AghaKouchak (2013), Stanley 
and Kirschbaum (2017), and Lin et al. (2017). The progress 
of this study was that in the construction of the landslide 
susceptibility model, the landslide nonoccurrence sites were 
generated from the global non-landslide susceptibility map 
of Jia et al. (2021), and this study used the World Geologi-
cal Hazard Inventory provided by ADREM of BNU and the 
global landslide inventory provided by NASA—the two larg-
est global inventories of landslides (Lin et al. 2017) for the 
modeling and validation of global landslide susceptibility, 
which further improves the accuracy of the model.

Based on the examination of global landslide susceptibil-
ity distribution, this study used extreme precipitation to ana-
lyze landslide frequencies (Kirschbaum and Stanley2018). 
Compared with previous studies, this study coupled 13 GCM 
precipitation datasets of the CMIP5 under the climate change 
RCP4.5 scenario to obtain the spatial and temporal distribu-
tion of the global landslide frequency induced by extreme 
rainfall in the future. Furthermore, this study obtained the 
frequency of future landslides induced by extreme rainfall 
globally compared to the historical period, which is ben-
eficial to the countries with high landslide occurrences 
to reduce the landslide hazards in the future. The occur-
rence of landslides poses serious threats to local popula-
tions. Published studies on landslide impacts on populations 
have focused on exposed populations (Gariano et al. 2017; 
Emberson et al. 2020) or at-risk population assessments at 
regional scales (Rong et al. 2023). This study further incor-
porates future population data from the SSP2 scenario into 
the landslide population risk assessment model to achieve 
future landslide casualty assessment at a global scale.

The projection of casualty risk of landslides was based 
on daily precipitation data under the climate change RCP4.5 

scenario and population data under the SSP2 scenario, both 
of which have some inherent uncertainties. Although multi-
GCMs were used to reduce these uncertainties and nation-
wide casualty data were used to reduce the biases in the 
population risk assessment results, due to the relatively local 
impacts of landslides and the lack of a global monitoring 
network for landslides similar to those that exist for earth-
quakes and typhoons, landslide databases are often difficult 
to obtain. This scarcity results in limited global-scale assess-
ments of casualty risk of landslides. In addition, this study 
was based on a constant vulnerability index to assess future 
casualties of landslides, but with the socioeconomic devel-
opment, many countries have better landslide early warning 
equipment, knowledge of disaster avoidance, and medical 
aid equipment, such as some European countries located in 
and around the Alps (Italy, France, and Germany), which 
will reduce the population vulnerability to landslides to a 
certain extent (Pecoraro et al. 2019). Although it is still dif-
ficult to quantify future landslide population vulnerability, 
more work is needed to anticipate the impact of economic 
and social development on landslide population vulnerabil-
ity. This study examined trend in a statistical sense, with 
the aim of incorporating precipitation data under climate 
change scenarios into the landslide risk assessment model to 
project the trends of future extreme precipitation-triggered 
landslide casualty risk on a global scale. The latest CMIP6 
general circulation model was not used in this study due to 
its relatively low resolution (0.5 degrees) compared to the 
one used in this study (0.25 degrees). In future studies, we 
will introduce more new models to reduce the uncertainty. 
Accurate predictions of populations at risk of landslide dis-
asters also require more scientific spatial downscaling of 
climate model data in small-scale regions and the collection 
of more complete landslide casualty data.

Fig. 8   Variability of projected 
change in the casualties of 
landslides at the end of the 
twenty-first century under the 
SSP2-4.5 scenario compared 
to 1971–2000 for the top 20 
countries with high casualty 
risk based on the 13 General 
Circulation Models (GCMs)
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5 � Conclusion

In this study, based on the spatial distribution of global land-
slide susceptibility, an input module including precipitation 
data from multi-GCMs projected under the RCP4.5 sce-
nario was added to the landslide population risk assessment 
model. Based on the global landslide databases, this study 
calculated the annual average landslide casualty rate from 
2000–2018 on a national scale. On this basis, it also pro-
jected the risks of future populations from landslides using 
multi-GCMs under the SSP2-4.5 scenario. The main results 
are as follows:

(1)	 Under the RCP4.5 climate change scenario, the change 
in the annual frequency of landslides triggered by 
extreme precipitation is predicted to increase globally. 
Compared to the 1971–2000 period, the average annual 
frequency of landslide hazards increases by 7% and 
10% during the 2031–2060 and 2066–2095 periods, 
respectively. Based on the future population data from 
the SSP2 scenario, the average annual exposed popu-
lation to landslides increases by 90% and 80% during 
the 2031–2060 and 2066–2095 periods, respectively, 
compared to the 1971–2000 period.

(2)	 Due to the impacts of extreme precipitation under the 
climate change scenario, the global casualty risk of 
landslides is expected to present a growing trend. The 
average annual casualties caused by global landslides 
were projected to increase from 3240 during the 1971–
2000 period to 7670 and 8380 during the 2031–2060 
and 2066–2095 periods, with growth rates of 140% and 
160% respectively, under the SSP2-4.5 scenario.

(3)	 The top 10 countries with high casualty risks to land-
slide disasters are China, Afghanistan, India, the Philip-
pines, Indonesia, Rwanda, Turkey, Nepal, Guatemala, 
and Brazil, and the average annual casualties for each 
of these countries are over 220 during the 2066–2095 
period under the SSP2-4.5 scenario. The high sus-
ceptibility to landslides has a significant impact on 
casualties in Nepal and Guatemala. Countries such as 
China, Afghanistan, and India are primarily affected by 
high population exposure to future landslide disasters. 
The high casualty risk in Turkey is mainly influenced 
by high vulnerability to landslide disasters. The high 
casualty risk in Rwanda, the Philippines and Brazil is 
affected by both a highly exposed population and a high 
vulnerability to landslides.
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