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Abstract
With growing regional economic integration, transportation systems have become critical to regional development and eco-
nomic vitality but vulnerable to disasters. However, the regional economic ripple effect of a disaster is difficult to quantify 
accurately, especially considering the cumulated influence of traffic disruptions. This study explored integrating transportation 
system analysis with economic modeling to capture the regional economic ripple effect. A state-of-the-art spatial computable 
general equilibrium model is leveraged to simulate the operation of the economic system, and the marginal rate of transport 
cost is introduced to reflect traffic network damage post-disaster. The model is applied to the 50-year return period flood in 
2020 in Hubei Province, China. The results show the following. First, when traffic disruption costs are considered, the total 
output loss of non-affected areas is 1.81 times than before, and non-negligible losses reach relatively remote zones of the 
country, such as the Northwest Comprehensive Economic Zone (36% of total ripple effects). Second, traffic disruptions have a 
significant hindering effect on regional trade activities, especially in the regional intermediate input—about three times more 
than before. The industries most sensitive to traffic disruptions were transportation, storage, and postal service (5 times), and 
processing and assembly manufacturing (4.4 times). Third, the longer the distance, the stronger traffic disruptions’ impact 
on interregional intermediate inputs. Thus, increasing investment in transportation infrastructure significantly contributes 
to mitigating disaster ripple effects and accelerating the process of industrial recovery in affected areas.

Keywords  Economic ripple effect · Floods · Spatial computable general equilibrium model · Supply chain damage · Traffic 
disruption

1  Introduction

As regional economic linkages strengthen, disaster impacts 
are no longer limited to areas directly affected by event 
shocks (Ham et  al. 2005). They spread to industries in 

non-affected areas via interregional industrial linkages and 
disruption of transportation infrastructure (Tirasirichai and 
Enke 2007), resulting in supply bottlenecks and regional rip-
ple effects that are wider in scope and longer in time (Okuda 
and Kawasaki 2022) but more difficult to evaluate accurately. 
Assessing disaster-related economic losses as comprehen-
sively as possible is essential for analyzing disaster risks, 
identifying vulnerable regional industries, and developing 
post-disaster industrial recovery strategies (Pörtner et al. 
2022).

The input-output (IO) model has been widely used to ana-
lyze regional economic ripple effects (Galbusera and Gian-
nopoulos 2018; Yang, Wang, et al. 2022; Jiang et al. 2023), 
but also criticized for lacking economic resilience (Rose 
2004; Miller and Blair 2009) and supply-side price feedback 
(Bachmann et al. 2014). Scholars have tried to address these 
drawbacks in recent studies by combining the model with 
computable general equilibrium (CGE) characteristics, such 
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as the adaptive regional IO model (ARIO), which considers 
inventories for additional production system flexibility (Hal-
legatte 2008, 2014; Wu et al. 2012); multiregional impact 
assessment model (MRIA), which considers inefficient pro-
duction technologies (Koks and Thissen 2016); hypothetical 
extraction method (HEM), which supposes that a certain 
industry is no longer operational (Dietzenbacher et al. 2019; 
Xia et al. 2019); and random-utility-based multi-regional 
IO model (RUBMRIO), which increases elastic trade coef-
ficients considering transportation service level of regions 
(Zhao and Kockelman 2004; Bachmann et al. 2014). These 
additional considerations have improved the economic sys-
tem’s resilience and offset part of disasters’ negative effects; 
nevertheless, high uncertainties remain (Wouter Botzen et al. 
2019).

The CGE model, which incorporates the price mecha-
nism and the substitution relationship of commodities, is 
nonlinear compared to the IO model and is considered a 
flexible approach in regional economic modeling (Kajitani 
and Tatano 2018; Zhou and Chen 2021). Rose and Guha 
(2004) emphasized the importance of applying the CGE 
model to disaster loss assessment. Although CGE mod-
els are generally considered more suitable for long-term 
events, in applying the model to the 2011 Great East Japan 
Earthquake, Kajitani and Tatano (2018) found that short-
term disasters (that is, those lasting several months) can be 
successfully studied by setting low elasticity of substitution 
and strict macro closure. Further, because more attention 
has been paid to risk transmission between regions, spa-
tial computable general equilibrium (SCGE) models have 
been gradually developed and applied (Carrera et al. 2015). 
Hitherto, the SCGE model has been widely adopted for the 
industrial economic analysis of different disaster types, such 
as earthquakes (Tatano and Tsuchiya 2008; Kajitani and 
Tatano 2018; Shibusawa 2020), floods (Carrera et al. 2015; 
Haddad and Teixeira 2015), storm surges (Cui et al. 2018), 
and pandemics (Rose et al. 2021). Currently, researchers 
are conducting state-of-the-art SCGE analysis of disasters’ 
regional economic ripple effects. Additionally, since the 
CGE model strictly follows microeconomic theory to set 
agent rules, it can better express interaction behaviors among 
agents (Robson et al. 2018), facilitating the model’s exten-
sion; for example, it can be used to consider intertemporal 
dynamics to study post-disaster recovery (Xie et al. 2018; 
Walmsley et al. 2022) and coupled with traffic models to 
study traffic disruption impact (Koike et al. 2012; Tatano 
and Tsuchiya 2022).

Economic linkages between different regions depend on 
the terms of trade communication undertaken by the trans-
port network (Candelieri et al. 2019). Particularly, transpor-
tation systems are highly susceptible to most disaster shocks 
and have difficulty recovering (Wen et al. 2014). Regarding 
post-disaster transport disruption, some studies have simply 

regarded transportation as the damaged sector and intro-
duced its direct losses into models as the shock input (Yu 
et al. 2013; Tan et al. 2019), while others have tried to inte-
grate transportation behavior into SCGE models (Tatano and 
Tsuchiya 2008; Koike et al. 2015). The latter is more con-
sistent with how a real economic system operates, but incor-
porating transportation into SCGE models still faces some 
challenges (Tavasszy et al. 2011; Van Truong and Shimizu 
2017). The most common modeling approach is incorpo-
rating transportation costs into SCGE models, which falls 
into four categories: the iceberg assumption (quantity-based 
approach), marginal transport cost (price-based approach), 
accessibility index, and transport capital stocks (Shahrokhi 
Shahraki and Bachmann 2018). Regarding model applica-
tion, studies have examined the integration of transport and 
CGE models in road congestion (Anas 2020), infrastructure 
investment (Hansen and Johansen 2017), and transport plan-
ning (Robson et al. 2018). However, in disaster assessment 
and management, the integration of traffic disruption and 
CGE models is still being explored, and the iceberg assump-
tion and marginal transport cost methods are most common 
(Shahrokhi Shahraki and Bachmann 2018). The iceberg 
assumption refers to the melting that occurs as an iceberg 
moves and assumes the quantity of transported goods that 
“melts” during transportation as a transport cost (Samuel-
son 1952; Tatano and Tsuchiya 2008; Bröcker et al. 2010). 
Furthermore, some scholars have expressed transportation 
cost as the marginal cost added to goods (Ueda et al. 2001; 
Koike et al. 2012; Koike et al. 2015), similar to tariffs. To 
determine the transportation marginal cost rate, some stud-
ies take traffic distance as the main factor (Horridge 2012; 
Rokicki et al. 2021), while others consider more complex 
modeling methods. For instance, Koike et al. (2015) com-
prehensively considered travel time, time value, and travel 
cost to calculate increased post-disaster transportation costs. 
Tatano and Tsuchiya (2008) included both freight and pas-
senger transport, using transit time and monetary value to 
adjust transport costs after infrastructure damage. Tirasiri-
chai (2007) and Enke et al. (2008) estimated increased travel 
cost by combining information about damaged highway 
bridges with that of travel time and travel distance values. 
Wei et al. (2022) calculated freight costs based on vehicle 
operating costs, driver wages, and benefits and estimated 
time costs based on increasing commuting time, simulating 
the reduction in labor endowment efficiency.

In model coupling, choosing the correct transportation 
cost specification is critical but challenging (Van Truong and 
Shimizu 2017). Accurately obtaining data for each indus-
try constitutes an enormous workload, and data availabil-
ity limitations must be considered. However, for the CGE 
model, this problem seems to be resolved: all model prices 
are simulated and compared to the benchmark price (Hosoe 
et al. 2010), and agent behaviors are based on utility and 
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production functions to make an optimal decision based on 
relative prices (Robson et al. 2018). Thus, accurately cal-
culating actual transportation costs of various industries, 
which is difficult, is unnecessary. Further, most correlated 
costs increase with transportation distance, such as commu-
nication, service, fuel, freight volume, and inventory costs 
(Haddad and Hewings 2004; Bröcker et al. 2010; Rokicki 
et al. 2021). Additionally, setting new traffic times, time val-
ues, and other factors will also have redundant effects. The 
CGE model contains much exogenous substitution param-
eters, which causes certain uncertainties (Hosoe et al. 2010). 
To avoid more uncertain factors, fewer exogenous variables 
should be chosen. Using transportation distance as the 
primary consideration can avoid any unnecessary double-
counting impact and industry heterogeneity issues.

Considering the above, we constructed an SCGE model 
in the context of traffic network disruptions following a dis-
aster, which is a major innovation for the comprehensive 
assessment of post-disaster economic losses. Additionally, 
we investigated industries that are more sensitive to traffic 
disruption factors to provide a theoretical basis for enter-
prise decision makers to increase inventory and find neces-
sary backup suppliers. The rest of the article is organized as 
follows. Section 2 introduces a traffic disruption parameter 
to reflect disaster-related disruption of transportation infra-
structure. Section 3 presents modeling issues associated with 
the disaster setting and transportation disruption costs, and 

applies the model to a case study in Hubei, China. Section 4 
discusses the impact of the marginal rate of transport costs 
on regional intermediate input. Finally, in Sect. 5, the find-
ings are evaluated, and conclusions are drawn.

2 � Spatial Computable General Equilibrium 
(SCGE) Model Considering Traffic 
Disruption Costs

Based on the single-region CGE model, the SCGE model 
adds an interregional trade link module to reflect real-world 
economic exchanges (Fig. 1). However, after a disaster 
shock, the disruption of transportation infrastructure often 
hinders economic exchanges between regions (the line 
marked with a red cross in Fig. 1), resulting in disaster rip-
ple effects. The main assumptions in this model are:

(1)	 Private firms produce goods from intermediate inputs 
(from all regions and different industries) and factor 
inputs (capital and labor), following profit maximiza-
tion under Leontief production techniques.

(2)	 The government, organizations, residents, and other 
consumers are combined and collectively called the 
“final consumer,” following utility maximization sub-
ject to budget constraints.

Fig. 1   Structure of the social economic system
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(3)	 The model mainly analyzes highway transportation 
mode without considering railways, waterways, and 
other transportation.

(4)	 The economic zone is taken as the smallest unit, and 
only traffic disruption between regions is considered, 
disregarding the impact of intra-regional traffic disrup-
tion.

To incorporate traffic disruption impact into the SCGE 
model, we add post-disaster marginal transportation cost 
to commodity prices. Regarding the specific transmission 
mechanism, due to transportation infrastructure interrup-
tion, the additional transportation cost rate increases post-
disaster, resulting in the increase of commodity prices in 
the place of production during the transportation process 
and correspondingly higher commodity prices in places of 
consumption. This price increase means that the share of 
interregional commodity trade will change (in the traditional 
SCGE model, the share is fixed and calculated based on 
the IO table (Hosoe et al. 2010)), which, in turn, affects 
the supply network of interregional industrial intermediate 
inputs. Comparing the model equilibrium results of whether 
commodity prices increase the cost rate of traffic disruption, 
we can quantitatively evaluate the regional economic ripple 
effect. Additionally, our SCGE model adopts strict short-
term closure in the market equilibrium module, consider-
ing the post-disaster characteristics of labor price rigidity, 
underemployment, and capital shortage (Kajitani and Tatano 
2018).

2.1 � Production Module

The production module describes the production behavior of 
firms. Each firm maximizes its profit and produces the final 
commodity in three stages.

Stage 1: Intermediate input composite goods are com-
pounded from the intermediate inputs from various 
regions using constant elasticity of substitution (CES) 
production technology to consider interregional substi-
tutions.
Stage 2: The capital and labor factors form a composite 
factor using the Cobb-Douglas production function.
Stage 3: Composite elements and intermediate input com-
posite goods are combined to generate the final product 
using Leontief production technology.

[Stage 1]

(1)PTIs
ij
⋅ TIs

ij
= min

∑

r∈S

(1 + trs)Pr
i
⋅ xrs

ij
,

where xrs
ij

 is the intermediate input i from region r to indus-
trial sector j; Pr

i
 is the supply price of commodity i in region 

r; trs is the transportation cost rate from region r to s, which 
will increase due to the disruption of transport infrastructure 
under the disaster shock scenario;TIs

ij
 is the total regional 

intermediate input composite goods under the Armington 
assumption (Armington 1969); PTIs

ij
 is the unit cost of the 

regional intermediate input of composite goods; Fig. 2 
shows the process of commodity price changes after the dis-
aster; �i is a scale parameter of the CES function; � rs

ij
 is a 

share parameter of the CES function; and �i is an elasticity 
of substitution parameter. By solving Eqs. 1 and 2, PTIs

ij
 and 

xrs
ij

 can be obtained as follows:

[Stage 2]

where r, s are region suffixes ( s, r ∈ S, S = {1, 2,⋯ ,m} ); i, j 
are the industrial sector suffixes ( i, j ∈ N, N = {1, 2,⋯ , n} ); 
ls
j
 is the labor input of sector j in region s; ks

j
 is the capital 

input of sector j in region s; ws
j
 is the wage of labor; rs

j
 is 

capital rent; Vs
j
 is the value-added; PVs

j
 is the unit cost of the 

composite factor; �s
j
 is the share parameter; and �s

j
 is the 

scale parameter. Then, ls
j
 , ks

j
 , and PVs

j
 can be obtained as 

follows:

(2)s.t. TIs
ij
= �s

ij

[

∑

r∈S

�rs
ij
⋅ xrs

�i−1

�i

ij

]

�i

�i−1

,

(3)PTIs
ij
=

1

�s
ij

[

∑

r∈S

�rs
�i

ij
⋅ (1 + trs)1−�i ⋅ Pr1−�i

i

]
1

1−�i

,

(4)xrs
ij
= �s

�i−1

ij

[

�rs
ij
⋅ PTIs

ij

(1 + trs) ⋅ Pr
i

]�i

⋅ TIs
ij
,

(5)PVs
j
⋅ Vs

j
= min

ls
j
,ks
j

(ws
j
⋅ ls

j
+ rs

j
⋅ ks

j
),

(6)s.t.Vs
j
= �s

j
⋅ l

s�s
j

j
⋅ k

s1−�s
j

j
,

(7)ls
j
=

�s
j

ws
j

1

�s
j

(

ws
j

�s
j

)�s
j
(

rs
j

1 − �s
j

)1−�s
j

⋅ Vs
j
,

(8)ks
j
=

1 − �s
j

rs
j

1

�s
j

(

ws
j

�s
j

)�s
j
(

rs
j

1 − �s
j

)1−�s
j

⋅ Vs
j
,
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Fig. 2   Diagram of the spatial computable general equilibrium (SCGE) model: a Production process and commodity flows; b Key equations of 
SCGE model considering traffic disruption



493International Journal of Disaster Risk Science

1 3

[Stage 3]

where �s
j
 is the profit of firm j in region s; GOs

j
 is the total 

regional output of industry j in region s; PGOs
j
 is the supply 

price of GOs
j
 ; as

1j
,⋯ as

nj
 represent the IO coefficient of inter-

mediate inputs; and bvs
j
 is the production capacity rate. By 

solving Eqs. 10 and 11, TIs
ij
 , Vs

j
 , and PGOs

j
 are obtained as 

follows:

2.2 � International Trade Module

The international trade module describes the process of 
combining domestic sales, imported goods, and exported 
goods before the final consumption module and includes 
two stages.

Stage 1: Total regional output is divided into domestic 
sales and exports, using constant elasticity of transforma-
tion (CET) function.
Stage 2: The combination of imported goods and domes-
tic sales goods forms local comprehensive commodities, 
using the CES function.

[Stage 1]

Assume that a virtual firm maximizes its profits by opti-
mizing the volume of exports and domestic sales. In Eq. 15, 

(9)PVs
j
=

1

�s
j

(

ws
j

�s
j

)�s
j
(

rs
j

1 − �s
j

)1−�s
j

,

(10)

max imize
GOs

j
,Vs

j
,TIs

ij

�s
j
= PGOs

j
⋅ GOs

j
−

(

PVs
j
⋅ Vs

j
+
∑

i

PTIs
ij
⋅ TIs

ij

)

,

(11)s.t.GOs
j
= min

(

Vs
j

bvs
j

,
TIs

1j

as
1j

,
TIs

2j

as
2j

,⋯ ,
TIs

nj

as
nj

)

,

(12)TIs
ij
= as

ij
⋅ GOs

j
,

(13)Vs
j
= bvs

j
⋅ GOs

j
,

(14)PGOs
j
=
∑

i

as
ij
⋅ PTIs

ij
+ bvs

j
⋅ PVs

j
.

(15)

max imize
GOs

j
,Ds

j
,Es

j

�1s
j
= (PDs

j
⋅ Ds

j
+ PEs

j
⋅ Es

j
) − PGOs

j
⋅ GOs

j
,

(16)s.t.GOs
j
= �es

j
⋅

[

�ds
j
⋅ D

s
�j+1

�j

j
+ (1 − �ds

j
) ⋅ E

s
�j+1

�j

j

]

�j

�j+1

.

�1s
j
 is the profit of the virtual firm; Ds

j
 and Es

j
 are the respec-

tive volumes of domestic sales and exports of industry j in 
region s; and PDs

j
 and PEs

j
 are the prices of domestic sales 

and exports, respectively. In Eq. 16, �es
j
 is a scale parameter 

of the CET function; �ds
j
 is a share parameter; and �j is the 

elasticity of the transformation parameter. The optimal solu-
tion is:

[Stage 2]

Similar to Stage 1, in Eq. 20, �2s
j
 is the profit of the vir-

tual firm; Qs
j
 are the local composite commodities of industry 

j in region s, which are transported to various regions for 
intermediate inputs and final consumption; and PQs

j
 is the 

price of local composite commodities. In Eq. 21, �ms
j
 is a 

scale parameter of the CES function; �ms
j
 is a share param-

eter; and �mj is the elasticity of substitution. The optimal 
solution is:

(17)Ds
j
= �es

−�j−1

j

[

�ds
j
⋅ PGOs

j

PDs
j

]−�j

⋅ GOs
j
,

(18)Es
j
= �es

−�j−1

j

[

(1 − �ds
j
) ⋅ PGOs

j

PEs
j

]−�j

⋅ GOs
j
,

(19)

PGOs
j
=

1

�es
j

[

�ds
−�j

j
⋅ PDs

1+�j

j
+ (1 − �ds

j
)
−�j

⋅ PEs
1+�j

j

]
1

1+�j
,

(20)max imize
Qs

j
,Ms

j
,Ds

j

�2s
j
= PQs

j
⋅ Qs

j
− (PMs

j
⋅Ms

j
+ PDs

j
⋅ Ds

j
),

(21)

s.t.Qs
j
= �ms

j

[

�ms
j
⋅Ms

�mj−1

�mj

j
+ (1 − �ms

j
) ⋅ Ds

�mj−1

�mj

j

]

�mj

�mj−1

.

(22)Ms
j
= �ms

�mj−1

j

[

�ms
j
⋅ PQs

j

PMs
j

]�mj

⋅ Qs
j
,

(23)Ds
j
= �ms

�mj−1

j

[

(1 − �ms
j
) ⋅ PQs

j

PDs
j

]�mj

⋅ Qs
j
,

(24)

PQs
j
=

1

�ms
j

[

�ms
�mj

j
⋅ PMs

1−�mj

j
+ (1 − �ms

j
)
�mj

⋅ PDs
1−�mj

j

]
1

1−�mj
.
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2.3 � Consumption Module

The consumption module describes the final consumer’s 
consumption behavior. Each consumer can freely buy 
products under income constraints to achieve maximum 
utility, as follows:

where Us is the utility of the final consumer in region s; Zs
j
 

is the total demand of commodity j of the final consumer; �s
j
 

is the share parameter of commodities ( 
∑

j∈N �s
j
= 1 ); � is 

the elasticity of substitution parameter; PZs
j
 is the unit cost 

of Zs
j
 ; and Is is the income of the final consumer. Solving 

Eqs. 25 and 26, the optimal volume of each commodity is 
obtained as follows:

Additionally, the substitution relationship between the 
goods in various regions is described by the CES function:

where yrs
j

 is the quantity of goods consumed from region r 
to s; �zs

j
 is a scale parameter; �rs

j
 is a share parameter 

( 
∑

r∈S �
rs
j
= 1 ); and �zj is an elasticity of substitution param-

eter. By solving Eqs. 28 and 29, yrs
j

 and PZs
j
 are obtained as 

follows:

The income of the final consumer comes from labor 
wages, capital rent, and regional transfer payments:

(25)Us =

(

∑

j∈N

�s
j
⋅ Z

s
�−1

�

j

)
�

�−1

,

(26)s.t.
∑

j∈N

PZs
j
⋅ Zs

j
= Is,

(27)Zs
j
=

�

�s
j

PZs
j

��

⋅

Is
∑

j∈N

�s�

j
⋅ PZs1−�

j

.

(28)PZs
j
⋅ Zs

j
= min

∑

r∈S

(1 + trs) ⋅ Pr
j
⋅ yrs

j
,

(29)s.t. Zs
j
= �zs

j

(

∑

r∈S

�rs
j
⋅ yrs

�zj−1

�zj

j

)

�zj

�zj−1

,

(30)yrs
j
=

(

1

�zs
j

)1−�zj

⋅

[

�rs
j
⋅ PZs

j

(1 + trs) ⋅ Pr
j

]�zj

⋅ Zs
j
,

(31)PZs
j
=

1

�zs
j

[

∑

r∈S

�rs
�zj

j
⋅ (1 + trs)

1−�zj

⋅ Pr
1−�zj

j

]
1

1−�zj

.

where Is represents the income of final consumer in region 
s, and TPs is the regional transfer payment.

2.4 � Market Equilibrium Module

The market equilibrium module includes three parts: inter-
national market equilibrium conditions, commodity, and 
factor market equilibrium conditions.

2.4.1 � International Market Equilibrium Conditions

The small-country assumption is adopted in the model, that 
is, both import and export prices of goods are exogenous. 
Further, the economic system must be balanced in terms of 
international payments, that is, the total inflow of currency 
must equal the total outflow. Thus,

where PWEs
j
 is the export price in international currency; 

PWMs
j
 is the import price in international currency; EXR is 

the exchange rate; and SFs is the foreign savings in interna-
tional currency.

2.4.2 � Commodity‑Market Equilibrium Conditions

Commodity market-clearing conditions aim at the equilib-
rium of supply and demand of composite commodities in the 
local market, which is formulated as:

2.4.3 � Factor Market Equilibrium Conditions

In normal periods, factor market equilibrium conditions 
mean that the capital factor can move freely within industrial 
sectors and the labor factor can move freely among regions, 
which is given as:

(32)Is =
∑

j∈N

(ws
j
⋅ ls

j
+ rs

j
⋅ ks

j
) − TPs,

(33)PEs
j
= EXR ⋅ PWEs

j
,

(34)PMs
j
= EXR ⋅ PWMs

j
,

(35)
∑

j∈N

PWEs
j
⋅ Es

j
+ SFs =

∑

j∈N

PWMs
j
⋅Ms

j
,

(36)Qs
j
=
∑

r∈S

∑

i∈N

xsr
ji
+
∑

r∈S

∑

j∈N

ysr
j
.

(37)
∑

j∈N

ks
(0)

j
=
∑

j∈N

KKs(0)

j
,
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where suffixes (0) and (1) are added to distinguish the pre-
disaster variables from post-disaster. KKs(0)

j
 and LLs(0)

j
 are the 

initial endowments of capital and labor in normal periods, 
respectively.

During a disaster period, the capital and labor endow-
ments suffer from shocks (Kajitani and Tatano 2018). Under 
the disaster shock scenario, the model assumes that labor 
prices are rigid downwards, unemployment will occur, and 
capital will be fully utilized but will not allow movement 
among sectors over a short period of time post-disaster. The 
equilibrium conditions can be set as:

where KKs(1)

j
 and LLs(1)

j
 are the respective endowments of 

capital and labor after a disaster, and �ks
j
 and �ls

j
 are the 

respective damage ratios of capital and labor.

3 � Application to a Flood Disaster in Hubei 
Province, China

This section describes the study’s case background, data 
sources, and disaster shock settings.

3.1 � Case Background

An unexpected heavy rainstorm affected Enshi City, Hubei 
Province, on 17 July 2020, causing a 50-year return period 
flood disaster. A total of 471,656 people in 88 villages and 
towns in eight prefectures were affected by the disaster, and 
51,997 people were evacuated. The flood caused the col-
lapse of 1372 houses and serious damage to 1221 houses; 
the affected crop area was 17,693 ha. According to official 
statistics, the direct economic loss was RMB 2338.23 mil-
lion yuan (USD 339 million).1 Inaccessible roads caused 
by traffic disruptions further affect industrial supply chain 
recovery after disasters. According to the survey data, road 

(38)
∑

s∈S

ls
(0)

j
=
∑

s∈S

LLs
(0)

j
,

(39)
(ws(1)

j
− ws(0)

j
)(ls

(1)

j
− LLs

(1)

j
) = 0, where ws(1)

j
≥ ws(0)

j
, ls

(1)

j
≤ LLs

(1)

j
,

(40)ks
(1)

j
− KKs(1)

j
= 0,

(41)KKs(1)

j
= (1 − �ks

j
)KKs(0)

j
,

(42)LLs
(1)

j
= (1 − �ls

j
)LLs

(0)

j
,

restoration typically takes seven days but can take up to 30 
days for severely damaged roads.

3.2 � Data Sources

The main dataset used in this study is the interregional 
IO table of China for 2017, which includes 31 provinces 
(except for Hong Kong, Macao, and Taiwan) and 42 indus-
trial sectors and was based on data from the National Statis-
tics Bureau (Zheng et al. 2021). The interregional IO table 
reflects the technology and industrial structure of regional 
production and clearly shows the productivity flow relation-
ship among different regions. To facilitate model construc-
tion and accelerate data iteration, we merged the original 
42 industrial sectors into 10 (Table 1) and highlighted the 
manufacturing industry, referring to Yang et al. (2016).

According to differences in regional industries and the 
tightness of regional economic integration, we divided the 
31 provinces into nine regions, as illustrated in Fig. 3. Hubei 
is at the center of the eastern region and is an important 
transportation hub. Additionally, Hubei Province contains 
China’s important industrial cluster development bases for 
automobile production, food and textile processing, the steel 
and petrochemical industry, and electronic information tech-
nology, among others. Thus, analyzing the impact of the dis-
aster in Hubei on the regional industrial production supply 
chains nationwide has great practical significance.

3.3 � Disaster Setting

This section describes this study’s disaster settings, includ-
ing labor and capital impacts and methods for linking trans-
portation network disruptions to the model.

3.3.1 � Labor and Capital Impact Setting

Typically, disasters affect labor and capital endowments, 
thereby hindering firms’ production process (Yang, Chen, 
et al. 2022). We set the labor loss rate at 5.20% based on 
the entire province’s labor productivity from the Statistical 
Bulletin of National Economic and Social Development 
of Hubei Province, 2020.2 Table 2 shows the industry loss 
ratio and business interruption time (number of working 
days closed). The data were derived from previous field 
survey conducted by our research group in June 2021. 
Unstructured interviews and questionnaire surveys were 
adopted to obtain relevant damaged enterprise data, such 
as submergence depth and duration, asset loss rate, and 
business interruption time. A total of 399 questionnaires 
were collected, and 365 samples were finally obtained by 

1  USD 1 = RMB 6.8974 in 2020. 2  http://​tjj.​hubei.​gov.​cn/.

http://tjj.hubei.gov.cn/
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Table 1   Merged industrial sectors

No. Reclassified sector Symbol Detailed division

1 Agriculture Agr Agriculture, forestry, animal husbandry, and fishery
2 Mining Min Mining and washing of coal

Petroleum and natural gas extraction
Metal ore mining
Non-metal mineral mining

3 Livelihood-related manufacturing Lman Food product manufacturing and tobacco processing
Textiles
Apparel, leather, fur, down, and related products
Sawmills and furniture
Other manufacturing machinery, scrap, and waste

4 Raw materials manufacturing Rman Papermaking and paper products
Petroleum processing, coking, and nuclear fuel processing
Chemical industry
Nonmetallic mineral products
Metal smelting and pressing
Metal products

5 Processing and assembly manufacturing Pman General purpose machinery
Special purpose machinery
Transport equipment
Electric equipment and machinery
Communications equipment, computers, and other elec-

tronic equipment manufacturing
Instruments and meters
Metal products, machinery, and equipment repair services

6 Production and supply of electric power, gas, and 
water

Ene Production and supply of electric power and heat
Production and supply of gas
Production and supply of tap water

7 Construction and real estate Con Construction
Real estate

8 Trade, catering, and accommodation Acc Wholesale and retail trade services
Accommodation and food serving services

9 Transportation, storage, and postal service Tra Transport, storage, and postal services
10 Integrated services Svc Telecommunication, computer services, and software

Finance
Rental and business services
Residential services and other social services
Scientific research and technical services
Comprehensive technical services
Water, environment, and public facilities management
Education
Health, social security, and welfare
Cultural, sporting, and recreational services
Public management and social organization
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eliminating invalid samples such as missing values and 
outliers. Then, the industry loss ratio was converted to 
a yearly scale through the business interruption time in 
Eq. 43:

where subscript j is the industrial sector suffix; BITj is the 
business interruption time; and 248 is the number of legal 
working days in 2020.

(43)Loss ratio_capitalj = Loss ratioj ×
BITj

248
,

3.3.2 � Transportation Network Disruption Setting

The disruption of transportation networks due to disasters 
often interrupts industrial supply chains. In the model, 
the exogenous variable trs increases, representing the cost 
increase rate (mark-up rate) of goods transported from 
region r to region s after a disaster (Koike et al. 2015). 
We set the cost increase rate trs based on transportation dis-
tance between regions (previous research in general mainly 
focused on highways (Tirasirichai and Enke 2007; Tatano 
and Tsuchiya 2008; Bachmann et al. 2014)), as transpor-
tation distance is a major factor for modeling transport 

Fig. 3   Division of regions and map of the research area

Table 2   Industrial loss ratio 
and business interruption time 
according to the surveys

Source Field survey by the research group in June 2021.

Symbol Industrial sector Loss ratio (%) Business inter-
ruption time 
(days)

Agr Agriculture 10 90
Min Mining 10 30
Lman Livelihood-related manufacturing 20 30
Rman Raw materials manufacturing 20 30
Pman Processing and assembly manufacturing 20 30
Ene Production and supply of electric power, gas, and 

water
20 15

Con Construction and real estate 10 45
Acc Trade, catering, and accommodation 30 21
Tra Transportation, storage, and postal service 20 10
Svc Integrated services 10 26
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costs (Haddad and Hewings 2004); industry inconsistency 
is not an issue. Considering the study area is Hubei Prov-
ince, we only focused on the disruption of transportation 
between other regions and Hubei. First, we queried the 
universal transportation distance between each province 
and Hubei using Baidu Maps,3 a common software for 
intelligent route planning and navigation. Each provin-
cial capital, usually a center for population agglomeration 
and economic development, was selected as the start and 
end of a given journey. The average transportation dis-
tance between all provinces in each economic region and 
Hubei was then calculated (Table 3). Finally, the distance 
was standardized and the cost increase rate of transport 
between each region and Hubei was calculated as:

where dtrs is the actual distance between regions r and s 
(Hubei Province), and � is the marginal rate of transport 
cost, which is also called the parameter of elasticity of sub-
stitution and is equal to 0.1 based on Koike et al. (2015). 
Post-disaster transport network disruption increases inter-
regional trade’s transport costs, regarded as the price mark-
up of goods (Horridge 2012; Rokicki et al. 2021), and ulti-
mately updates the supply share parameter between regional 
markets, which is usually fixed in the traditional SCGE 
model (Ando and Meng 2009).

3.4 � Case Study Results

This section presents case study results, focusing on traffic 
disruption’s impact on regional output and regional inter-
mediate input post-disaster.

(44)trs =

dtrs −min
r∈S

{dtrs}

max
r∈S

{dtrs} −min
r∈S

{dtrs}
⋅ �,

3.4.1 � Traffic Disruption Impact on Regional Output Loss

By assessing disasters’ regional ripple effects, we captured 
and quantified cross-regional and cross-industry loss. Fig-
ure 4 shows the production output loss for other regions, 
GOs

j
 , in two cases: increased traffic disruption costs 

(Fig. 4a) and no traffic disruption costs (Fig. 4b). Consid-
ering traffic disruption costs, other regions’ total ripple 
effects caused by Hubei’s flood disaster is RMB 446.9 bil-
lion yuan (USD 64.8 billion), approximately 1.81 times 
the total ripple effects without traffic disruption costs.

In Fig. 4, darker colors equal greater decline in regional 
output value. Comparing the two scenarios, the non-neg-
ligible output loss gaps are extremely prominent in the 
country’s remote zones, such as NW (46 times). On the 
one hand, the remote areas’ economic development is 
highly dependent on transportation. On the other hand, 
pillar industries in NW, such as the aerospace industry, 
energy and chemical industry, and automobile manufac-
turing, are more susceptible to traffic disruptions. Thus, 
the results show that the outputs of Lman and Tra in NW 
significantly decline after increasing traffic disruption 
costs. Considering traffic disruption costs, the drop value 
of production output generally shows an increasing trend 
with increasing distance, centered on Hubei Province. 
Particularly, NW’s output loss reaches RMB 161.5 bil-
lion yuan (USD 23.4 billion, 36% of the total regional 
economic ripple loss), and SC’s output loss reaches RMB 
111.7 billion yuan (USD 16.2 billion, 25% of the total 
regional economic ripple loss).

Further, the reasons for the decline of production output 
value in different regions were analyzed. Figure 5 shows 
the contributions of different production output loss by sec-
tor in different regions. Based on economic development 
and distance from the affected area (Hubei), other regions 
are divided into developed areas, areas close to Hubei, and 
remote areas. Major causes include factor damage, the 

Table 3   Cost increase rate of 
transport between each region 
and Hubei

Symbol Region Distance (km) trs

HB Research area (Hubei Province) – 0
NE Northeast economic zone 2,095.83 0.09648
NC Northern coastal comprehensive economic zone 1019.23 0.04692
EC Eastern coastal comprehensive economic zone 687.40 0.03164
SC Southern coastal comprehensive economic zone 1112.43 0.05121
YE Comprehensive economic zone in the middle reaches of 

the yellow river
908.80 0.04183

YZ Comprehensive economic zone in the middle reaches of 
the yangtze river

357.60 0.01646

SW Southwest comprehensive economic zone 1160.04 0.05340
NW Northwest comprehensive economic zone 2172.36 0.1

3  https://​map.​baidu.​com.

https://map.baidu.com


499International Journal of Disaster Risk Science

1 3

Fig. 4   Output loss for other regions in two cases: a Scenario considering traffic disruption costs; b Scenario without traffic disruption costs

Fig. 5   Production output loss 
in each region classified by 
damage source (see Table 1 and 
Table 3 for sector and region 
abbreviations)
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general equilibrium effect, and traffic disruption damage. 
Factor damage is exogenously set as a shock in Hubei Prov-
ince (red bars). General equilibrium effects are incremental 
effects calibrated by the SCGE model without traffic dis-
ruption costs (yellow bars). Traffic disruption damage com-
prises the incremental effects calibrated by the SCGE model 
considering traffic disruption costs (blue bars).

Hubei Province is the most directly affected area, with 
three major impacts. Among the non-affected regions, the 
developed areas (economically developed coastal regions) 
suffer more general equilibrium effects due to their closer 
economic ties to Hubei. Additionally, traffic disruption 
damages are greater in developed and remote areas, while 
regions close to Hubei suffer less traffic disruption dam-
ages. Additionally, output losses do not increase in all 
industrial sectors affected by traffic disruption damages 
(see the blue bars with zero values in Fig. 5, especially 
in regions close to Hubei). The mechanism is as follows: 
traffic disruption costs affect product prices, which in turn 
affect the optimal distribution of products in non-affected 
areas, and is ultimately reflected in increased or unchanged 
outputs in some sectors. From the industrial perspective, 
the outputs of the manufacturing, energy supply, and con-
struction industries are most affected by traffic disrup-
tion, as these industries have specific production clusters 
(usually located in remote zones, such as NW) that are 
heavily dependent on raw materials, energy supply, and so 
on. Thus, transportation system disruptions greatly affect 
these industries’ production levels.

3.4.2 � Traffic Disruption Impact on Regional Intermediate 
Input

In the model design, post-disaster, the cost of transporta-
tion disruptions increases in the process of the interre-
gional trade module, especially that related to intermediate 
input (see Sects. 2.1 and 3.3.2). Therefore, we also focused 
on the change in intermediate inputs from other regions to 
Hubei Province after the flood disaster, which is also key 
in affected areas’ production and recovery.

Figure 6 shows the total intermediate input loss from 
other regions to Hubei by sector, calculated by TIs

ij
 . After 

increasing traffic disruption costs, trade exchanges among 
regions are blocked. The value of the intermediate input 
loss from other regions to Hubei increases threefold on 
average—fivefold in Tra and 4.4 in Pman. Additionally, 
regardless of whether traffic disruption costs increase, a 
larger drop in intermediate input value from other regions 
to Hubei occurs in manufacturing industries and integrated 
services. The value of intermediate input loss from other 
regions to Hubei’s Pman reaches RMB 70.6 billion yuan 
(USD 10.2 billion), considering traffic disruptions. Hubei 
is a large-scale industrial base in China, with developed 
industries, such as automobile and machinery manufactur-
ing, constituting a large proportion of total provincial 
GDP. Therefore, it is crucial to reconnect the industrial 
chain and restore related industries’ intermediate input 
supply post-disaster.

Conversely, the intermediate input loss value in Min and 
Ene from other regions to Hubei is the smallest. This is 
because Hubei is rich in mining, power, and water resources, 
and these industries have more backward linkages with 

Fig. 6   Intermediate input loss value from other regions to various industries of Hubei a considering traffic disruption costs and b without traffic 
disruption costs
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industries within the province than those outside; there-
fore, the input supply outside the province declines less 
post-disaster.

3.4.3 � Traffic Disruption Impact on Regional Intermediate 
Input of Each Subsector and Subregion

Figure 7 illustrates the intermediate input loss rate from 
each region to various industries of Hubei without traffic 
disruption costs, calculated by 

n
∑

i

xrs
ij

 . Overall, the average 

loss rate of the intermediate input from other regions to 
Hubei is 11%. The proportions of intermediate input loss 
in Rman, Agr, and Min in Hubei are relatively high—up to 
14%. The raw material and mining industries play an 
important supporting role in post-disaster industrial recov-
ery and are significant driving factors for regional eco-
nomic development (Li et al. 2021). Therefore, the govern-
ment should emphasize the coordinated recovery of these 
industrial supply chains and the transmission risk of the 
production supply system. The proportions of intermediate 
input loss in Ene and Tra are relatively small, and these are 
the basic industries necessary for normal production and 
life.

Additionally, developed areas (SC, EC, and NC) have a 
higher proportion of intermediate input loss to Hubei, likely 
because of their closer economic ties; therefore, their dis-
aster responses are stronger, in extreme contrast to remote 
areas, when traffic disruptions are not considered. Figure 8 
shows the scenario considering traffic disruption costs. 
Compared with Fig. 7, the average loss rate of the inter-
mediate input from other regions to Hubei is 38%, which 

is approximately 3.5 times of that without traffic disruption 
costs. Figure 8 highlights that Tra has the highest intermedi-
ate input loss rate—up to 57%—in contrast with Fig. 7. This 
is because the transportation industry is directly connected 
to the cost of traffic disruptions: the latter increases and the 
transport sector’s intermediate input decreases as regional 
trade is disrupted. The next highest are Svc and Pman, which 
are Hubei Province’s pillar industries. The proportion of 
intermediate input loss in Ene is relatively small, as in the 
scenario without traffic disruption costs.

Affected by traffic disruptions, the ranking of the pro-
portion of intermediate input loss in different regions also 
changes. Remote areas (NE, NW, and SW) have a higher 
proportion of intermediate input loss to Hubei, while the 
areas close to Hubei (YE and YZ) have a lower proportion. 
In other words, the longer the distance, the stronger the traf-
fic disruptions’ impact on interregional intermediate inputs.

4 � Discussion

In this section, we conduct a sensitivity analysis of the mar-
ginal rate of transport cost. A marginal transport cost of 0% 
indicates the transportation network is fully functioning (not 
damaged); 10%, 30%, or 50% means that the transportation 
network is subject to varying degrees of damage.

Figure 9 illustrates the total intermediate input loss value 
from all regions to Hubei. With an increase in � , the inter-
mediate input loss value in various industries also increases. 
According to the distance between the blocks in the figure, 
Pman, Rman, and Lman are more sensitive to traffic dis-
ruptions. Figure 10 illustrates the marginal rate of transport 

Fig. 7   Intermediate input loss 
rate from each region to various 
industries of Hubei without 
traffic disruption costs (see 
Table 1 and Table 3 for sector 
and region abbreviations)
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cost’s impact on the intermediate input loss value in dif-
ferent regions, which increases with an increase in � . The 
intermediate input from the eastern regions is more sensi-
tive to traffic disruptions than that from the western remote 
regions. Moreover, the intermediate input in economically 
developed areas (NC, EC) is more sensitive to traffic disrup-
tions than that in economically underdeveloped areas. Addi-
tionally, there is a critical state for intermediate input loss: 
as � increases, the intermediate input loss value increases 
at a lower rate (the black square is very close to the green 
square in Fig. 10).

To summarize, the marginal rate of transport costs plays 
a critical role in regional trade activities. When � is at 0%, 

the transport network is fully functioning. Thus, the gaps of 
intermediate input loss value between the points in Figs. 9 
and 10 when marginal rates of transport costs are different, 
are considered the benefits of disaster prevention invest-
ments in the transportation system (Koike et  al. 2015). 
As the marginal rate of transport costs increases, the drop 
value of the regional intermediate input gradually increases 
(prevention investment has a bigger impact on intermedi-
ate inputs). Notably, the intermediate input loss value does 
not increase indefinitely but gradually approaches a critical 
value because limitations in production value and economic 
structure prevent the intermediate input from declining 

Fig. 8   Intermediate input loss 
rate from each region to various 
industries of Hubei consider-
ing traffic disruption costs (see 
Table 1 and Table 3 for sector 
and region abbreviations)

Fig. 9   Impact of marginal rate of transport cost on intermediate input 
loss value in different sectors (see Table 1 for sector abbreviations) Fig. 10   Impact of marginal rate of transport cost on intermediate 

input loss value in different regions (see Table 3 for region abbrevia-
tions)
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indefinitely. Additionally, manufacturing industries are more 
sensitive to traffic disruptions, being more dependent on the 
supply of raw materials, semi-finished products, and fin-
ished products from other regions in the production process. 
Meanwhile, economically developed regions suffer larger 
impacts, mainly because they have closer economic ties to 
the affected area. For example, the automobile manufactur-
ing industry in Hubei is closely related to the automobile 
manufacturing industry in EC.

5 � Conclusion

Transportation infrastructure plays a key role in connecting 
regional economic exchange, especially under the current 
structure of regional differences in industrial layout. In 
disaster research, considering traffic disruption costs in 
the study of disasters’ impact on regional economic ripple 
effects can provide theoretical support for the rapid and 
efficient recovery of regional industries, which has practical 
value and is worth exploring further. This study proposed 
an SCGE model to study regional ripple effects considering 
disaster-caused traffic disruption costs and applied the model 
to a practical case, with the following findings.

First, after increasing traffic disruption costs, the total 
output loss of non-affected areas is 1.81 times higher than 
before. Additionally, non-negligible output losses reach 
rather remote zones of the country, such as the Northwest 
Comprehensive Economic Zone, which comprises 36% of 
the total regional ripple loss after increasing traffic disrup-
tion costs. Further, developed areas with close economic 
ties to Hubei are greatly affected by general equilibrium 
effects, and remote areas are more affected by traffic disrup-
tion damage.

Second, traffic disruption significantly hinders regional 
trade activities, especially in terms of the regional intermedi-
ate input, from non-affected to affected areas. After increas-
ing traffic disruption costs, total intermediate input loss is 
approximately three times higher—five times in transporta-
tion, storage, and postal service and 4.4 times in processing 
and assembly manufacturing.

Third, by comparison, the longer the distance, the 
stronger the traffic disruptions’ impact on interregional inter-
mediate inputs. The intermediate input drop rate is higher 
in remote areas (for example, Northeast Economic Zone, 
Northwest Comprehensive Economic Zone, and Southwest 
Comprehensive Economic Zone). Additionally, economi-
cally developed regions cannot be ignored; they have close 
economic linkages with Hubei Province.

In sum, we applied the SCGE model to show the inter-
regional propagation of economic damage and included 
transportation disruption costs to more accurately capture 

the regional economic ripple effect of disasters. Nonethe-
less, some study limitations must be highlighted. First, the 
elasticity values of each part of the SCGE model were set 
based on previous research and the disaster economic the-
ory, which may have led to some bias in the assessment 
of disaster ripple effects. Elasticity of substitution should 
be calibrated with more detailed regional empirical studies. 
Second, we took the economic zone as the smallest unit and 
only considered traffic disruption between regions, ignor-
ing the impact of intra-regional traffic disruption. This may 
overlook industry ripple effect loss within the affected area, 
thereby underestimating disaster impact. Third, we singled 
out the disruption mode of highway transport, but in real-
ity, firms may choose multi-modal transportation or flexibly 
change transportation methods, which may have led to dis-
aster loss overestimation to some extent. In the future, the 
transportation mode selection mechanism can be considered 
in the model or conducted by coupling with other models, 
such as the agent-based model. Nevertheless, this study 
makes a valuable contribution by exploring the integration 
of transportation system analysis with economic modeling 
to assess regional economic ripple effects. Further, it ena-
bles improved observation of the economic impact path of 
disaster among various regions and sectors and detection of 
vulnerable and critical industrial sectors.
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