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Abstract
In contemporary cities, road collapse is one of the most common disasters. This study proposed a framework for assessing 
the risk of urban road collapse. The framework first established a risk indicator system that combined environmental and 
anthropogenic factors, such as soil type, pipeline, and construction, as well as other indicators. Second, an oversampling 
technique was used to create the dataset. The framework then constructed and trained a convolutional neural network 
(CNN)-based model for risk assessment. The experimental results show that the CNN model (accuracy: 0.97, average recall: 
0.91) outperformed other models. The indicator contribution analysis revealed that the distance between the road and the 
construction site (contribution: 0.132) and the size of the construction (contribution: 0.144) are the most significant factors 
contributing to road collapse. According to the natural breaks, a road collapse risk map of Foshan City, Guangdong Province, 
was created, and the risk level was divided into five categories. Nearly 3% of the roads in the study area are at very high risk, 
and 6% are at high risk levels, with the high risk roads concentrated in the east and southeast. The risk map produced by this 
study can be utilized by local authorities and policymakers to help maintain road safety.
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1 Introduction

China’s road network is expanding rapidly. According to 
the data published by the Ministry of Transport, in 2020, 
China’s road length is 5,198,100 km, a 29.6% increase over 
the previous decade (Ministry of Transport of the People’s 
Republic of China 2021). With the increase in road net-
work, urban road collapse has been a constant occurrence. 
Frequent urban road collapse accidents have caused severe 
damage (Wang and Xu 2022). On 7 February 2018, an urban 
road collapse accident occurred in Chancheng District, Fos-
han City, Guangdong Province, resulting in 11 fatalities and 
eight injuries. The direct economic loss was about RMB 

53.238 million yuan1 (Department of Emergency Man-
agement of Guangdong 2019). On 1 December 2019, an 
urban road collapse accident occurred near Shahe Station 
of Guangzhou Metro Line 11, resulting in three fatalities 
and causing a direct economic loss of approximately RMB 
20.047 million yuan (Department of Emergency Manage-
ment of Guangzhou 2020). Conducting urban road collapse 
risk assessment to realize risk warnings and effective pre-
vention has become crucial for maintaining urban safety 
(Wang et al. 2022).

The establishment of an assessment model is a crucial 
step in the urban road collapse risk assessment implemen-
tation process. In the field of ground collapse risk assess-
ment, traditional assessment models have been widely uti-
lized, such as the use of the analytic hierarchy process (Wei 
et al. 2021), the fuzzy comprehension evaluation method 
(Yan et al. 2012), and the weighted arithmetic mean (Kulic-
zkowska 2016) to assess the probability of collapse based 
on lithology, pipelines, and other causal factors. These tra-
ditional assessment methods achieve the objective of risk 
assessment by dividing the assessment units in the area and 
establishing different weighting systems for each assessment 
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unit. However, the spatial distribution of collapse events and 
impact factors tends to be discontinuous (Wang et al. 2022), 
and it is challenging to balance both accuracy and scope 
when assessing cities with traditional assessment methods 
(Li, Fan et al. 2020). It is also difficult for traditional assess-
ment methods to achieve quantitative validation of assess-
ment results based on accident cases. Due to the need for 
quantitative validation of assessment results, machine learn-
ing models are beginning to be incorporated into disaster 
risk assessment (Li, Sheng et al. 2020) in order to achieve 
the goal of large-scale and accurate assessment. Machine 
learning models are considered to have stronger predictive 
performance due to their nonlinear fitting ability and feature 
extraction (Huang et al. 2017) and have been widely used in 
disaster risk assessment. For example, convolutional neural 
network (CNN) models have been used to assess the likeli-
hood of earthquakes (Jena et al. 2021), and integrated mod-
els have been used to assess the probability of floods (Li and 
Hong 2023). Artificial neural networks (ANN) (Yilmaz et al. 
2013), support vector machines (Li, Sheng et al. 2020), and 
random forests (Li, Fan et al. 2020) with logistic regression 
(Papadopoulou-Vrynioti et al. 2013) have also begun to be 
used in the field of ground collapse risk assessment. How-
ever, the current urban road collapse risk assessment con-
tinues to rely heavily on conventional assessment methods.

A further crucial step in achieving urban road collapse 
risk assessment is to establish a system of assessment indi-
cators. The mechanism of ground collapse is complex, and 
many factors can contribute to its occurrence. Cui et al. 
(2017) concluded that fracture zones could regulate the 
formation of subsurface cavities and create conditions for 
collapse breeding. Rainfall can diminish the bearing capac-
ity and stability of soils, creating favorable conditions for 
their collapse (Wang and Xu 2022). Changes in the water 
level of rivers and groundwater can have a direct impact 
on the soil, leading to ground subsidence or even collapse 
(Cui et al. 2017). Factors such as lithology and soil type 
(Papadopoulou-Vrynioti et al. 2013; Li, Sheng, et al. 2020) 
can determine the geological structure of the area and the 
stability of the soil, which are crucial factors influencing the 
occurrence of collapse. Existing collapse assessment studies 
rely on geological type and environmental indicators, such 
as lithology, rainfall, and fracture zones (Yan et al. 2012; 
Liu et al. 2021). But the occurrence of urban road collapse 
is the result of a combination of human and natural factors 
(Wang and Xu 2022). The road collapse that occurred in 
Chancheng District, Foshan City, in 2018 was caused by 
lithology, construction, and pipelines (Zhang et al. 2021). 
Existing urban road collapse risk assessment studies are lim-
ited to a few specific factors in the selection of indicators and 
do not consider the simultaneous inclusion of multiple risk 
factors in the indicator system, such as assessing the likeli-
hood of road collapse occurrence based solely on pipelines 

(Kuliczkowska 2016), lithology and rainfall (Xiao and Tian 
2019), and construction factors (Liu et al. 2021).

To address the above research gap in urban road collapse 
risk assessment, we developed a risk assessment framework 
for urban road collapse. In this framework, a CNN-based 
risk assessment model is designed to assess risk with data-
driven extraction of incident features, and an assessment 
indicator system that couples human and environmental 
factors is constructed to support the assessment model. In 
addition, validation experiments are conducted based on 
urban roads in Foshan to demonstrate the viability of the 
framework. The two main contributions of this work are:

(1) A CNN-based risk assessment model is constructed to 
realize collapse risk assessment under different urban 
road scenarios.

(2) The problem of significantly extracting collapse sample 
data in the case of limited collapse accidents is resolved 
using the data augmentation method.

Section 2 describes the study area and data sources, the 
methodology used in this study is presented in Sect. 3, and 
Sect. 4 presents the results and discussion.

2  Data

Foshan is a city in Guangdong Province, located in coastal 
southeast China, at 113°06’ E, 23°02’ N. The resident popu-
lation of Foshan is approximately 9.5 million (2020 cen-
sus), with an area of 3,798  km2. As of 2020, the length of 
roads (grade 4 and higher) was 5462 km (Foshan Bureau of 
Transportation 2021). The geological structure of Foshan 
is typical of the Pearl River Delta, with a wide distribution 
of soluble rocks that promotes ground collapse (Zhao et al. 
2018). From 2014 to 2018, there were 43 serious ground 
collapse accidents, the majority of which occurred in the 
east and southeast.

By investigating accident reports and field surveys, 19 
collapse cases that occurred on urban roads were selected 
as accident samples from the 43 ground collapse accidents, 
and their distribution is shown in Fig. 1.

A total of 1000 points were randomly selected as negative 
samples from the entire road network in Foshan. The origi-
nal dataset is comprised of positive and negative samples, 
and the dataset is subdivided into training and test sets, as 
detailed in Table 1.

According to previous research, environmental and 
anthropogenic factors have a significant impact on the 
occurrence of urban road collapse (Kuliczkowska 2016; 
Cui et al. 2017; Wang and Xu 2022). In this study, the 
indicator system was refined based on the previous 
research, and the environmental factors were categorized 
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as geological and geoenvironmental, while the anthropo-
genic factors were categorized as construction, pipeline, 
and anthropogenic environmental influences.

The geological factors include fracture zone, soil type 
(ST), lithology, and historical geohazard conditions. The 
fracture zone variable consists of the distance to fracture 
zone (DTFZ) and fracture zone length (FZL). Lithology is 
rock type (RT). Historical geohazard consists of historical 
ground disaster situation (HGDS) and distance to historic 
ground hazard sites (DTHS). Geoenvironmental factors 
include monthly rainfall (MR), river, flood-prone roads, 
and low-lying areas. The river variable refers to distance to 
river (DTR). Flood-prone roads is distance to flood-prone 
areas (DTFA) and low-lying areas is distance to low-lying 
areas (DTLA). Construction factors include distance to 
construction site (DTCS) and construction size (CS). Pipe-
lines factors consist of pipeline material (PM), pipeline 
type (PT), and distance to pipeline (DTP). Anthropogenic 
environmental influences include metro and road network 
density (RND). The metro variable is distance to metro 
line (DTML). The distribution of all variables is shown in 
Fig. 2; information on the data sources, scale, and collec-
tion years of the variables is shown in Table 2.

Considering the difference in indicator value range, 
z-score normalization was implemented as Eq. 1:

where xi is the original value of the i-th variable; 
x ∈ R(1, 17) ; � and � are the mean value and variance of the 
variable; and yi is the standardized value. Pearson’s coeffi-
cient was used to test the correlation between the indicators 
and was calculated as Eq. 2:

where cov(X, Y) represents the covariance of the two vari-
ables X and Y; and Var[X]andVar[Y] are the variances of X 
and Y, respectively.

3  Method

This study presented a CNN-based framework for urban road 
collapse risk assessment. The three procedures that com-
prise the proposed framework are depicted in Fig. 3: (1) 
data collection and processing, (2) data augmentation and 
model training, and (3) model evaluation and risk mapping. 
In the data collection and processing section, Foshan’s road 
collapse data and the indicators needed for the assessment 
were collected and manually verified, and the original data-
set was created. In the data augmentation section, positive 
samples from the original data were fed into the synthetic 
minority over-sampling technique (SMOTE) model to gener-
ate augmented positive sample data. For model training and 

(1)yi =
xi − �

�

(2)�x,y =
cov(X, Y)

√

Var[X]Var[Y]

Fig. 1  The Foshan City study area in Guangdong Province, China, and the spatial distribution of the 19 selected ground collapse accidents that 
occurred on urban roads

Table 1  Original dataset

Dataset Negative Samples Positive 
Samples

Original data 1,000 19
Original training data 800 16
Original test data 200 3
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testing, the augmented positive sample data were combined 
with the original data and divided into the training set and 
test set. The entire original dataset was then also used for 
model testing to test whether the data augmentation tech-
nique used could reduce the impact of small samples on the 
assessment model. Finally, the urban road collapse risk map 
for Foshan was created based on the model with the highest 
performance.

3.1  Data Augmentation

A characteristic of deep learning models is that they 
require a large number of samples for training (Dong et al. 
2020), and training a model with small samples reduces 
its ability to recognize the samples, resulting in poor gen-
eralization (Kiani et al. 2019). Data augmentation is a 
common technique for addressing the limited amount of 

data in small-sample learning (Zhang et al. 2022). Over-
sampling can achieve data augmentation by increasing 
the number of minority class samples for efficient model 
training (Shi et al. 2019). The synthetic minority over-
sampling technique is one of the most popular algorithms 
in oversampling (Zhai et al. 2021) and has been widely 
used in the field of risk assessment, including vehicle 
crash assessment (Katrakazas et al. 2019), seismic risk 
assessment (Kourehpaz and Hutt 2022), and wildfire risk 
assessment (Jiang et al. 2021). The synthetic minority 
oversampling technique works by first selecting a central 
sample (containing label and indicator information) in the 
sample space using k nearest neighbors and then select-
ing the closest sample with a similar label. To generate a 
new sample, the distance formula is applied to the central 
sample and its similar labeled sample, and the distance 
formula is defined as shown in Eq. 3:

Fig. 2  Influencing factors of road collapse occurrence in Foshan 
City, Guangdong Province, China: a Fracture zone, b Soil type, c 
Lithology, d Historical geohazard sites, e Monthly Rainfall, f Riv-

ers, g Pipeline detection point data, h Construction site, i Flood-prone 
roads, j Low-lying areas, k Metro station, l Road network density.
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Table 2  The database for the indicators of urban road collapse risk in Foshan City, Guangdong Province, China

Type Factor Indicator Description Name Variable Type Sources Time Scale

Environment Geology Fracture zone Distance to fracture 
zone

DTFZ numeric www. mnr. gov. 
cn/ sj/

2020 1:200,000

Fault zone length FZL numeric
Soil type Soil type ST categorical fszrzy.foshan.gov.

cn
2018 1:1,000,000

Lithology Rock type RT categorical
Historical geohaz-

ard condition
Historical ground 

disaster situation
HGDS categorical Guangdong Foshan 

Geological 
Bureau

2018

Distance to historic 
ground hazard 
sites

DTHS numeric

Geoenvironment Rainfall Monthly rainfall MR numeric data.cma.cn/ 2020
River Distance to river DTR numeric www. webmap. cn/ 2019 1:250,000
Flood-prone areas Distance to flood-

prone areas
DTFA numeric Natural Resources 

Bureau of Foshan 
City, Guangdong 
Province

2022

Low-lying areas Distance to low-
lying areas

DTLA numeric

Anthro-
pogenic 
influences

Pipeline Pipeline Pipeline material PM categorical
Pipeline type PT categorical
Distance to pipe-

line
DTP numeric

Construction Construction Distance to con-
struction site

DTCS numeric

Construction size CS numeric
Anthropogenic 

environmental 
influences

Metro Distance to Metro 
line

DTML numeric www. foshan. gov. 
cn/ gzjg/ fssgd jtj/

2020

Road network 
density

Road network 
density

RND categorical

Fig. 3  The proposed urban road collapse risk assessment framework for Foshan City, Guangdong Province, China. Note: SMOTE = Synthetic 
minority over-sampling technique; CNN = Convolutional neural network; ANN = Artificial neutral network.

http://www.mnr.gov.cn/sj/
http://www.mnr.gov.cn/sj/
http://www.webmap.cn/
http://www.foshan.gov.cn/gzjg/fssgdjtj/
http://www.foshan.gov.cn/gzjg/fssgdjtj/
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where t is a random number between 0 and 1; x ∈ R(1, 17) 
is the indicator of the central sample; and y ∈ R(1, 17) is the 
indicator of the nearest similar label sample. After applying 
SMOTE to the positive samples, the generated positive sam-
ples are referred to as augmented data. The augmented data 
are then merged with the original data set and partitioned, 
as detailed in Table 3. The imbalance rate (IR) is the ratio 
of negative samples to positive samples and can quantify the 
degree of imbalance in a data set. Training with a high-IR 
dataset leads to a poor generalization of the model; 50 was 
the IR of the original training data, while 1.03 was the IR of 
the reconstructed training data. Reducing the IR can improve 
the performance of the model training (Gao, Lu et al. 2021).

3.2  Network Structure

In this study, a CNN-based risk assessment model was con-
structed to assess the risk of road collapse. Convolutional 
neural network is one of the most popular deep learning 
algorithms (Krizhevsky et al. 2017) and was first proposed 
by LeCun et al. (1989). It performs exceptionally well in 
disaster risk assessment, including earthquake (Jena et al. 
2020), flood (Chen et al. 2021), and landslide risk assess-
ment (Gao, Chen et al. 2021; Hong et al. 2021; Lv et al. 
2022).

(3)z = x + t(y − x)

Figure 4 depicts the network architecture of the CNN 
constructed for this study. The input data had a dimension 
of 1 by 17, which correspond to the standard values of the 
risk indicators. The model’s core network consisted of four 
convolutional layers and three fully connected layers with 
respective dimensions of 512, 256, and 32. There were 16, 
32, 64, and 64 convolutional kernels utilized. The output 
layer had a dimension of 2, a binary label, and the binary 
values represented the probability that the output was a 
positive or negative sample.

In the l-th convolutional layer, the forward tensor prop-
agation calculation is as shown in Eq. 4:

where xl
I,j

 is the output of the l-th convolutional layer; 

f
(

xl
i,j

)

= max(0, xl
i,j
) is the activation function; Wl

m,n
 and bl 

are the weight parameters and bias parameters of the l layer, 
respectively; Kl

1
 and kl

2
 are the size of the convolutional ker-

nel, and H and W represent the size of the output tensor from 
the upper layer. The mean squared error (MSE) loss function 
is utilized to compute the degree of disparity between the 
network predicted values and the actual sample values, as 
defined by Eq. 5:

where N  is the batch size, a is the predicted value of the 
model output; y is the value of the real sample; t ∈ R(1,N) . 
Based on the value derived from the loss function, the 
weight gradient of the l-th convolutional layer can be calcu-
lated by the chain rule, as defined in Eq. 6:

(4)
xli,j =

kl1−1
∑

m=0

kl2−1
∑

n=0
wl
m,no

l−1
i+m,j+n

+ bl,∀0 ≤ i ≤ H,∀0 ≤ j ≤ W, ol = f
(

xli,j
)

(5)L = −
1

N

∑

t

[y ln a + (1 − y) ln (1 − a)]

Table 3  Training set and test set

Dataset Name Data Components Negative 
Samples

Positive 
Samples

IR

Training data Original training data 800 16 1.03
Augmented data \ 760

Test data Original test data 200 3 1.03
Augmented data \ 190

Fig. 4  Convolutional neural network (CNN) structure constructed for this study
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where �L
�xl

i,j

 denotes the partial derivative of the loss function 

on the l-layer’s output; and 
�xl

i,j

�wl
m,n

 is the partial derivative of 

the l-layer’s output to the weights. Eventually, the model 
parameters are continuously optimized through training. In 
addition, the artificial neutral network (ANN) (Yao 1999) 
was evaluated and contrasted with the CNN.

3.3  Network Configurations

The CNN model utilized in this study was implemented in 
the Pytorch machine learning framework, with all the net-
work training and testing performed on a server with 32 GB 
RAM and a GTX1080 GPU. Throughout the training period, 
the initial learning rate was 1×10-4, the batch size was 32, 
and L2 regularization was implemented. The network uses 
the MSE loss function to calculate the network loss. The 
MSE loss of the network on the training data set stopped 
decreasing after 1.5×10 iterations, and the final MSE loss 
converged to 1.07×10-3.

3.4  Model Evaluation

Several evaluation metrics, such as accuracy, average recall, 
AUC, and specificity, were used to evaluate the performance 
of the models when they were developed and implemented. 
These metrics are calculated as follows:

where TP (true positive) and FP (false positive) represent the 
amount of data rightly labeled and mislabeled as collapse, 
TN (true negative) and FN (false negative) are the amount 
of data rightly labeled and mislabeled as non-collapse, P 

(6)
�L

�wl
m,n

=

H−k1
∑

i=0

W−k2
∑

j=0

�L

�xl
i,j

�xl
i,j

�wl
m,n

(7)Accuracy =
TP + TN

TP + TN + FN + FP

(8)Specificity =
TN

TP + FP

(9)AUC =

∑

TP +
∑

TN

P + N

(10)AverageRecall =
1

k

k
∑

i=1

(

TP

TP + FN

)

i

(11)Contribution =
L
(

shuffle
(

xi
))

sum
[

L
(

shuffle
(

xj
))]

represents all collapse data, N represents all non-collapse 
data, k represents the number of sample categories, xi rep-
resents a particular indicator to be computed, j ∈ R(1, 17) , 
shuffle(xi) means that all samples are shuffled, and their i-th 
indicator value is randomly swapped, L(shuffle

(

xj
)

) is the 
loss value of the shuffled samples fed into the network after 
it has been trained.

4  Results and Discussion

This section presents the experimental results of the model, 
a model-based risk map, the impact of the indicators on the 
model, and a discussion of an actual case.

4.1  Model Results

The correlation test of the indicators is performed before the 
model training and validation phase, and this step is mainly 
to reduce the influence of highly correlated indicator fac-
tors on the model. Spearman correlation coefficients were 
calculated for 17 indicator factors; DTML and MR had the 
highest correlation, with a correlation coefficient of − 0.7. 
If the correlation coefficient does not exceed 0.7 or − 0.7, 
each indicator factor can be considered independent of the 
other, as shown in Fig. 5.

Table 4 displays the accuracy of the models on the train-
ing set data, with the ANN* model achieving the highest 
accuracy of 0.9974, followed by CNN* (0.9955), ANN 
(0.9865), and CNN (0.9865). The average recall and speci-
ficity share similar attributes.

Table 5 depicts the model on the test set data, where CNN 
has the highest accuracy with 0.9950, followed by CNN* 
(0.9949), and the average recall of the ANN model trained 
on the original data decreases significantly from 0.9012 to 
0.8308.

As shown in Table 6, the original dataset is also used 
to evaluate the model’s accuracy to determine whether our 
proposed data augmentation strategy is effective at enhanc-
ing model performance; CNN* continues to have the high-
est accuracy at 0.9695, followed by CNN (0.9911), ANN* 
(0.9558), and ANN (0.9509). However, the average recall 
values of ANN, CNN, and ANN* have decreased to 0.7183, 
0.7631, and 0.7967, respectively, while CNN*’s average 
recall remains at 0.8812. The ROC curves of the models 
based on the original data are plotted in Fig. 6, which shows 
that the AUC values of all the models are greater than 0.9, 
but CNN* has the highest AUC value of all the models at 
0.957.
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4.2  Risk Map

The road risk map of Foshan was created based on the CNN* 
model. According to the natural breaks, the risk level was 
divided into five categories: very low, low, moderate, high, 
and very high. From low to high, the risk levels of Foshan’s 
roads are 55%, 25%, 11%, 6%, and 3%, respectively. Figure 7 
depicts the proportion of high-risk roads in each district. The 

proportion of high risk roads in Nanhai and Shunde is 6% 
and 10%, respectively, which is greater than the city aver-
age; and 8% of the roads in Shunde pose a very high risk of 
collapse, a much higher proportion than in other districts.

Figure 8 presents the risk map of each region based on 
CNN. In the east and south, high risk roads show a block 
distribution, while the southeast and parts of the north show 
a scattered distribution. There are fewer high-risk roads in 

Fig. 5  Pearson’s correlation 
coefficients for the indicators 
Note: DTFZ = Distance to 
fracture zone; FZL = Fault zone 
length; MR = Monthly rainfall; 
DTR = Distance to river; DTCS 
= Distance to construction site; 
CS = Construction size; DTFA 
= Distance to flood-prone areas; 
DTLA = Distance to low-lying 
areas; DTHS = Distance to 
historic ground hazard sites; 
DTML = Distance to metro 
line; DTP = Distance to 
pipeline; ST = Soil type; RT = 
Rock type; HGDS = Historical 
ground disaster situation; PM = 
Pipeline material; PT = Pipeline 
type; RND = Road network 
density.

Table 4  Performance of the risk assessment models on the training 
dataset

* Represents the model trained with augmented data

Metrics ANN CNN ANN* CNN*

TP 13 10 776 775
FP 8 5 4 6
TN 792 795 796 794
FN 3 6 0 1
Accuracy 0.9865 0.9865 0.9974 0.9955
Average recall 0.9012 0.8093 0.9975 0.9956
Specificity 0.9900 0.9937 0.9950 0.9925

Table 5  Performance of the risk assessment models on the test data-
set

*Represents the model trained with augmented data

Metrics ANN CNN ANN* CNN*

TP 2 2 193 193
FP 1 0 3 2
TN 199 200 197 198
FN 1 1 0 0
Accuracy 0.9901 0.9950 0.9923 0.9949
Average recall 0.8308 0.8333 0.9924 0.9950
Specificity 0.9950 1.0000 0.9850 0.9900
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Sanshui, and even fewer in the city’s central areas. The 
majority of moderate and high risk roads in Chancheng are 
located in the east. There are fewer high risk roads in San-
shui, and only a few exist in the central areas. The majority 
of Gaoming’s moderate and high risk roads are located in 
the southeast and southwest. The moderate and high risk 
roads in Nanhai are dispersed in the north, center, and south. 
The majority of Shunde’s high and very high risk roads are 
located in the north and southeast, with a few high risk roads 
in the south.

4.3  Risk Indicator Analysis

As shown in Fig. 9, the contribution index was used to deter-
mine the relative importance of the influencing factors to the 
model. Due to the complex relationship between the factors 
and the model, the contribution of each factor to the model 
varies. The results indicate that urban road collapse is pri-
marily caused by construction, with DTCS (contribution 
0.144) and CS (contribution 0.132) ranking as the top two 
contributors to the CNN* model, followed by environmental 
factors such as DTLA (contribution 0.120), DTR (contribu-
tion 0.094), MR (contribution 0.093), and DTFA (contribu-
tion 0.092).

The intersection of the three regions of Gaoming Dis-
trict, Chancheng District, and Shunde District is where the 
city’s moderate and high risk roads are most concentrated 
on the risk map. There are numerous construction sites and 
extensive earth excavations in the area (see Fig. 2h), which 
greatly increases the risk of road collapse. There are a num-
ber of minor rivers in the region (see Fig. 2f), and the impact 
of rivers on the soil increases the possibility of collapse. 
The area serves as one of the Foshan Metro’s transportation 
hubs, and the dense subway lines (see Fig. 2k) may cause 
disturbance to the soil along the line. This area also has the 
highest road network density (see Fig. 2l) in Foshan. Dense 
road networks are accompanied by high road loads, increas-
ing the risk of road collapse.

Figure 10 depicts the variation in the average recall of the 
CNN* model for the top three contributors as each indica-
tor’s value changes. The results indicate that the average 
recall of the model decreases as the value of the DTCS vari-
able increases, indicating that the probability of collapse 
increases as the road approaches the construction site. Sec-
ond, in the CS variable, it was discovered that the risk of 
road collapse increases as the size of the construction site 
increases; however, at a certain point, the risk of collapse 
decreases, which may be because large sites pay more atten-
tion to the safety feasibility assessment before construction. 
Increased precipitation and the distance, or proximity, to 
low-lying areas (DTLA) increases the risk of road collapse, 
but this increase is limited.

Table 6  Performance of the risk assessment models on the original 
dataset

*Represents the model trained with augmented data

Metrics ANN CNN ANN* CNN*

TP 9 10 12 15
FP 37 0 38 27
TN 963 1,000 962 973
FN 10 9 7 4
Accuracy 0.9509 0.9911 0.9558 0.9695
Average recall 0.7183 0.7631 0.7967 0.8812
Specificity 0.9630 1.0000 0.9620 0.9730

Fig. 6  ROC curves on the original dataset

Fig. 7  Percentage of roads with different risk levels in each district of 
Foshan City, Guangdong Province, China
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4.4  Accident Case Discussion

On 28 November 2022 at 19:00, an urban road collapse acci-
dent occurred at the intersection of Lingnan Avenue and Kuiqi 
Road in Chancheng District. The collapsed area is about 
800  m2, the depth is approximately 0.5 m, and the water depth 
in the pit is about 0.5 m. The location of the accident is shown 
in Fig. 11. There were three construction sites within 500 m 
of the collapsed road, as well as two cast-iron water supply 
pipes with a diameter of 600 mm that existed beneath the 
road. The collapsed road is 440 m from the closest Metro line 
and 1.97 km from the nearby river. In November, affected by 
Typhoon Nalgae (China Meteorological Administration 2022), 
the accident road was severely flooded and washed away by 
rain. Figure 11 shows the collapsed road and the surround-
ing conditions. The possible causes of the collapse were: (1) 
The types of nearby buildings under construction are high-rise 

structures with deep excavations and soil disturbance; (2) The 
collapsed road is near the Metro, where road collapse had 
occurred several times, and this area belongs to the collapse-
prone area; (3) The collapsed road had been waterlogged due 
to the heavy rainfall caused by Typhoon Nalgae in Novem-
ber; (4) The nearby river banks are constantly eroded by the 
long-term action of the river, and there had been several col-
lapses along the banks; (5) The regional temperature changed 
dramatically around 28 November (National Weather Science 
Data Center 2022), and the water supply pipes were not buried 
deep enough to meet the insulation requirements. The cast 
iron material has poor tensile properties, and the pipeline rup-
tures under temperature stress. The water flow hollowed out 
the ground, and a collapse accident occurred. Our proposed 
indicator system and risk assessment results are reflected in 
this case.

Fig. 8  Road collapse risk map: a Foshan City, b Chancheng District, c Gaoming District, d Nanhai District, e Sanshui District, and f Shunde 
District.
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5  Conclusion

This study proposed a new framework for multifactorial urban 
road collapse risk assessment. Using a combination of envi-
ronmental and anthropogenic factors, this framework devel-
oped an indicator system for risk assessment. Then, SMOTE 
was utilized to implement data augmentation on the collected 
accident samples in order to create a dataset of urban road 
collapse accidents that was used to train the CNN model. The 
experimental results demonstrate that the CNN model trained 
with the augmented data significantly outperformed the other 
models on the original data (accuracy of 0.97, average recall 
of 0.91, and specificity of 0.97). By training the network with 
augmented data, the proposed framework effectively improved 
the precision of the risk assessment for urban road collapse. 
The road collapse risk map of Foshan was created using this 
model. Through indicator contribution analysis, it was deter-
mined that the distance between the road and the construction 
site, as well as the size of the construction, were the most 
influential factors in road collapse. A recent accident case con-
firmed the results of the indicator system and model evaluation 
concluded in this study. Local governments and policymakers 

Fig. 9  Contribution of the influencing factors to road collapse in Foshan 
City, Guangdong Province, China. Note: DTCS = Distance to construc-
tion site; CS = Construction size; DTLA = Distance to low-lying areas; 
DTR = Distance to river; MR = Monthly rainfall; DTFA = Distance 
to flood-prone areas; DTHS = Distance to historic ground hazard sites; 
FZL = Fault zone length; DTP = Distance to pipeline; ST = Soil type; 
DTML = Distance to metro line; PM = Pipeline material; PT = Pipeline 
type; HGDS = Historical ground disaster situation; RND = Road net-
work density; RT = Rock type; DTFZ = Distance to fracture zone.

Fig. 10  Effect of variable changes on CNN* models. a Distance to construction site (DTCS), b Size of construction (CS), and c Distance to low-
lying areas (DTLA).
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can use the urban road collapse risk map generated by this 
study to maintain the safety of road collapse-prone areas.
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