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Abstract
Rapid estimation of post-earthquake building damage and loss is very important in urgent response efforts. The current 
approach leaves much room for improvement in estimating ground motion and correctly incorporating the uncertainty and 
spatial correlation of the loss. This study proposed a new approach for rapidly estimating post-earthquake building loss 
with reasonable accuracy. The proposed method interpolates ground motion based on the observed ground motion using 
the Ground Motion Prediction Equation (GMPE) as the weight. It samples the building seismic loss quantile considering 
the spatial loss correlation that is expressed by Gaussian copula, and kriging is applied to reduce the dimension of direct 
sampling for estimation speed. The proposed approach was validated using three historical earthquake events in Japan with 
actual loss reports, and was then applied to predict the building loss amount for the March 2022 Fukushima Mw7.3 earth-
quake. The proposed method has high potential in future emergency efforts such as search, rescue, and evacuation planning.

Keywords  Earthquake building loss estimation · Fukushima earthquake 2022 · Gaussian copula sampling · Japan · Spatial 
correlation of earthquake losses · Spatial interpolation of ground motion

1  Introduction

Large earthquakes that occur near exposure concentrations 
result in high human casualties and economic losses as in 
the case of the 2008 Wenchuan Earthquake in China (Wang 
2008) and the 2011 Great East Japan Earthquake (Kraus-
mann and Cruz 2013). The economic loss is mostly caused 
by damage of buildings. Human casualties and business 
interruptions are highly correlated with building damage 
while post-earthquake efforts are also significantly related 
to the damage state of buildings. Therefore, rapidly estimat-
ing building losses and their distribution with reasonable 
accuracy based on improved scientific approaches is very 
important in post-event search and rescue, evacuation plan-
ning, and other activities.

The current earthquake loss estimate methods can be 
roughly divided into four categories: (1) image-based 
remote sensing (Dell’Acqua and Gamba 2012; Zhang et al. 
2021); (2) performance-based probabilistic (Zeng et al. 

2016; Ghasemof et al. 2022); (3) machine learning-based 
(Kalakonas and Silva 2022; Stojadinović et al. 2022); and 
(4) structural vulnerability-based approaches (Pnevmatikos 
et al. 2020).

The remote sensing approach requires high-resolution 
images that are not readily available right after an earth-
quake, and the image cannot effectively exhibit the internal 
damage of buildings. The performance-based probabilistic 
approach can predict the structural response with high preci-
sion, but it is dependent on model and input parameters and 
requires huge computing resources. The machine learning-
based method can predict the building damage with high 
accuracy using a large number of factors if there are enough 
data available for training, but due to the lack of training 
datasets the generalization capability of the machine learn-
ing method is limited to seismic regions and specific types 
of events. The structural vulnerability-based approach is 
the widely used method for post-earthquake loss estimates 
given its effectiveness and speed, especially for large-scale 
building blocks (Jaiswal et al. 2010). This approach requires 
the ground motion, the building inventory, and structural 
vulnerability, and building-level loss is calculated and then 
aggregated to yield the total loss for the earthquake (Hos-
seinpour et al. 2021).
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In the structural vulnerability-based approach, the accu-
racy and reliability of the ground motion prediction is of 
vital importance. Many parameters have been used to repre-
sent the earthquake ground motion, and the intensity param-
eter has been gradually phased out due to its lack of physics 
basis and logistic reasoning (Calvi et al. 2006). The currently 
used parameters include Peak Ground Acceleration (PGA), 
Peak Ground Velocity (PGV), and Spectral Acceleration 
(SA), among others. The ground motion at building sites is 
usually predicted with Ground Motion Prediction Equations 
(GMPE), and is established based on regression analysis 
of observed ground motion records. Although GMPEs are 
often used to represent ground motion attenuation from the 
earthquake source to the site, they are statistical representa-
tions of the ground motion, thus their prediction accuracy is 
limited and the prediction usually deviates from the actual 
ground motion for a specific earthquake event (Rohmer et al. 
2014). Therefore, a better approach with higher accuracy 
needs to be found to estimate the ground motion for an actual 
event.

Building earthquake loss estimate is a complex process 
that involves many components from earthquake source, 
wave propagation, site effect, to building vulnerability, and 
each component encompasses various degrees of uncertainty 
that have significant impact on quantifying the tail risk of the 
loss event (Jiang and Ye 2020). The approach by Crowley 
et al. (2004) or Yong et al. (2001) only provided the mean 
loss estimate, without considering the impact of uncertainty. 
The HAZUS approach (HAZUS-MH 2022) assumes that 
with given ground motion level the building damage distri-
bution in each state conforms to the shape of a log-normal 
function. The discrete damage state is not sufficient in rep-
resenting the complex damage status, and the log-normal 
function does not represent the actual damage distribution 
well (Zhao et al. 2021). The PAGER approach (Jaiswal and 
Wald 2011) uses a coefficient of standard deviation ζ for 
each country or region to describe the overall loss estimation 
uncertainty (1.947 for Japan), which is clearly not sufficient 
to reflect the complex processes of earthquake loss estimates 
in different countries and for different types of earthquakes. 
Due to the propagation and convolution of uncertainty in the 
loss estimation process, the loss amount at each building site 
is a random number, whose determination requires a mean, a 
standard deviation, and a distribution shape (Gómez Zapata 
et al. 2022). When the building losses are added together for 
all the buildings in the seismic impact area, there is also the 
need to consider the spatial correlation in the aggregation 
process (Zhou et al. 2022). Therefore, the post-earthquake 
loss estimate is an estimate built upon the convoluted prob-
ability correlation of multiple variables, which cannot be 
simply represented by a mean, a standard deviation, and its 
simple distribution. In order to obtain an estimate with bet-
ter accuracy, a simulated approach with a huge number of 

samples that consider various types of probability and their 
correlation is required.

To address these issues, this study proposed an improved 
approach for rapid post-earthquake building loss estimation. 
In the proposed approach, building site ground motion is 
spatially interpolated based on the observed ground motion 
using GMPE as the weighting function to improve the accu-
racy. In loss calculation, the combination of Gaussian cop-
ula, Monte Carlo simulation, and kriging is used to derive 
the huge sample set of loss quantiles considering various 
uncertainties and their correlation. The approach is vali-
dated against past historical reported losses, and is applied 
to predict the building losses for the March 2022 Fukushima 
earthquake.

2 � Methodology

In the earthquake loss estimate approach based on struc-
tural vulnerability, the loss of the buildings can be simply 
expressed as (Pnevmatikos et al. 2020):

where IM is the ground motion intensity measure of build-
ing i, and Dr|IM denotes the relative loss probability of 
building i under the excitation of IM. It can be seen in Eq. 1 
that the estimation of earthquake loss includes mainly two 
efforts: calculating the ground motion intensity measures 
at the target building, and calculating the possible losses 
of the building based on IM. Therefore, advances in both 
aspects can ultimately be used to improve the accuracy of 
the seismic loss analysis. This section details our recent find-
ings in ground motion estimation and loss calculation, and 
approaches that can improve computational efficiency while 
ensuring sufficient accuracy.

2.1 � Cell Grid

Building loss estimates for a large earthquake often involve 
the number of buildings in the order of millions and, due to 
the speed required and the complexity of the task, a number 
of tasks need to be performed beforehand, such as collect-
ing site condition information and geocoding of exposure 
buildings. For efficiency, these tasks need to be performed at 
cell grid level to maintain reusability (Rusanen et al. 1993). 
The properly defined grid is used to represent the site condi-
tions for the buildings within the grid to reduce the amount 
of computing efforts. The ideal approach is to use a dot-
style grid so that each building is of its own grid to achieve 
the best accuracy, but this approach is practically impos-
sible because of the speed requirement and the computing 

(1)Loss =
∑

i

IM × Dr|IM
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resource constraint. In this study, a variable resolution grid 
is defined based on the consideration of population density, 
gross domestic product (GDP), and seismicity level. Fig-
ure 1 shows the four-level resolution grid used for Japan in 
this study.

2.2 � Spatial Interpolation of Ground Motion

The GMPE is a commonly used approach to predict the sta-
tistical mean ground motion at a given site, and its accuracy 
for any specific event is questionable since the approach is 
based on statistical regression. In a country like Japan where 
there are dense ground motion observation networks, the 
ground motion of sites close to the station can be better pre-
dicted using the observed ground motion records with proper 
implementation of spatial interpolation.

Spatial interpolation of ground motion needs to consider 
the impacting factors that affect ground motion, including 
earthquake source, path of seismic wave propagation, dis-
tance to earthquake source, and site conditions (Bora et al. 
2015). In the case of an actual event, the earthquake source 
is the same, and the propagation path for neighboring sites 
are similar, so the variable factors are only the distance (epi-
central or hypocentral distance) and site conditions. There-
fore, the spatial interpolation only needs to consider the vari-
ation of distance and site conditions.

As shown in numerous previous studies (Hata et al. 2011), 
the ground motion attenuation with distance is very complex 
due to the complicated underground geological structure, 
and the site condition amplification has a strong nonlinear 
property, but the statistical effect of these two parameters is 
included in the GMPE. Therefore, to simplify the implemen-
tation process of ground motion spatial interpolation, the 
GMPE can be used as the weight to consider the impact of 
these two factors. The interpolation process for an example 
grid is shown in the following three steps.

Step 1 Selecting neighboring stations near the grid
For a given grid, the stations within 5 km are first identi-

fied, and if there are no matching stations, the search dis-
tance is increased to 10 km, 15 km, and 20 km, respectively 
until matching stations are found, which implies that multi-
ple stations may be found to interpolate the ground motion 
for the defined grid. In Japan, there is at least one station 
within 20 km of a defined grid.

Step 2 Site condition modification
If the site condition of station i is different from the site 

of the grid center, modification needs to be performed to 
accommodate the change of site conditions. The GMPE 
is used to predict the ground motion at station i using the 
station site condition and the grid site condition. With the 
observed ground motion at station i, the site condition modi-
fied ground motion Interp(Stationi, SCgrid) can be expressed 
as:

where Obsi is the actual record of station i, GMPE(P1,P2) 
denotes the ground motion at location P1 with site condition 
P2 using GMPE, and similarly, Interp(P1, P2) denotes the 
interpolated ground motion at location P1 with site condition 
P2. According to the above definition, the difference between 
GMPE(Stationi, SCgrid) and GMPE(Stationi, SCstationi) lies in 
the difference of the site conditions, so the ratio of the two 
can be used to correct the relative site amplification.

Step 3 Distance modification
When site condition modification is completed, the site 

conditions of the matching stations are the same as the 
defined grid, so the ratio of the predicted ground motion 
at the grid to the predicted ground motion at the station, 
GMPE(Grid, SCgrid) / GMPE(Stationi, SCgrid), can describe 
the influence of the earthquake focal distance, and when it 
is combined with Interp(Stationi, SCgrid) as in Step 2, the 
ground motion interpolation result Interp(Grid, SCgrid)i of 
station i at the grid can be calculated as described in Eq. 4.

When the number of matching stations is more than 1, 
the Interp(Grid, SCgrid)i obtained for different stations may 
differ, so it is necessary to consider the influence from each 
matching station. The predicted ground motion at each sta-
tion under grid site conditions GMPE(Stationi, SCgrid) can 
be directly used as the weight Wi:

Finally, the spatially interpolated ground motion 
Interp(Grid, SCgrid) at the grid is aggregated as in the fol-
lowing using the above weight:

(2)

Interp
(
Stationi, SCgrid

)
= Obsi ×

GMPE
(
Stationi, SCgrid

)

GMPE
(
Stationi, SCstationi

)

(3)Wi =
GMPE

�
Stationi, SCgrid

�

∑
i

GMPE
�
Stationi, SCgrid

�

Fig. 1   A variable resolution grid for Japan. The grid size for level 1, 
2, 3, and 4 is 5 × 5 km, 1 × 1 km, 0.5 × 0.5 km, and 0.25 × 0.25 km, 
respectively.
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where Wi is the weight of station i, Interp(Grid, SCgrid)i 
represents the ground motion interpolation result achieved 
based on station i, and it contains modification from two fac-
tors: site condition modification and distance modification, 
as explained in Steps 2 and 3, respectively.

The GMPE itself has substantial impact on the modifica-
tion, therefore selecting applicable GMPE is very important. 
If rock site GMPE is chosen as the weight function, the site 
modification can be performed by adjusting ground motion 
directly instead of executing Step 2 (Paolucci et al. 2021).

2.3 � Earthquake Loss Calculation Method

Earthquake loss distribution has to be considered in the loss 
estimate, and based on the analysis of a large amount of 
detailed earthquake loss data, it was found that the distri-
bution is better represented by a Beta function (Zhao et al. 
2021). Similar conclusions were reached by Hu et al. (2007) 
and Lallemant and Kiremidjian (2015) using earthquake loss 
data from the 1998 Ninglang earthquake in China and the 
2010 Haiti earthquake, respectively. Assuming that the loss 
at the grid level is independent, Monte Carlo simulation 
can be used to sample the loss at the grid level directly, but 
due to the non-additive nature of the Beta function, the loss 
aggregation process must incorporate assumptions for loss 
spatial correlation.

Because of the lack of a large amount of actual detailed 
earthquake loss data, previous earthquake loss estimation 
mainly reflects the correlation of building losses indirectly 
by incorporating the spatial correlation of ground motion 
(Hu et al. 2022; Zhou et al. 2022). The closer the spatial 
distance of two grids (or buildings), the stronger the correla-
tion of the ground motion intensity they are subjected to, and 
the more correlated the losses are. Researchers have found 
that the spatial correlation of ground motion differs in differ-
ent regions and for different earthquakes in the same region 
(Hu et al. 2022), and that local site conditions and source 
parameters can also affect the ground motion correlations 
(Abbasnejadfard et al. 2020). In addition, Garakaninezhad 
and Bastami (2017) found that the isotropic assumption of 
spatial correlation of ground motion may be unreasonable, 
and it is complicated to accurately model the spatial correla-
tion of ground motion.

In our previous study, a spatial correlation model of 
earthquake losses had been developed based on a large 
number of actual detailed building-level earthquake loss 

(4)

Interp(Grid, SCgrid) =
∑

i

Wi× Interp(Grid, SCgrid)i

=
∑

i

Wi × Interp(Stationi, SCgrid) ×
GMPE(Grid, SCgrid)

GMPE(Stationi, SCgrid)

data in Japan, and the model was validated using actual 
loss data of the 2010 Canterbury and 2011 Christchurch 
earthquakes in New Zealand (Zhou et al. 2022). Different 
from other studies, we did not model the spatial correlation 
of ground motion because we have access to a large num-
ber of the actual detailed earthquake loss data. Instead, we 
proposed a spatial correlation model for the earthquake 
loss, which is a function of the spatial distance between 
two grids (buildings) as in Eq. 5 (Zhou et al. 2022):

where R is the correlation coefficient of damage ratio (Dr), 
Dr represents the ratio of building repair cost to replacement 
cost, which is a continuous number between 0 and 1 to better 
represent the building damage, and Δh is a scalar represent-
ing the spatial distance between two buildings (or grids).

Equation 5 indicates that exposed units spaced at shorter 
distances have higher correlation in earthquake losses, and 
the loss correlation decreases exponentially with increas-
ing distance, which is similar to the decay pattern of the 
ground motion correlation (Abbasnejadfard et al. 2021), 
indirectly validating the formula format proposed in Eq. 5. 
Since Eq. 5 is directly derived from the actual data, it also 
contains correlation information for ground motion and for 
vulnerability as well as other factors, and there is no need 
to simulate the correlation through the convoluted process 
of integrating correlation information from ground motion, 
vulnerability, and other factors. Therefore, the correlation 
model based on actual earthquake loss is a more straight-
forward, simpler approach than other approaches to mod-
eling the earthquake loss correlation.

In the earthquake loss aggregation process, spatial cor-
relation affects the uncertainty estimation, which in turn 
impacts the distribution of the estimate. If we assume that 
the loss estimate at the grid level is a random variable, the 
estimate for all the grids involved will be a multi-variable 
set of (L1, L2, … , Lk), where k is the number of grids. For 
any given Li, its marginal distribution is assumed to be a 
Beta distribution. If the joint distribution for the multi-
variable set can be constructed, the total loss can be inte-
grated using the convolution of the joint distribution. For 
describing the correlation in the joint distribution Gauss-
ian copula is introduced as in the following.

2.3.1 � Copula Theory and Its Application

Copula function is an approach used for correlation in 
multi-random variables (Hochrainer-Stigler et al. 2018). 
For the multi-variable set described above, the joint prob-
ability density function can be expressed as:

(5)R = Exp (−0.02524 × Δh)
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where H(l1, l2, … , lk) is the joint distribution function for 
multi-random variable (L1, L2, … , Lk), and C is the copula 
function with marginal distributions F1, F2, ... , Fk. Equa-
tion 6 shows that a joint probability density function can 
be represented by the product of copula function and mar-
ginal probability density distribution function, thus a joint 
function can be separated into the marginal distribution and 
correlation function. The randomness of the variables is 
expressed by their marginal distribution, and the correla-
tion is expressed by copula function. There are many types 
of copula functions, and the Gaussian copula function was 
selected in this study due to its simplicity in computation 
and implementation (Goda and Tesfamariam 2015).

2.3.2 � Seismic Loss Sampling Process

Loss integration over the joint probability distribution often 
requires a number of simplification assumptions for the 
correlation and integration, and the integration process is 
not only time- and resource-consuming but also lacks good 
accuracy. To address these issues, a sampling approach is 
proposed to estimate the random loss number from the joint 
distribution, which is explained as follows.

A random variable set ZBeta = (ZBeta1, … , ZBetaN) that con-
forms to marginal Beta distribution with a correlation matrix 
of R can be constructed to represent seismic loss, where N is 
the number of grids within the seismic impact area, ZBetai is 
the random loss number at grid i, and R∈[0,1]N×N, Rij rep-
resents the loss spatial correlation between grid i and grid j, 
and it can be established using Eq. 5, so R satisfies Rij = Rji, 
and Rii = 1. Three steps are needed to complete the sampling 
of the random variable set ZBeta.

(6)

f (l1, l2,… ,lk) =
�
kH(l1, l2,… , lk)

�l1�l2 … �lk
=

�
kC(F(l1),F(l2),… ,F(lk))

�l1�l2 … �lk

=
�
kC(u1, u2,… , uk)

�u�u2 … �uk
⋅

�F1(l1)

�l1
⋅

�F2(l2)

�l2
⋅… ⋅

�Fk(lk)

�lk

= c(F(l1),F(l1)… ,F(lk)) ⋅ f1(l1)f2(l2) ⋅… ⋅ fk(lk)

Step 1 An N-dimension random variable set XGauss = 
(XGauss1, … , XGaussN) with correlation matrix R can be gen-
erated using Gaussian copula. Due to the linear property of 
Gaussian functions, the generation process can be realized 
by combining the Monte Carlo sampling of the Gaussian 
variable and Cholesky decomposition:

where A is triangular matrix of R after Cholesky decomposi-
tion, and (I1, I2, … , IN) is the Gaussian independent variable 
by Monte Carlo sampling.

Step 2 Calculating the Gaussian distribution function 
Ф(·) of XGauss will result in N-dimension random variable 
set YUniform = (YUniform1, … , YUniformN), where YUniformi is a 
uniform distribution in [0,1] according to the probability 
integral transform approach as described in Angus (1994).

Step 3 Utilizing the quantile transform approach (Gatti 
2004), the inverse function Z−1

Beta
(⋅) of the marginal distri-

bution function of the uniform distribution YUniform can be 
derived, thus resulting in the loss random number set of 
(ZBeta1, … , ZBetaN) that conforms to both the correlation 
matrix and the marginal distribution.

Figure 2 shows the sampling process for three grid cells. 
As shown in Fig. 2, the correlation matrix for the random 
variable has not changed. In addition, in Step 3, the mar-
ginal distribution ZBetai for each grid is determined by the 
mean and variance of the building loss corresponding to 
the ground motion in the grid, and its shape changes as the 
Beta function parameters α and β change, demonstrating the 
variation for different ground motion and different types of 
buildings.

When the number of grids is small or in the order of 
thousands, the sampling process as described above can be 
directly applied. Because computing time increases expo-
nentially with the increase of the grid number, the sampling 
has to be performed at limited grids, and kriging is used 

(7)� = � ∙ ��

(8)
(
XGauss1, ...,XGaussN

)
=
(
I1, ..., IN

)
∙ A

Fig. 2   Random loss number sampling based on Gaussian copula
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to interpolate the loss quantile for other grids that are not 
sampled. The kriging approach has been verified by Wang 
(2020) to be effective in generating loss quantiles for earth-
quake loss estimate.

2.4 � General Framework

To further explain the loss calculation process described 
above, a framework chart is provided in Fig. 3.

Additional explanations of Fig. 3 are:

(1)	 Cell grid is used to improve the computational speed, 
and in practice grid information should be prepared in 
advance, as explained in Sect. 2.1.

(2)	 Source parameters are determined by the GMPE model 
used in interpolating the ground motion.

(3)	 Additional information on the recommended number 
of grids for direct sampling can be found in Zhou et al. 
(2022).

3 � Method Validation

The objective of this section is to verify the correctness of 
the proposed method in the implementation and the valid-
ity of the earthquake loss estimation. Losses to Zenkyoren1 
insurance policies from three historical earthquakes in 
Japan—the 2011 Great East Japan Earthquake, February 
2021 Fukushima Earthquake, and May 2021 Fukushima 
Earthquake—were used to validate the proposed method.

3.1 � Data Preparation

To validate the proposed approach the exposure dataset of 
Zenkyoren is used. The exposure is an inventory of more 
than 3 million buildings, which are geocoded to the variable 

Fig. 3   A framework for post-earthquake building loss estimation based on observed ground motion considering various types of uncertainty and 
spatial loss correlation

1  Zenkyoren (Japan) is also known as the National Federation of 
Agricultural Cooperative Mutual Insurance and provides building 
endowment insurance, which insures buildings owned by the poli-
cyholder against damage caused by fire, earthquake, or other natural 
hazard-related disasters.
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grids explained above. The distribution of the building 
inventory is shown in Fig. 4, and the site condition of Vs30 
(the average S-wave velocity of the top 30 m of the strata) 
is assembled according to the dataset developed by J-SHIS 
(Japan Seismic Hazard Information Station) at 250 m resolu-
tion (Imamura and Furuta 2015).

The structural vulnerability represents the relationship 
between ground motion and damage ratio (Armas et al. 
2017) and is derived based on the detailed loss data from 
the 2011 Great East Japan Earthquake. Figure 5 shows the 
schematic vulnerability of a typical building type, and the 
uncertainty of loss distribution is also shown for three dif-
ferent levels with varying Beta function parameters. For this 
study, PGA was chosen as the ground motion parameter, and 
Dr was used as the building damage parameter.

Based on the observed ground motion data from KiK-
net and K-NET, Zhao et al. (2016) proposed a GMPE for 
the subduction type of earthquakes in Japan considering the 
source mechanism and fault type. Since Zhao et al. (2016) 
used the Japanese dataset and its effectivity was also proven 

by Tong et al. (2022), it was selected for this study. The 
formula of Zhao et al. (2016) is as follows:

where the items with r or x are distance related, and A is the 
site amplification item including linear and nonlinear effects.

3.2 � Validation of the Method

The first validation is to make sure that the approach is prop-
erly implemented. Since the vulnerability is mostly based 
on the data from the 2011 Great East Japan Earthquake, the 
estimate for the same event was performed, and the result 
was USD 6.08 billion (based on the exchange rate in March 
2011), while the actual reported building loss for Zenkyoren 
was about USD 6.70 billion. Although there is a slight dif-
ference, the estimate is appropriate given the large uncer-
tainty in the estimation process, verifying the correctness 
in implementation.

Further validation was performed for two other events. 
In February and May 2021, two earthquakes occurred near 
the east coast of Honshu Island, with magnitudes of 7.1 and 
6.8, respectively (GIAJ 2021; Wikipedia 2021). The build-
ing loss estimation was performed for these two events, and 
the results are shown in Figs. 6 and 7 with a total building 
mean loss of USD 0.757 and 0.117 billion (based on the 
exchange rate in February 2021). Zenkyoren reported that 
the corresponding loss was USD 1.016 and 0.122 billion, 
respectively (Zenkyoren 2022), which included loss from 
other perils such as landslides and fire. Historical statistics 
show that the building loss by shaking was about 80% of 
the total loss (Bird and Bommer 2004). The estimate by this 
study for the February 2021 event was 74.5% of the total 
loss, and for the May 2021 event it was 96.2%. Overall, the 
loss estimates for the two earthquake events are acceptable 
considering the large uncertainty in the estimation process.

(9)
ln(y) = fmints + gint ⋅ ln(r) + gintsL ⋅ ln(x + 200)

+eintS ⋅ x + eV
int

⋅ xV + gint + ln(A)

Fig. 4   Building inventory 
distribution for the Zenkyoren 
insurance dataset. RC reinforced 
concrete

Fig. 5   Schematic vulnerability for a typical type of building with var-
ying uncertainty distribution. PDF Probability density function; PGA 
Peak ground acceleration
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Recent studies have shown that ignoring the spatial cor-
relation of ground motion could overestimate the rare losses 
and underestimate frequent losses (Abbasnejadfard et al. 
2020). From the loss estimation results for the two earth-
quakes in 2021, we slightly underestimated the loss for the 
February event and overestimated the loss for the May event, 
indicating no bias in our estimation. It should be noted that 
the higher estimate for the May event was probably caused 
by two factors—the weak buildings were already damaged 
or cleared out by the February event, and there was probably 
retrofitting for weak buildings after the February event.

The cumulative probability distribution curves in Figs. 6 
and 7 show that the cumulative probability densities (CPD) 
at the mean values for the February and May events are 
different—64.4% and 69.8%, respectively. This is different 
from PAGER, whose standard deviation and distribution are 
fixed for all earthquakes, and the CPD at the mean loss esti-
mates by PAGER is always 50% for all cases (Jaiswal and 
Wald 2011). This kind of difference is caused by the fact 
that the proposed approach is a simulated estimate and the 
PAGER approach is a statistical one.

The probability distribution of the two earthquake loss 
estimates is positively skewed with a long tail on the right 
side of the distribution in Figs. 6 and 7, which conforms to 
the statistical characteristics of catastrophe risk (Lane and 
Mahul 2008). The maximum loss for the February event 
is USD 5.24 billion, and the maximum loss for the May 
event is USD 1.8 billion, corresponding to about 6.9 times 
and 14.9 times the average loss of the two events, respec-
tively, indicating that the possibility of extreme loss can be 
obtained in the proposed method. In contrast, the maximum 
loss by PAGER is infinite, and although the right long tail 
of PAGER’s loss distribution becomes thinner and thinner 
with the increase of the loss (Jaiswal and Wald 2011), it can 
extend indefinitely in theory. It is well known that in risk 
management and catastrophe insurance, the capital required 
for extreme losses with a small probability of occurrence 
is increasing in geometric order. Therefore, compared to 
PAGER, the proposed loss estimation method is more realis-
tic in terms of precision and application in risk management.

Even though the probability distributions of both earth-
quake loss estimates are positively skewed, the coefficients 
of variation and skewness of the two distributions are dif-
ferent—1.12, 1.98, and 1.79, 3.67, respectively. In fact, the 
probability distributions of overall loss are jointly regulated 
by the marginal probability density of the loss at the grid 
level and the spatial loss correlation within the seismic 
impact area. Therefore, the probability distribution charac-
teristics of the loss estimation results are unique for each 
individual earthquake event.

The above analysis demonstrates that the proposed 
method can estimate earthquake losses reliably, both in 
terms of mean and probability distributions. The loss esti-
mation result is an integration of the spatial interpolation 
method in Sect. 2.2 and the loss calculation in Sect. 2.3 
according to the general framework in Fig. 3. Through the 
comparison between estimated building loss and the actual 
earthquake building loss for three different earthquake 
events, the validity of the proposed approach is verified and 
the proposed approach can be used to predict future Japanese 
earthquake building loss.

4 � Application

On 16 March 2022, an earthquake with a magnitude of 7.3 
occurred offshore Fukushima with a depth of 60 km (USGS 
2022). This event occurred near the Pacific plate bound-
ary and was of the subduction type. The Japan Earthquake 
Research Committee provided more information on the fault 
model and source parameters (JERC 2022). It was the most 
damaging earthquake in the last three years, and caused 
derailment of the Shinkansen high-speed train, 4 deaths and 
225 injuries, and left more than 2 million houses without 

Fig. 6   Building loss estimate for the February 2021 earthquake event 
in Japan

Fig. 7   Building loss estimate for the May 2021 earthquake event in 
Japan
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electricity (Wikipedia 2022). Zenkyoren had not published 
its loss report as of the time this study was completed, and 
the proposed approach in this study is used to predict the 
building losses with discussions on the approach and the 
results.

The spatial interpolation approach was used to estimate 
the PGA at all grids, and grids with a PGA level above 30 
gal were used to define the seismic impact area. The PGA 
distribution within the impact area is shown in Fig. 8. Based 
on the PGA interpolated for the impacted grids, loss quan-
tile sampling was performed 2000 times for all the grids to 
ensure good accuracy in uncertainty prediction and perfor-
mance speed. The total building loss was aggregated for each 
sample. The distribution of the sampled results is shown in 
Fig. 9, indicating that the estimate has a 58.1% chance in 
USD 0−1 billion and a 27.1% chance in USD 1−2 billion 
(based on the exchange rate in March 2022). The estimate 
has a long tail in the distribution, representing high prob-
ability of small and medium loss and low probability of big 
loss. From the loss probability accumulation, the probability 
of the estimate below USD 1.325 (mean), 3, and 6 billion is 
63.5%, 90.4%, and 98.5%, respectively. The mean estimate 
is USD 1.325 billion.

5 � Discussion

This section briefly discusses the results obtained in the 
application section. Figure 10 shows the comparison of 
PGA by GMPE, at observation stations and interpolated 
for site class II (300 < Vs30 ≤ 600) and III (200 < Vs30 ≤ 
300). As shown in Fig. 10, when distance to fault is below 
150 km, GMPE underpredicts PGA for both site classes II 
and III, but the interpolated PGA agrees well with station 
observed PGA, validating the argument that the proposed 
spatial interpolation approach has a higher degree of accu-
racy in predicting the ground motion than GMPE.

The station matching distribution for all grid cells is 
shown in Fig. 11, where 83.8% of the grids have only 1 or 
2 matching stations for interpolation. For grids with only 
one matching station, 94.6% of the grids have a match-
ing distance less than 10 km, indicating greater impact of 
distance than that from the number of matching stations. 
The farther the matching distance, the lower the correla-
tion of ground motion, thus the lower the quality of the 
interpolation results. Conversely, the shorter the match-
ing distance, the smaller the impact from other factors, 
thus the higher the accuracy of the interpolation results. A 
dense network of ground motion stations can help improve 
the reliability of the ground motion spatial interpolation 
results, therefore more monitoring stations are desirable 
in earthquake-prone areas to provide better ground motion 
information for future post-earthquake loss estimation and 
emergency management.

The weight by each station when there are only two 
matching stations is shown in Fig. 12, where the weight is 
pretty similar for both stations, and it is mostly between 
0.4 and 0.6, and the reason is that the matching distance is 
mostly small (often less than 5 km). This shows that there 
is no uneven impact from a single station when there are 
two stations.

Fig. 8   Interpolated peak ground acceleration (PGA) within the earth-
quake impact area for the March 2022 Fukushima earthquake event 
in Japan

Fig. 9   Building loss estimate distribution for the March 2022 Fuku-
shima earthquake event in Japan
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When the loss is aggregated at the prefecture level, the 
estimated mean and coefficient of variation (CV) are shown 
in Fig. 13. The loss is concentrated in Fukushima and Miyagi 
Prefectures, with a mean of USD 468.5 and 405.1 million, 

respectively. This distribution of building loss estimates cor-
relates well with the predicted PGA in Fig. 8, which is also 
observed in the three historical earthquakes (Sect. 3.2). The 
CV is much different for different prefectures, demonstrat-
ing the superiority of the proposed approach in representing 
the varying standard deviation in different regions over the 
PAGER approach that uses a constant to represent loss vari-
ation for any given country or region.

6 � Conclusion

To address the issues in traditional loss estimate approaches, 
this study proposed an improved approach based on spa-
tially interpolated ground motion and big data sampling 
that considers the spatial correlation of earthquake losses. 
The 2011 Great East Japan Earthquake was used to verify 
the implementation, and the February and May 2021 earth-
quake events were used to validate the appropriateness of the 
proposed approach. The proposed method was then applied 
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to predict the March 2022 Fukushima earthquake building 
losses with detailed discussions.

Comparison of PGA between the observed, the interpo-
lated, and the estimated by GMPE shows that the interpo-
lated approach is much better than the GMPE in predicting 
PGA for all the grids in the earthquake impact area. The 
interpolation using the GMPE as the weight to modify the 
change effect of both focal distance and site condition has 
been proven to be effective in predicting earthquake ground 
motion.

The detailed building loss estimate through intensive 
sampling not only provides a distribution of loss at different 
levels, but also in different prefectures. The varying CV in 
different prefectures demonstrates the effectiveness of the 
proposed approach in identifying variation difference for dif-
ferent regions in the same earthquake event, which has not 
been implemented in other approaches.

The proposed approach has good generalization capa-
bility for different countries and regions, where the cor-
responding GMPE and vulnerability need to be replaced. 
Using the grid cell and kriging approach, dimension reduc-
tion has been achieved for speed enhancement, providing a 
fast estimation approach after an earthquake. The two core 
components proposed in this study, the spatial interpolation 
of ground motion and the spatially correlated loss quantile 
sampling, can be easily adapted in future risk quantification 
systems for applications in other disaster mitigation efforts.

Correlation is a key factor in random variable quanti-
fication and aggregation, and only spatial correlation was 
considered in this study. Correlation of different buildings 
within the same grid and between different types of loss such 
as content and business interruption will further impact the 
uncertainty of loss estimate distribution and will be a topic 
in future studies.
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