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Abstract
High-resolution, dynamic assessments of the spatiotemporal distributions of populations are critical for urban planning 
and disaster management. Mobile phone big data have real-time collection, wide coverage, and high resolution advantages 
and can thus be used to characterize human activities and population distributions at fine spatiotemporal scales. Based on 
six days of mobile phone user-location signal (MPLS) data, we assessed the dynamic spatiotemporal distribution of the 
population of Xining City, Qinghai Province, China. The results show that strong temporal regularity exists in the daily 
activities of local residents. The spatiotemporal distribution of the local population showed a significant downtown-suburban 
attenuation pattern. Factors such as land use types, holidays, and seasons significantly affect the spatiotemporal patterns of 
the local population. By combining other spatiotemporal trajectory data, high-resolution and dynamic real-time population 
distribution evaluations based on mobile phone location signals could be better developed and improved for use in urban 
management and disaster assessment research.

Keywords China · High-resolution mobile phone data · Spatiotemporal population distribution · Urban management · 
Xining City

1 Introduction

Population exposure to disasters is one of the most important 
issues of disaster risk management and can cause serious 
casualties during times of disaster (UNISDR 2015). With 
the rapid development of urbanization and the accelerating 
pace of urban life, the spatial activities and movements of 
the population also have characteristics of highly dynamic 
temporal changes and spatial differences. Understanding 
urban population development dynamics at fine temporal 
and spatial scales can provide an important scientific basis 

for exploring the laws that govern urban residents’ activities 
to optimize the allocation of public resources and allow the 
formulation of public safety emergency plans.

Because urban population distribution has the dual uncer-
tainties of scope and time, it is difficult to accurately ana-
lyze the spatial distribution of a population. In traditional 
population density monitoring methods, the main data types 
involved include census data (Huang et al. 2021), land use 
data (Zhang 2012), urban area data (Ding et al. 2014), data 
representing the number of residential units (Yang et al. 
2006), and remote sensing images (Wu et al. 2005; Feng 
2010; Li et al. 2013), among others. Some scholars have 
begun to pay attention to the study of population distribu-
tion with high spatial resolution based on census data and 
satellite imagery (Tiecke et al. 2017; Huang et al. 2021). 
However, the evaluation results have been mostly static in 
the urban population distribution (Dong et al. 2016). But 
population distributions vary widely throughout the course 
of a day, especially in densely populated urban areas, due to 
human activities (Wei et al. 2022).

The advent of the era of big data has provided the 
opportunity to dynamically evaluate temporal and spatial 
population distributions. With the rapid development and 
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popularization of sensor networks, mobile positioning, 
wireless communication, and mobile Internet technologies, 
obtaining massive individual-level, high-accuracy spati-
otemporal data has become a reality (Zheng et al. 2012; Li 
et al. 2014; Liu et al. 2014; Lu et al. 2014; Yue et al. 2014). 
Various individual-level spatiotemporal data types, such as 
volunteer positioning data (Shen and Chai 2013), floating 
car positioning data (Tang et al. 2015), mobile phone posi-
tioning and communication data (Ahas et al. 2015), social 
network check-in data (Hawelka et al. 2014; Cai et al. 2017; 
García-Palomares et al. 2018), and bus smart card data 
(Long et al. 2012), are emerging. These location-based data 
effectively record spatiotemporal distribution and behavioral 
information at the individual scale and are important data 
sources for conducting fine-scale human mobility research 
(Chen, Song et al. 2018).

Mobile signalling data can represent the real-time distri-
bution of an urban population and have optimal character-
istics such as strong timelines and wide coverage. The large 
sample size of individual-level spatiotemporal mobile loca-
tion information provided by mobile phone data has intro-
duced unprecedented possibilities for research in geography, 
urban planning, and other disciplines that require the use of 
spatial location data (González et al. 2008; Liu et al. 2011; 
Guo et al. 2014). Researchers have conducted many impor-
tant studies in the fields of urban spatial structures (Reades 
et al. 2009; Calabrese et al. 2011), built-up environment 
evaluations (Wang et al. 2015), job-housing relationships 
(Kung et al. 2014; Leng et al. 2015; Niu and Ding 2015), 
transportation and commuting behaviors (Ahas et al. 2010; 
Yuan et al. 2012; Csáji et al. 2013), activity patterns (Song 
et al. 2010; Calabrese et al. 2013; Wang 2014), and so on. 
In the population spatial distribution field, researchers have 
used mobile phone data to conduct studies regarding popu-
lation spatial behaviors and flows and on the identification 
of densely populated areas (Vieira et al. 2010; Deville et al. 
2014; Gao 2014). The correlation between mobile phone 
location records and the spatiotemporal characteristics of 
human activities has been revealed in many studies (Cao 
et al. 2017; Li, Chen et al. 2017; Xie et al. 2020). A general 
conclusion of these studies is that it is more appropriate and 
reliable to use mobile phone data than previously used data 
types to evaluate the spatial distribution of a population.

China is a country that is experiencing rapid urbanization. 
By 2020, the urbanization rate in China reached 63.89%. 
The actual floating population reached 370 million.1 Rapid 
urbanization has also accelerated the population flow in the 
nation. It is thus necessary to determine the activity patterns 
of local populations throughout the daily cycle to account 

for fine-scale spatiotemporal variabilities. However, cur-
rently available population data are often collected only at 
the administrative unit level in China, and this scale is too 
coarse to analyze the spatial variations of interest. Census 
data also have low temporal resolutions that cannot reflect 
the spatial distribution variations that occur over the course 
of a single day (Feng 2010; Ding et al. 2014). Compared to 
conventional static data sources such as population census 
data, mobile phone data are representative indicators with 
a much finer spatiotemporal scale that can show the actual 
dynamic activities of urban dwellers. With the popularity 
of mobile big data in recent years, some researchers have 
begun to try to use mobile phone data to evaluate the spati-
otemporal distribution of population in China. Kang et al. 
(2012), for example, estimated an urban population distribu-
tion by using mobile phone call data based on the service 
area of base stations in Harbin, China. Yang et al. (2017) 
used mobile phone base station data to estimate the temporal 
and spatial residence distribution of the urban population 
in Shenzhen City, China. Zhong et al. (2017) and Li, Chen 
et al. (2017) used mobile phone data to analyze the spatial 
agglomeration and temporal population movement charac-
teristics in Shanghai. Through constructing a parametric 
model and nonparametric model, Chen, Wu et al. (2018) 
assessed the spatial distribution of urban population in near 
real time using mobile phone call data. Chen et al. (2019) 
assessed the high-precision spatial and temporal distribu-
tion of population using mobile phone data in Tianjin City, 
China. However, these studies usually used mobile phone 
call location data, which actually reflect the location of the 
base station used for mobile phone calls, not the specific 
location of the population (Kang et al. 2012; Yang et al. 
2017). At the same time, the mobile phone call location data 
also have the characteristics of irregular sparse sampling in 
the time dimension (Yin et al. 2017). Thus, the assessment 
results of population distribution based on mobile phone 
call location data usually have a deviation from the actual 
distribution of population (Barabási 2005; Candia et al. 
2008; Zhao et al. 2016). In recent years, with the develop-
ment of information push technology and the widespread 
popularity of application programs such as WeChat, Weibo, 
and Qunar, it is possible to obtain mobile phone user actual 
location information. Through the anonymization and group 
processing of personal information, on the premise of pro-
tecting personal privacy, the mobile phone data based on 
the users’ location can more accurately reflect the real-time 
distribution of the population (Li, Huang et al. 2017; Chen, 
Song et al. 2018; Xia et al. 2020). However, at present, the 
study on population spatiotemporal distribution based on the 
mobile phone user-location signal (MPLS) data is relatively 
limited, and it is urgent to strengthen the empirical applica-
tion research.1 http:// www. stats. gov. cn/ tjsj/ tjgb/ rkpcgb/ qgrkp cgb/ 202106/ t2021 

0628_ 18188 26. html.

http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818826.html
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818826.html
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In view of the gap identified, taking Xining City, Qinghai 
Province, China, as an example, we conducted a real-time 
assessment of the spatiotemporal distribution of local popu-
lation based on the hourly MPLS big data at a fine scale. 
Xining is not only a disaster-prone area, but also a rapidly 
urbanized area. The study on the spatiotemporal distribution 
of population at a fine scale is of great significance to both 
local disaster management and urban planning. However, at 
present, there is a lack of research on local high-resolution 
population spatiotemporal dynamic changes. Census data are 
still the basic data for most studies, which makes it difficult 
to accurately evaluate the real-time distribution and spati-
otemporal evolution of population. Thus, the main objectives 
of this study were: (1) to analyze the characteristics of the 
daily activities of local residents based on the hourly MPLS 
data; (2) to distinguish the differences in population activity 
characteristics in areas of different urban land use types; (3) 
to determine the spatiotemporal distribution pattern of local 
population and identify the main factors that influence this 
pattern; and (4) to provide some suggestions for population-
level spatiotemporal dynamic evaluations based on MPLS 
data.

2  Study Area

The study was conducted in Xining City, Qinghai Prov-
ince, China. Xining is located in the northeastern region of 
the Qinghai-Tibet Plateau and in eastern Qinghai Province 
(Fig. 1). It is the capital city of Qinghai Province. The city 

has an average elevation of 2261 m. The terrain is high in 
the southwest and low in the northeast, showing an east-west 
gradient. The city has a semiarid continental plateau climate, 
with an annual average sunshine duration of 2510.1 hours, 
an annual average temperature of 5.5 °C, and an annual aver-
age precipitation total of 500 mm.2 Xining is also a natu-
ral hazard-related disaster-prone area. Earthquakes, floods, 
landslides, droughts, snowstorms, and other disasters occur 
from time to time.

Xining City includes five districts (Chengdong, Cheng-
zhong, Chengbei, Chengxi, and Huangzhong Distircts) and 
two counties (Datong County and Huangyuan County), 
with a total area of 7660  km2. The regional gross domes-
tic product (GDP) was approximately RMB 154.88 billion 
yuan (USD 22.16 billion) in 2021.3 By 2021, the permanent 
resident population of the city had reached 2.47 million.4 
It is a typical immigrant city with multiethnic gatherings 
and multiple religions. Among the ethnicities present, Hui, 
Tibetan, and Tu are the main ethnic minority groups in the 
region. Xining is the only central city on the Qinghai-Tibet 
Plateau with a population of more than one million and is 
one of the large high-elevation cities in the world. Among 
the local population, urban population accounted for 79.33% 

Fig. 1  Location of the study 
area—Xining City, Qinghai 
Province—and mobile phone 
user-location signal (MPLS) 
sites

2 https:// www. xining. gov. cn/ zjxn/ xngk/# dl
3 https:// tjj. xining. gov. cn/ zwgk/ fdzdg knr/ zcwj/ qtgw/ 202201/ t2022 
0130_ 164822. html
4 https:// tjj. xining. gov. cn/ tjsj/ tjxx_ 4111/ 202203/ t2022 0329_ 167513. 
html

https://www.xining.gov.cn/zjxn/xngk/#dl
https://tjj.xining.gov.cn/zwgk/fdzdgknr/zcwj/qtgw/202201/t20220130_164822.html
https://tjj.xining.gov.cn/zwgk/fdzdgknr/zcwj/qtgw/202201/t20220130_164822.html
https://tjj.xining.gov.cn/tjsj/tjxx_4111/202203/t20220329_167513.html
https://tjj.xining.gov.cn/tjsj/tjxx_4111/202203/t20220329_167513.html
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of the permanent resident population. The urbanization 
rate of the resident population increased from 63.70% in 
2010 to 79.33% in 2021, with an average annual increase of 
1.42%.5 Additionally, based on the statistics, the penetration 
rate of mobile phones in Qinghai Province reached 132.35 
units/100 people, more than 1 mobile phone per person in 
2019 (XBS 2020). Due to the limitation of data acquisition, 
this study mainly focused on the four core urban districts 
of Xining City—Chengdong District, Chengzhong District, 
Chengbei District, and Chengxi District (Fig. 1).

3  Data and Methods

In order to analyze the pattern of population activity, mobile 
phone signal data and land use data were used in this study. 
To further analyze the temporal and spatial distribution 
characteristics of local population, the kernel density analy-
sis and the spatial autocorrelation analysis methods were 
employed.

3.1  Mobile Phone Signal Data

The MPLS data used in this study were obtained from a 
leading third-party mobile push service provider, the coop-
erative companies of which include first-line mainstream 
applications (APPs), such as WeChat, Weibo, and Qunar. 
This push service technology covers billions of terminals 
and hundreds of thousands of access applications, and the 
numbers of monitored daily users and concurrent online 
users are nearly one billion and more than hundreds of mil-
lions, respectively. Using the message push service, mobile 
phone user location information (in latitude and longitude 
coordinates) can be recorded at a 1-min updating frequency, 
thus providing dense time series population movement 
dynamics from the hourly to daily, weekly, and monthly 
temporal scales. Therefore, the MPLS data could be used as 
an indicator to characterize human activities and population 
distribution information at a fine spatiotemporal scale (Chen, 
Song, et al. 2018).

After the data had been collected, cleaned, and dedupli-
cated, the original MPLS data were recorded by summing 
the real-time locations of active mobile phone users using 
a 6-bit geohash format with longitude and latitude geo-
detic coordinates. One 6-bit geohash unit corresponds to a 
0.72  km2 rectangular area that contains a certain number of 
MPLS, and represents the number of people using mobile 
phones in that area (see Fig. 1). To reflect the impacts of dif-
ferent factors on population activities, we selected six days 

of hourly MPLS data for analysis, including data collected 
on a summertime Monday (2 July 2018) and Saturday (7 
July 2018), a wintertime Monday (2 December 2018) and 
Saturday (8 December 2018), the National Day Golden 
Week holiday (1 October 2018), and the Chinese New Year 
(Spring Festival) holiday (16 February 2018). All data 
were collected in 2018 for Xining City. All the information 
regarding users’ identities and privacies were removed from 
the MPLS dataset. The intensity of human activities was 
estimated from these MPLS records. Larger MPLS records 
would indicate a higher human activity intensity.

3.2  Land Use Data

Land use is an important manifestation of human activi-
ties in terrestrial space. Land use types reflect the functional 
attributes of urban spaces. Different land use types attract 
urban populations to gather or disperse (Qi et al. 2013; Shi 
2019). The land use data used in this study were derived 
from the Chinese urban land use database established by 
Gong et al. (2019). It is the first set of object-oriented, high-
resolution urban land use maps produced at the plot scale 
in China by combining remote sensing and multisource big 
data sources. The land use classifications in the Chinese 
urban land use database comprise 5 first-class land use cat-
egories and 12 second-class categories (for the detailed clas-
sification information, please refer to the work of Gong et al. 
(2019)). The land use types of Xining City include 4 first-
class land use categories (residential, commercial, industrial, 
and public management and service) and 9 second-class cat-
egories. Among the first-class categories, commercial lands 
include 2 second-class categories (business office and com-
mercial service); and public management and service lands 
include 5 second-class categories (administrative office, edu-
cational, medical, sport and cultural, and park and greens-
pace) (Fig. 2). Since the mobile phone data obtained do not 
cover the 2 second-class categories of administrative office 
and sport and cultural land use, the following analysis on 
population activities of different land use types focused on 
the 7 second-class categories, namely, residential, business 
office, commercial service, industrial, educational, medical, 
and park and greenspace.

3.3  Hourly Population Activity Assessment

Although the MPLS data do not represent actual population 
sizes, they have been proven to be a reasonable indicator 
for use in delineating spatiotemporal population distribution 
patterns (Chen, Wu et al. 2018). Mobile phone location data 
reflect changes caused by the movements of people. These 
changes can be regarded as stable and regular during work-
ing hours when people are mostly concentrated in work-
ing areas. In contrast, during nonworking hours, people are 

5 https:// tjj. xining. gov. cn/ tjsj/ tjxx_ 4111/ 202204/ t2022 0402_ 167746. 
html

https://tjj.xining.gov.cn/tjsj/tjxx_4111/202204/t20220402_167746.html
https://tjj.xining.gov.cn/tjsj/tjxx_4111/202204/t20220402_167746.html
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mostly concentrated in nonworking areas such as residential 
areas and restaurant areas. To understand the daily activity 
patterns of local residents, we selected six days of hourly 
MPLS records to simulate the general daily activities of 
people in this study. Specifically, we first obtained an arith-
metic average of the number of MPLSs in each evaluation 
unit at the same time point, t, to obtain the average regional 
MPLS value. Then, the hourly population flow over 24 hours 
each day—which represents the general daily activities of 
people—was analyzed to evaluate the population activity 
patterns under the influence of different times of the day, 
seasons, holidays, and other factors. The temporal regularity 
of population activities could be evaluated according to the 
following formula:

where  RMPLSt represents the average amount of regional 
mobile phone signals at time t;  MPLSti is the number of 
mobile phone signals in evaluation unit i at time t; and n 
represents the total number of evaluation units in the region.

3.4  Differential Analysis of Population Activities 
for Different Land Use Types

Different land use types promote the automatic agglomera-
tion or dispersion of urban populations due to differences in 
the purposes of various human activities. Thus, the spatial 
distribution of the urban population should present different 

RMPLS
t
=

1

n

∑n

i=1
MPLS

ti

characteristics for different land use types. It is critical for us 
to further understand the spatiotemporal activity patterns of 
regional populations and learn more about the mechanisms 
of relevant population dynamics. We first obtained popula-
tion activities data by conducting a spatial overlay analysis 
of the MPLS and land use type data. Then we analyzed the 
patterns of hourly population activities through statistical 
analyses performed for different land uses in a day.

3.5  Spatiotemporal Characteristic Analysis 
of Population Distribution

In general, the population distribution per unit area is regular 
but not uniform. To analyze the population density distribu-
tion characteristics, we employed kernel density analysis to 
evaluate the spatiotemporal distribution of the local popu-
lation in the study area. A kernel density analysis was used 
to calculate a magnitude-per-unit area from point or pol-
yline features by applying a kernel function to fit a smoothly 
tapered surface to each point or polyline. Then, the discrete 
point set was transformed into a smooth density change map 
to reveal the spatial distribution pattern. The kernel density 
was calculated using the equation:

where F (u) is the kernel density calculation function at the 
spatial position u; d is the distance attenuation threshold; 
n is the number of elements whose distance from position 

F(u) =
∑n

i=1

w

d2

(

u − c
i

d

)

Fig. 2  Land use types (second-
class categories) in Xining City, 
Qinghai Province Source Gong 
et al. (2019)
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u is less than or equal to d; w represents the spatial weight 
function; and ci is the core element i.

The kernel density method considers the distance attenu-
ation effect of a point on its surrounding position, and the 
resulting values gradually decrease as the central radiation 
distance increases (Yu and Ai 2015). We adopted the statisti-
cal MPLS data to represent the population at each 6-bit geo-
hash point (see Fig. 1). When using the population data for 
kernel density analyses, the sampling point can be regarded 
as the highest value on the local surface. Farther away from 
the sampling point, the surface value gradually decreases. 
When the distance is beyond the search radius, the surface 
value is zero. Thus, this method has obvious advantages 
when simulating population densities due to the clustering 
characteristics of population distributions (Li, Chen et al. 
2017; Sun 2020). Since each 6-bit geohash grid represents 
a rectangular area of 0.72  km2, a search radius of 1 km was 
selected and the resolution of the output cell size was set 
to 30 m.

3.6  Population Spatial Autocorrelation Analysis

We used the spatial autocorrelation analysis method to fur-
ther analyze the spatial population distribution differences in 
the study area. Specifically, we first used high/low clustering 
analysis (Getis-Ord General G), a method that can meas-
ure the degree of clustering of either high or low values, to 
evaluate the overall concentration of the regional popula-
tion. Then, the difference in the regional population density 
distribution was analyzed by using the cluster and outlier 
analysis method (Anselin Local Moran’s I). Given a set of 
weighted features (including the neighborhood relationships 

among points), Anselin Local Moran’s Index analysis can 
be used to identify statistically significant hotspots (densely 
populated areas), cold spots (sparsely populated areas), and 
spatial outliers (transition zone points) where the population 
density changes. This method can thus be used to assess 
the staggered distribution of densely populated areas and 
sparsely populated areas (Sun 2020).

4  Results

An individual’s daily activities are always composed of 
habitual behaviors and exhibit overall regularity. However, 
due to differences in the purpose of various activities, the 
patterns of population activities of different land use types 
also differ. Due to human mobility, spatiotemporal patterns 
of population distribution change continuously over time.

4.1  Daily Population Activities

Figure 3 shows the hourly MPLS number changes in Xin-
ing City throughout the 24 hours in a day. On the whole, 
two peak periods can be observed in local residents’ activi-
ties on weekdays (2 July and 3 December 2018). One peak 
occurred at approximately 8–9 a.m., and the other at approx-
imately 9 p.m. After 10 p.m., population activities began 
to decrease significantly until reaching their lowest value 
at approximately 4–5 a.m. the following day. On weekend 
days (7 July and 8 December 2018), population activities 
also showed two peaks, at 11–12 a.m. and at approximately 
9 p.m. Although the patterns of population activities on 
holidays (1 October and 16 February 2018) are generally 

Fig. 3  Daily changes in hourly 
population activities in Xining 
City, Qinghai Province, on six 
days in 2018
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consistent with those observed on weekdays, including the 
two activity peaks, the occurrence time of the first peak is 
delayed on holidays. This peak appeared at approximately 
9–10 a.m. on the National Day Golden Week holiday and at 
approximately 10–11 a.m. on the day of the Spring Festival 
holiday. The activities of the regional residents on the day of 
the latter holiday were much lower than the daily activities 
at the same time on the other five days (Fig. 3).

4.2  Population Activities of Different Land Use 
Types

Due to differences in the purposes of various activities, the 
patterns of population activities of different land use types 
also differ. Figure 4 shows the different characteristics of 
regional population activities in various land use type areas 
in Xining City. Population activities in areas with differ-
ent types of land use have some similar characteristics. For 
example, on the whole, all population activities gradually 
decrease after 10 p.m., reaching the lowest point at 4–5 a.m. 
the following day, and starting from 6 a.m., the population 
activity begins to increase gradually.

However, there are also significant differences in the 
characteristics of population activities among various land 
use types. First, the population activities observed in com-
mercial lands (including commercial service and business 
office lands) changed significantly throughout the day, 
exhibiting more substantial variation than the other land 
use types. Commercial lands are the areas with the most 
active population. Second, the population activity pattern 
of residential lands differed from that in commercial land 
areas. In residential areas, population activities began to rise 
at approximately 6 a.m. and reached the first active peak 
at approximately 8–9 a.m. They gradually decreased until 
approximately 3 p.m. and then began to rise again until 
approximately 9 p.m., at which time the second active peak 
occurred; and finally, the population activities gradually 
decreased again to the lowest value at 4–5 a.m. the follow-
ing day. The population activities in residential lands showed 
roughly the opposite trend compared to the one observed in 
commercial lands from 9 a.m. to 6 p.m.

Figure 4 also shows that the patterns of daily population 
activities in various land use type areas on working days are 
basically similar to those on weekend days. However, holi-
days impact population activities in various land use types to 
varying degrees. For example, little difference was observed 
between the population activity characteristics recorded dur-
ing the National Day Golden Week holiday (1 October 2018) 
and those on other days. However, during the Spring Festival 
holiday (16 February 2018), the population activities in vari-
ous land use type areas decreased significantly compared to 
the usual trends.

4.3  Spatiotemporal Pattern of Population 
Distribution

Figure 5 shows the spatiotemporal changes observed in 
population activities in the study area throughout the day. 
According to the general regularity of local population 
activities shown in Fig. 3, the spatial distributions of the 
population at 9 a.m., 12 noon, and 9 p.m. were chosen to 
reflect the spatiotemporal changes in population activities 
in Xining. From the regional distribution perspective, the 
densely populated areas (over 3000) are mainly distributed 
in the central streets or towns of Xining City (see Fig. 1 for 
location):

• Chengxi District: Shengli Street, Guchengtai Street, 
Xinghai Street, Xiguan Street, and the northeast of 
Pengjiazhai Town;

• Chengzhong District: Cangmen Street, Yinma Street, 
Renmin Street, and Lirang Street;

• Chengdong District: Qingzhenxiang Street, Dongguan 
Street, Zhoujiaquan Street, Dazhong Street, and Bayi 
Street; and

• Chengbei District: the southern part of Xiaoqiao Street.

These densely populated areas not only have a large 
amount of residential land, but also have concentrated com-
mercial, educational, and medical lands. Therefore, there is 
a considerable number of population activities in these areas 
no matter in the daytime or nighttime. The population move-
ment intensities in these areas were much higher than those 
in other areas (Fig. 5). In view of temporal changes, whether 
it was a weekday or a weekend day, relatively high activity 
occurred in the period from 9 a.m. to 9 p.m. each day with 
regard to regional activities, and residential activities were 
found tobe mainly located in the core areas of the city center, 
in Chengxi, Chengzhong, and Chengdong Districts.

Holidays have a significant impact on regional population 
activities, especially traditional Chinese holidays such as the 
Spring Festival. Figures 3 and 5 show that the local popu-
lation activities on the Spring Festival holiday (16 Febru-
ary 2018) were significantly lower than the usual activities. 
The scope of densely populated areas was also significantly 
smaller during this holiday than in normal times. However, 
there were also differences in the impacts of holidays on 
population activities. For example, the population activi-
ties observed during the National Day Golden Week holi-
day (1 October 2018) did not change significantly compared 
with the activities observed in normal times. Additionally, 
the wintertime population activities (on 3 and 8 December 
2018) were lower than the summertime activities (on 2 and 
7 July 2018) at the same time of day, and the scale of densely 
populated areas was also smaller in winter than in summer 
(Fig. 5).
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4.4  Population Spatial Distribution Differences

The spatial distribution of population changes continuously 
over time due to the effects of many factors, such as land 

use types, the time of day, holidays, and so on. In order to 
analyze the differences in the spatial distribution of popu-
lation, high/low clustering analysis (Getis-Ord General G) 
and cluster and outlier analysis (Anselin Local Moran’s I) 

Fig. 4  Population activity 
characteristics in different land 
use type areas in Xining City, 
Qinghai Province, on six days 
in 2018
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Fig. 5  Spatiotemporal changes of population distribution in Xining City, Qinghai Province, on six days in 2018
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were employed to evaluate the overall concentration of the 
regional population and the differences in the regional popu-
lation density distribution, respectively.

4.4.1  Concentrations of the Overall Population Distribution

High/low clustering analysis (Getis-Ord General G) can 
be used to evaluate the overall concentration degree of a 
regional population. A higher (lower) z score indicates a 
stronger (weaker) clustering intensity. A z score near zero 
indicates no apparent clustering within the study area. A 
positive z score indicates high-value clustering. A negative 
z score indicates low-value clustering. The analysis results 
obtained for the 2249 MPLS points in Xining City show 
that the average z score value of the local MPLS was over 
20, indicating that the population distribution in the city 
was highly aggregated. The clustering intensity in Xining 
is thus very strong.

4.4.2  Differences in the Regional Population Distribution

Due to human mobility, population distributions change con-
tinuously over time. To further distinguish the differences in 
the population spatial distribution at different times through-
out the day, we used the Anselin Local Moran’s Index to 
analyze the hourly population distribution in Xining City. 
Anselin Local Moran’s I analysis can identify statistically 
significant densely populated points, sparsely populated 
points, and transition zone points where the population den-
sity changes (at a 95% confidence level). Figure 6 shows the 
cluster and outlier analysis results obtained for the popula-
tion distribution in Xining. We use the results at two rep-
resentative time stages on three days as examples. In the 
figure, the MPLS density of sampling points is divided into 
five categories: nonsignificant points, high-high clusters, 
low-high outliers, high-low outliers, and low-low clusters. 
Among these categories, high-high clusters represent areas 
with high population densities, which is basically consist-
ent with the distribution of densely populated areas shown 
in Fig. 5.

The low-low clusters represent areas with low population 
densities; these areas were mainly located in suburban areas, 
such as Dabaozi Town, Pengjiazhai Town, Zongzhai Town, 
and Nianlipu Town (see Fig. 1).

The low-high outliers indicate low population density 
areas surrounded by high population density areas. These 
areas represent transitional areas from high population den-
sities to low densities. Figure 6 shows that differences in the 
distribution of low-high outliers were found among different 
times during the day. Moreover, the differences between the 
distributions of low-high outliers at the same time on work-
ing days and weekend days were also obvious. In general, 
the distribution ranges and change extents of the population 

densities in these transitional zones on working days were 
stronger than those on weekend days. Furthermore, low-high 
outliers were all located around areas with high population 
densities on the whole. In contrast to low-high outliers, the 
high-low outliers indicate areas with high population den-
sities surrounded by areas with low population densities. 
These areas represent transitional areas from low population 
densities to high densities, and this category was relatively 
rare in the city, with instances mainly located in suburban 
areas. For the Chinese New Year, the high-low outliers 
showed a significant increase in Dabaozi Town (see Fig. 1 
for location).

5  Discussion

Behavioral geography holds that an individual’s daily activi-
ties are always composed of habitual behaviors such as going 
to work, going home, and shopping. Temporary or acciden-
tal behaviors are the secondary component (Chai and Shen 
2008). Daily activity behaviors are a mixture of choices and 
restrictions. By analyzing the temporal trajectory of resi-
dents’ activities, the temporal characteristics and regularity 
of residents’ daily travel can be summarized to synthesize 
more abstract travel modes of residents (Chai et al. 2008).

5.1  Regional Population Activity Pattern

Residents first choose their travel activities according to 
their own needs associated with life and work. In addition, 
residents’ choices are influenced by external environmen-
tal factors, especially social and cultural factors. Although 
the purposes and durations of daily travel activities associ-
ated with different groups are different, they exhibit overall 
regularity (Zhang et al. 2010). Our study showed that the 
daily population movement pattern exhibited strong tempo-
ral regularity during the day, especially on weekdays. Low 
population activities were generally observed approximately 
between 4:00 and 5:00 in the morning each day, while the 
peak values appeared at 08:00–09:00 in the morning and 
at 21:00 in the evening each day. The trends of residential 
and work activities showed a concave-convex phenomenon 
over the 24 hours in a day. These findings are consistent 
with those of similar studies conducted in China (Chen et al. 
2019; Shi 2019; Hu et al. 2020).

The various travel activities of urban residents are basi-
cally carried out around urban buildings, for work-, shop-
ping-, and school-related activities. During travel, residents 
living in an area may leave that area, while residents living 
outside the area may enter into the area. These movements 
mainly depend on the service function (land use types) pro-
vided by the area or on the use of various buildings in the 
area. When an area mainly contains residential lands, a large 
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number of commuting trips will leave the area, while return-
ing trips will enter the area. If an area mainly contains com-
mercial buildings, the population movements will be in the 
opposite direction (Wei et al. 2022). In our study, we found 
that the population activities in residential lands showed 
roughly the opposite trend compared to the one observed 
in commercial lands from 9 a.m. to 6 p.m. This finding has 
also been confirmed in previous studies (Cao et al. 2017). 
In addition, we found that the trend of population activities 

within other nonresidential lands such as educational and 
medical lands is similar to that of residential lands during 
some parts of the day. However, this similarity reflects dif-
ferent activity patterns between them. For example, after 
10:00 p.m., although the number of MPLS in residential 
lands also showed a downward trend, this decline reflects 
the deactivation of mobile signalling (such as shutdown, 
hibernation, and so on), not the movement of population. 
However, in nonresidential lands, the decline of the MPLS 

Fig. 6  Cluster and outlier analysis results of the population distribution in Xining City, Qinghai Province, on three days in 2018
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number after 10:00 p.m. means that people leave these areas 
and the number of mobile phone users decreases, reflect-
ing the movement of the population. Thus, the pattern of 
population activities in other nonresidential lands such as 
educational and medical areas is actually different from that 
in residential lands.

5.2  Influencing Factors of the Regional Population 
Spatiotemporal Distribution

Many factors influence the spatiotemporal distributions of 
regional populations, including land use types, the time of 
day, holidays, population structure, and building functions 
(Freire and Aubrecht 2012; Wei et al. 2017). Urban land use 
types reflect the functional attributes of urban spaces. Dif-
ferent human behaviors correspond to different urban func-
tional areas. Our study showed that in general, regardless of 
whether it was daytime or nighttime, the urban population 
density showed a significant downtown-suburban attenua-
tion pattern from the center of the city to its periphery in 
space. The densely populated areas are mainly located in 
the core urban area of Xining City. Large sections of urban 
residential lands, as well as prosperous trade and logistics 
markets—including public management and service lands 
such as finance, catering, hotels, transportation, medical 
treatment, and tourism—predominate in these areas and 
determine the population activities and high population 
mobility density. These findings are consistent with previ-
ously established modern urban development patterns in 
China (Kuang and Du 2011; Gu 2012).

Holidays have an important impact on regional popula-
tion activities, especially traditional Chinese holidays. Previ-
ous studies have shown that on weekends or holidays, peo-
ple mainly stay at home during both the day and the night, 
except to travel (Qi et al. 2013). Our study found that the 
intensity and scope of local population activities during the 
Spring Festival holiday were significantly lower than those 
in a typical day. However, we also found differences in the 
impacts of holidays on population activities. For example, 
the population activities during the National Day Golden 
Week holiday did not change significantly compared with 
those observed in normal times. This may have been related 
to the nature of the holiday and residents’ habits. The Spring 
Festival is the most important holiday for returning home 
and visiting relatives and friends in China. At this time, 
some people who live and work in urban areas generally 
return to the suburbs or to their rural hometowns, and this 
could cause a decline in urban population activities. The 
National Day Golden Week in China is a holiday meant to 
encourage people to travel. Tourism-based cities such as 
Xining thus do not experience reduced population activi-
ties. In contrast, the population mobility in this city may be 
more active on this holiday than usual.

In addition, seasonal factors seem to have a certain impact 
on the intensity of population activities. Although the range 
of population activities exhibited no significant changes at 
concurrent times between summer and winter, the activity 
intensity of the local population was significantly higher in 
summer (July) than in winter (December). This might have 
been mainly affected by climate factors such as tempera-
ture. Xining is known as the “summer capital” of China. 
The average summertime temperature in the city ranges from 
17 °C–19 °C, and the climate is pleasant, thus enhancing 
the willingness of people to engage in outdoor activities, in 
addition to regular daily travel. In winter, the local tempera-
tures are relatively cold (with an average winter temperature 
of – 6 °C), and the daily sunshine duration is short, poten-
tially causing the relative decrease observed in the activi-
ties of local residents, although regular daily travel does 
not change. Due to the limitation of data access, we only 
compared the population activities of two days each in July 
and December. The representativeness of the sample size 
with respect to the seasons needs further discussion. How-
ever, given the regularity of daily activities of the regional 
population, the findings of this study are in line with basic 
expectations.

5.3  Implications

High-resolution and dynamic assessments of spatiotempo-
ral population distributions are critical for urban planning, 
urban management, disaster risk assessments, and post-dis-
aster emergency rescues (Li et al. 2013; Li et al. 2019; Wei 
et al. 2022). Mobile phone big data have the advantages of 
being real-time, dynamic, and high-resolution. These data 
can be used to track the activities and behavioral charac-
teristics of groups to improve our understanding of human 
daily activities and enhance the accuracy of population spa-
tiotemporal dynamic distribution assessments. The results 
of this study also confirmed the superiority of MPLS data 
in evaluating population activity patterns and the spatiotem-
poral population distribution. In particular, through cluster-
ing and outlier analyses considering the neighborhood rela-
tionships among points, these data can be used to discern 
high-population density areas distributed in different times 
and spaces and the key transition points where population 
density changes to provide direction for the differentiated 
determination of population spatiotemporal distributions. 
Density maps, hotspots distribution, or mobile landscapes 
can be easily generated from mobile phone data, which are 
a useful tool for understanding urban rhythms and struc-
ture. The static population distribution or land uses are not 
informative for depicting this progress. The MPLS data pro-
vide a more objective indicator for assessing the actual use 
of urban space.



662 Wei et al. Dynamic Assessment of Spatiotemporal Population Distribution Based on Mobile Phone Data

1 3

The MPLS data can also be applied to uncover attractions 
and accessibility of different urban spaces, even to explore the 
interaction between transportation and the built environment. 
For example, in Xining City, the population density showed a 
significant downtown-suburban attenuation pattern. The distri-
bution of MPLS data was more concentrated in the downtown 
area during the daytime than the distribution at 21:00 when 
people usually stay in their homes and travel less. In addition, 
the areas with high-low outliers were located in the suburbs, 
which means that the population activities in these areas are 
highly active, and they are population gathering places and 
key areas for urban planning or disaster risk management. We 
thus can go a step further in understanding urban traffic while 
considering the path-choosing strategies, or geographical con-
straints. Optimal commuting allocation implies an excellent 
urban configuration and traffic condition (Kang et al. 2012).

Through the refined assessment of the spatiotemporal dis-
tribution of population exposure, the MPLS data can provide 
a more objective and accurate reference basis for local disaster 
risk management. In traditional studies, the risk assessment 
based on static and administrative data such as census data 
cannot consider the diurnal flow of population, which usu-
ally results in errors and low spatial resolution. The MPLS 
data indicate the actual locations of mobile phone users. It is 
possible to achieve a refined assessment of the spatiotemporal 
changes of population exposure to disaster based on the MPLS 
data, thus improving the accuracy of disaster risk assessment 
and response efficiency. Although MPLS data do not represent 
actual population sizes, previous studies have confirmed the 
high correlation between mobile phone data and population 
distribution and the feasibility of using these data in popula-
tion distribution evaluation applications (Cao et al. 2017; Li, 
Huang et al. 2017; Chen, Song et al. 2018; Chen, Wu et al. 
2018; Xie et al. 2020). In the future, with the popularization of 
smartphones and the development of big data utilization and 
mining technologies, MPLS big data-based studies on popu-
lation dynamics and the application of these data in disaster 
research and other fields will be further improved. In addition, 
by combining other spatiotemporal trajectory data, such as 
volunteer positioning data, floating car positioning data, social 
network check-in data, and bus smart card data, high-resolu-
tion and dynamic real-time population distribution evaluation 
technologies will be better developed for application in urban 
management and disaster assessment research.

With the increase in demand for MPLS data with high 
spatial-temporal resolution, even anonymous MPLS data 
have a risk of privacy leakage that cannot be ignored (Yin 
et al. 2015). Therefore, establishing a secure mobile phone 
data use mechanism to protect user privacy is the foundation 
for better development and application of MPLS data.

6  Conclusion

In this study, we conducted a dynamic real-time assess-
ment of the daily spatiotemporal population distribution in 
Xining City, China, based on six days of MPLS data. By 
analyzing the characteristics of the daily activities of local 
residents, we determined the spatiotemporal distribution 
patterns associated with group activities. The results show 
that the daily activities of local residents exhibited strong 
temporal regularity each day. In general, two peaks and one 
trough were observed in the daily activities of the analyzed 
population. The specific population activity characteristics 
differed among various land use types. The population activ-
ity trends observed in residential lands were the opposite of 
those identified for commercial lands, showing a concave-
convex phenomenon in the daytime. The spatiotemporal 
distribution of the local population showed a significant 
downtown-suburban attenuation pattern. Factors such as 
land use types, holidays, and seasons all affected the popu-
lation spatiotemporal patterns.

The study revealed the regularities and differences in the 
spatial and temporal distributions of group activities in an 
urban space. Compared to traditional census data and other 
methods, the methodology utilized has the advantages of a 
large sample size, wide coverage, real-time, and a dynamic 
assessment. Although the short-term sampled data have a 
short repeatable period, which may result in some errors 
in the spatiotemporal constraint recognition results, these 
data are critical for analyzing the travel activities of resi-
dents in the city and in assisting urban planning and disaster 
management.

In the future, with the further popularization of mobile 
phones and the development of big data mining technolo-
gies, population dynamics research based on MPLS big data 
and its applications in disaster and other fields will be further 
improved. However, privacy protection must be the founda-
tion of the MPLS data application and development in the 
future. Establishing a set of scientific mobile phone data use 
and protection mechanisms is fundamental for the applica-
tion of MPLS data in local urban planning and disaster risk 
management.
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