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Abstract
Deep neural networks (DNNs) have received a great deal of interest in solving everyday tasks in recent years. However, their
computational and energy costs limit their use on mobile and edge devices. The neuromorphic computing approach called
spiking neural networks (SNNs) represents a potential solution for bridging the gap between performance and computational
expense. Despite the potential benefits of energy efficiency, the current SNNs are being used with datasets such as MNIST,
Fashion-MNIST, and CIFAR10, limiting their applications compared to DNNs. Therefore, the applicability of SNNs to real-
world applications, such as scene classification and forecasting epileptic seizures, must be demonstrated yet. This paper
develops a deep convolutional spiking neural network (DCSNN) for embedded applications. We explore a convolutional
architecture, Visual Geometry Group (VGG16), to implement deeper SNNs. To train a spiking model, we convert the pre-
trained VGG16 into corresponding spiking equivalents with nearly comparable performance to the original one. The trained
weights of VGG16 were then transferred to the equivalent SNN architecture while performing a proper weight–threshold
balancing. The model is evaluated in two case studies: land use and land cover classification, and epileptic seizure detection.
Experimental results show a classification accuracy of 94.88%, and seizure detection specificity of 99.45% and a sensitivity
of 95.06%. It is confirmed that conversion-based training SNNs are promising, and the benefits of DNNs, such as solving
complex and real-world problems, become available to SNNs.

Keywords Spiking neural network · Satellite image classification · Epileptic seizure detection

1 Introduction

Following the rapid advancement of the mobile Internet and
the Internet of Things (IoTs), the amount and complexity of
the data are increasing exponentially. Meantime, driven by
large amounts of data, technologies like artificial intelligence
(AI) and cloud computing are growing [1]. A type of artificial
neural network (ANN) model, named deep learning (DL), is
gradually dominating theAI applications. Deep learning pro-
vides the state-of-the-art solutions for various applications,
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such as smart devices, IoT, autonomous vehicles, image clas-
sification, and object detection [2].

Despite the tremendous success of DNNs, a significant
challenge of this technique is their requirement to a large
amount of energy required when deployed on mobile and
edge devices [3]. Accordingly, it is believed that a paradigm
shift towards alternative algorithms and hardware solutions
is necessary to their lower energy costs. Spiking neural net-
works (SNNs) try to mimic the brain’s impulses (spikes) and
local learning rules [4, 5]. They are proposed as the third
generation of neural networks for embedded AI applica-
tions. SNNs are biologically inspired neurons that interact
with each other via a series of spikes. ANNs, on the other
hand, have continuous values rather than biologically plausi-
ble spikes [6]. Another distinction is the activation function.
SNNs have discrete values and non-differentiable functions.
Therefore, considering the event-driven computational and
resource-consuming benefits of the spiking neuron model,
SNNs are promising for low-power embedded applications
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Fig. 1 Difference between an ANN (top) and a SNN (bottom) in terms of computation unit and hardware implementation

compared to conventional ANNs [7]. Figure 1 shows the dif-
ferences between ANNs and SNNs.

In principle, SNNs can be used for the same applications
as ANNs. Despite the potential advantages with respect to
energy efficiency, because of the lower scalability of SNNs
models, the research in the SNNs field has been typically
focused on datasets, such as MNIST [8–11], N-MNIST
[12–16], Fashion-MNIST [17–20], and CIFAR10 [21–25].
Therefore, this paper examines the applicability of SNNs to
real-world applications, such as scene classification prob-
lems (satellite dataset) and forecasting epileptic seizure in
the healthcare field.

Despite the outstanding performance of DNNs in predict-
ing epileptic seizures [26–28] and satellite dataset classifica-
tion [29–31], their implementation on smart devices (mobile
medical devices) and on-board computers (CubeSat) are still
limiting [32, 33]. This is due to the high energy consumption
of DNNs.

In this work, we investigate the use of deep convolutional
SNNs for two case studies: scene classification problems and
epileptic seizure detection. The contributions made in this
work are as follow:

• We develop a deep convolutional spiking neural network
(DCSNN) to real-word classification problems.

• We evaluate the performance of DCSNN in two case stud-
ies: LULC classification (EuroSAT dataset) and epileptic
seizure detection (CHB-MIT dataset).

• Weevaluate the computational complexity and energy con-
sumption of our DCSNN and against DCNN.

The rest of the paper is structured as follows. Section 2
describes the background on the fundamental components of
deep convolutional SNNs. Section 3 describes the method of
conversion of a deep convolutional neural networks (CNN)

to a SNN. Section 3 describes theory of CNN to SNN
conversion. Sections 4 and 5 describe the implementation
of the first and second case study, respectively. Section 6
presents experimental results and proposes future improve-
ments while Sect. 7 concludes this paper.

2 Fundamental components of deep
convolutional SNNs

2.1 Convolutional Neural Networks

Convolutional neural network (CNN) is a special sort of
ANNs that have fewer connections and parameters making
their training easier while maintaining competent perfor-
mances [34]. Figure 2 shows a classic CNN, LeNet, which
includes four types of layers: an input layer, convolutional
layers, pooling layers, and fully connected layers [35]. The
capacity of the network can be controlled by varying its
parameters such as the shape of the input (batch size, height,
width, channels), the number of channels in the first and sec-
ond convolution layers, the number of neurons in the hidden
layer, and the kernel size for the convolution and pooling
filters.

2.2 Information coding

The initial phase of an SNN is to transform the original fea-
tures into spikes to feed the spiking networks. The encoding
strategy has a significant effect on network performance.
Selecting the best coding strategy depends on the applica-
tion, hardware limitations, and the neuron model [36]. In
general, three encoding mechanisms have been popularised
with respect to input data.
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Fig. 2 A typical CNN architecture, consisting convolutional, pooling, and fully connected layers

1. Rate coding: this coding scheme comes from the obser-
vation of the relationship between stimulus intensity and
neuronal firing rate. Rate-based coding converts input
intensity to firing rate or spike count [37].

2. Population coding: in this coding scheme, the informa-
tion is contained in the set of neurons that are active in
response to a particular stimulus [38].

3. Temporal coding: this coding scheme cares about the
individual timings of spikes, in opposition to rate-based
coding. Information is encoded in the precise timing of
spikes [39].

2.3 Neuronmodel for ANN

An ANN consists of at least two fundamental components:
processing units (neurons) and connections (weights). Each
neuron receives an input, uses its transfer function to process
it, and then produces an output according to its activation
function, as shown in Fig. 3a. The transfer function T FJ is
the weighted sum of the inputs I1→M with respect to the
weights ω1→M , J of the links connected to the neuron J .
Accordingly [40]:

netJ � TFJ (I , ω) �
M∑

i�1

Ii .ωi , J (1)

The output yJ of the J th neuron is expressed as yJ �
AFJ (netJ ) where the activation function AFJ is often the
rectified linear units (ReLU) function.

2.4 Neuronmodel for SNN

The spiking neuron receives inputs from presynaptic neu-
rons over multiple timesteps, while in ANNs, each neuron’s
state is updated periodically [41]. The leaky integrate-and-
fire (LIF) is a first-order model and one of the simplest
and most used neuron models, thanks to its computational
efficiency. The basic concept of the LIF model is that the
neuron has a membrane potential that evolves through time
due to incoming excitatory or inhibitory currents and a leak-
age parameter [42]. An output spike occurs whenever the
membrane potential of a neuron crosses its threshold, and its
membrane potential is then reset to its resting state, as shown
in Fig. 3b. This behaviour is characterised as:

V (t) � V (t − 1) + L + X(t) (2)

If V (t) ≥ θthreshold, Spike and reset V (t) � Vrest (3)

If V (t) < Vrest, rest V (t) � Vrest (4)

where V (t) is the membrane potential, L is the leakage
parameter, X (t) is the summation of all synaptic inputs at
time t, Vrest is the resting membrane potential, and Vthreshold
is the membrane threshold. To propose a hardware friendly
method,we use no leakage (L� 0), which gives the integrate-
and-fire (IF) neuron model.

2.5 Modified leaky integrate-and-fire model

In this paper,we investigate a rate encodedSNNs, so the basic
LIF model as presented in the previous section has an issue
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Fig. 3 An overview of ANN and
SNN operation, a inputs, outputs,
and processing unit of ReLU
neuron b inputs, outputs,
procedure of integrating, fire, and
reset of LIF neuron

when used for rate-based computations that happen close to
zero: the output result is dependent on the order of arriving
spikes, which is not desirable in a rate-based context. Specific
care should be given to low firing rates and low threshold val-
ues. To illustrate this, let us consider a LIF neuron J with two
different inputs Ii weighted by their respective weight wi . In
addition, assume that theVresting is set to zero. Let us suppose
w1 � a < 0 and w2 � b > 0. If I1 spikes before I2, the
output is yJ � b as yJ � (0−a)+b � 0+b � b. However, if
the order is reversed, yJ � b−a. This simple example high-
lights the limitations of this model. We applied an adapted
model to fix this issue: setting the lower bound threshold
θdown
threshold to a negative value, θdownthreshold � −θ

up
threshold while

keeping vresting � 0 and θ
up
threshold � θthreshold. This modi-

fication mathematically solves the problem around zero. As
a matter of fact, yJ � b − a in both cases now. Yet, the
problem still exists around θdownthreshold. Vm could be reset to
vresting without firing or simply kept at θdownthreshold (selected in
this work).

Once the spike is generated, the membrane potential is
reset. We discuss next two types of resets: reset to zero
presented by Diehl et al. [43], always sets the membrane
potential back to a baseline, typically zero. Reset by subtrac-
tion, or “linear reset mode” presented by Diehl et al. (2016);
Cassidy et al. (2013), subtracts the threshold Vthr from the
membrane potential at the timewhen it exceeds the threshold
[44, 45]. Accordingly, the adapted model inspired by similar

considerations of work in [46–48] is given in Eqs. (5–8).

V(t) � V(t − 1) + L + X(t) (5)

(6)

If V (t) ≥ θthreshold, Spike and reset by subtraction V (t)

� V (t − 1) − θ
up
threshold

If V(t) < θdownthreshold, rest V(t) � θdownthreshold (7)

θdownthreshold � −θ
up
threshold, vresting � 0 (8)

If θdownthreshold � 0 and θ
up
threshold � θthreshold, this model is

equivalent to the basic LIF neuron model. In this work, the
modified LIF model is used without leak, i.e. L � 0. We
choose Fmin � 50 Hz and Fmax � 200 Hz in this work.

2.6 Rate-based coding

To convert the original features into spikes to feed the spiking
networks, rate strategies are used for encoding information in
SNNs,which is based on spike firing rate. To simulate neuron
behaviours, a Poisson process is often used to generate spike
trains. SNNs receive a series of spikes as input and produce
a series of spikes as the output, which is usually referred to
as spike trains. It is a process where events are assumed to be
statistically independent which gives a good approximation
of stochastic neuronal firing. The Poisson process is often
used to convert the pixel illumination into a spike train: it

123



Progress in Artificial Intelligence (2024) 13:1–15 5

Fig. 4 Rate coded input pixel and spiking correspond to the pixel value.
Ablack pixelwill never produce a spike,while awhite pixel corresponds
to 100% of the spike

produces on average a spiking rate proportional to the illu-
mination of pixels while introducing noise [49]. Figure 4
shows an example of the rate coding.

3 Theory of CNN to SNN conversion

The idea behind the conversion approach is to use the
traditional training algorithms on a continuous-valued archi-
tecture such that optimal weights can be obtained and then
transferred to an equivalent SNNs architecture. The key dis-
tinctions among ANNs and SNNs are the type of input and
activation unit. ANN’s inputs and activations are analogue
values with no concept of time, whereas SNNs work with
binary spike trains over time. The basic idea behind convert-
ing ANNs into SNNs is to match the firing rates of SNN
neurons with the activation of the original ANN neurons
[43, 50]. To understand the conversion method, we begin
with relation between firing rates of spiking neurons and the
activations of rectified linear units (ReLUs) in network con-
version. Firstly, the ReLU can be considered a firing rate
approximation of an IF neuron with no refractory period,
whereby the output of the ReLU is proportional to the num-
ber of spikes produced by an IF neuron within a given time
window. ReLU neurons computationally cheaper and they
bear functional equivalence to an IF spiking neuron without
any leak and refractory period [51]. This explains why this
activation function is used to simulate an IF neuron, instead
of the Tanh or the sigmoid functions, for instance. The inputs
of an ANN are encoded as Poisson spike trains into the first
hidden layer of a SNN. The approximation errors between
the activation of ANN neurons and the firing rates of SNN
neurons are the key source of performance loss during the
conversion. CNN-to-SNN mapping has the following steps.
Figure 5 shows the CNN-to-SNN mapping steps.

• Step 1: Modifying CNNs
• Step 2: Training CNN using Tensorflow-Keras
• Step 3: Transferring weights from the modified CNN to
the equivalent SNNarchitecturewhile performing a proper
weight–threshold balancing.

The first step of the mapping approach is to convert the
original CNN into a modified CNN. Some modifications are
required to make the static network convertible to spiking
neurons:

• Bias neural units

Typically, bias neural units are used for ANNs, which
allows the classifier to translate its decision boundary by a
fixed value. A bias-less neural units constraint is included
in our paper. This is due to the fact that including bias in a
SNN, leads to accuracy loss during the conversion procedure,
expanding the parameter space exploration and affecting the
threshold voltage. By including a zero bias in the training
process of the CNN, we ensure that SNN neurons are only
defined by their threshold function and the synaptic weights,
which reduce the complexity of the design space.

• Dropout

We used dropout to assist the regulation process dur-
ing training. This technique eliminates a specific number of
inputs to avoid overfitting.

• Pooling operation

The pooling operations are commonly employed in CNNs
to reduce the dimensionality convolutionmap. Average pool-
ing andmax pooling are two common choices for performing
the pooling operation. Max pooling is a commonly used
function in CNN to spatially down-sample feature maps.
However, because SNNs use binary activations rather than
analogue values, the max pooling cannot be implemented.
This is due to the fact that using max pooling could result in
a considerable loss of information for the next layer. So, we
use the average pooling in our design.

• SoftMax

TheSoftMax function is used inCNNoutputs. It generates
a probability distribution of the output belonging to a partic-
ular class. In terms of SNNs, there are two ways to predict
the output class. Firstly, predicting the output class associ-
atedwith the neuron that spikedmost. Thismethod, however,
is inefficient if all neurons in the last layer receive negative
inputs. The second way is to replicate the behaviour of Soft-
Max in a spiking neuron.We used an external spike generator
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Fig. 5 Framework for
CNN-to-SNN mapping

CNN SNNModified 
CNN

Training
eights- hreshold Balancing

to generate spikes based on the weighted sum accumulated
by each spiking neuron.

The second step is to train the modified CNN using the
backpropagation method. The third and last step maps the
weights from the ReLU network to a network of IF units and
applies weight–threshold balancing to achieve faster conver-
gence and less loss accuracy. The main challenge during the
mapping approach is to avoid a substantial drop in classifi-
cation accuracy after conversion. This loss comes from the
following factors:

1. The input firing rates are too low such that the IF units
do not cross their threshold, leading to a lower effective
output.

2. The input firing rate is so high that the IF units output too
many spikes

Therefore, an appropriate balancing between the firing
threshold and the input weights is essential to ensure an accu-
rate translation of continuous-valued neuron activations into
firing rates of spiking neurons that makes the quality of the
mapping greatly dependent on the ratio between the neuron
threshold and the synaptic weights. The two common ways
to achieve a proper rescaling are to use either a weight nor-
malisation (WN) or threshold balancing (TB) proposed by
Diehl et al. [43] and Sengupta et al. [52]. The former is used
to regulate the spiking rate to decrease accuracy loss, and the
latter is used to assign an appropriate threshold to the spiking
neurons. The firing rates of the spiking neurons are limited
to the range (0, rmax) in SNNs simulation. On the other hand,
ReLU activation has no such restrictions. To ensure that the
firing rates are approximated by the activations, a weight
normalisation approach is employed to normalise the ReLU
activations from (0, almax) to (0, rmax) by rescaling the con-
volutional layers weights. The weight normalisation can be
represented as follows:

W ι � λι−1

λι
W ι (9)

where λl is the max activation of layer l.

4 First case study: land use and land cover
classification

Remote sensing (RS) technology has made rapid progress
over the last decade. An unprecedented volume of data is
available, and access to information is more straightforward.
All of this gives us an understanding of the constant changes
in the earth’s surface, as well as the socio-ecological interac-
tions that accompany them. Land use and land cover (LULC)
data is critical for a wide range of geospatial applications,
including city planning, local administration, and environ-
mental management. Significant efforts have been made
to study the possibility of applying AI, especially DNNs,
on Earth Observation (EO) satellites. However, the limited
energy budget of DNNs on hardware is one of the problems
restricting the applicationofDNNmodels. This fact hasmoti-
vated the study of energy efficiency networks such as SNNs
to solve remote sensing tasks.

4.1 Methods

In this research, we initiated the experiments with one of
the standard deep learning models—Visual Geometry Group
(VGG16) network [53]. Figure 6 shows the conversion of the
VGG16-basedANNconvolutional block to an SNNconvolu-
tional block. Some changes are needed to be able to transfer
the VGG16 network to spiking neurons. We eliminate the
bias and batch normalisation, as they lead to accuracy loss
during the conversion process.We also swap themax pooling
with average pooling in our design. The second step is to train
the VGG16 network using the backpropagation method in
order to have a robust and accurate trained model. We apply
data augmentation techniques including resizing, rotation,
horizontal flip, and vertical flip. To reduce overfitting and
enhance the generalisation capability of our model, firstly,
we use dropout to assist the regularisation process during
training due to the absence of bias and batch normalisation.
Secondly, we apply early stopping as a regularisation tech-
nique to stop the training after a number of epochs when
the limited validation dataset no longer improves the perfor-
mance of the model. Thus, the best weights are saved and
updated during training. The final step is transferring the
trained weights to a network of IF units. A weight–threshold
balancing technique is used to ensure an accurate transla-
tion of continuous-valued neuron activations into the firing
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Fig. 6 Flowchart showing the
conversion of the VGG16-based
ANN convolutional block to an
SNN convolutional block. From
left to right. First, the max
pooling layers in the original
network are replaced with
average pooling, and the network
is trained. Dropout technique is
used as a regularizer for both
ANN and SNN. Then, the ReLU
activations are replaced with IF
spiking neuron
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rates of a spiking neuron. To copy the behaviour of SoftMax
to a spiking neuron, we apply an external spike generator.
Figure 7 shows the conversion process of Deep CNN toDeep
CSNN.

4.2 Dataset

The EuroSAT is a dataset for LULC classification taken
from the Sentinel-2 satellite [54]. It includes 10 different

scene classes with 27,000 labelled images, and 13 spectral
bands. Examples of EuroSATdataset are shown in Fig. 8. The
dataset is divided into 80/10/10 ratios for training, validation,
and test, respectively. We apply several augment techniques
to avoid overfitting during the training. These techniques
include random zoom, resizing, rotation, horizontal flip, and
vertical flip.
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Fig. 7 Conversion process of the Deep CNN to Deep CSNN for LULC classification

Fig. 8 Examples of EuroSAT dataset. It includes 27,000 images, and 2000–3000 images for each class

Fig. 9 The VGG16 results of training and validation, a accuracy and
b loss during 60 epochs. Both the loss and the accuracy improved expo-
nentially in the first epoch and subsequently exhibited a linear relation

in epochs 2–23. Learning instability was observed during this period
and significant improvements towards the end
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Table 1 Performance of the deep convolutional SNN on the EuroSAT
dataset

Class Accurate
prediction

Label count Class
accuracy

Annual crop 1370.0 1500 0.9360

Forest 1497.0 1500 0.9680

Herbaceous
vegetation

1396.0 1500 0.9360

Highway 1186.0 1250 0.9232

Industrial 1195.0 1250 0.9856

Pasture 914.0 1000 0.9090

Permanent crop 1166.0 1250 0.9112

Residential 1498.0 1500 0.9420

River 1172.0 1250 0.9688

Sea/lake 1362.0 1500 0.9940

4.3 Performance

After training the deep convolutional model, we convert it
into an SNN model by replacing the ReLU functions with
spiking activations. Finally, we transfer the trained weights
to a network of IF units and apply the weight–threshold bal-
ancing technique. The best overall model, which uses all 13
bands, accurately classified 94.88% of the testing set over
T � 400 timesteps. Figure 9 shows the results of VGG16
(training and validation). Tables 1 and 2 show the corrected
prediction result for each class and accuracy of Deep CNN
and Deep CSNN models, respectively.

The training stopped at the 57th epoch due to an early
stopping strategy. This method prevented the model from
overfitting and saved computational time. Based on Table 1,
the sea/lake, river, industrial, and forest classes showed the
best performance above 96% accuracy on test dataset.

5 Second case study: epileptic seizure
detection

One of the most common neurological disorders in the world
is epilepsy, which affects people of all ages [55]. Thus, it
is critical to suggest a highly precise and energy-efficient
method of predicting seizure onsets. Electroencephalogra-
phy (EEG) is a technique used to record electrical activity in

the brain. An epileptic patient’s EEG recordings can be clas-
sified into four states: interictal (between seizures), preictal
(pre-seizures), ictal (during seizures), and postictal (post-
seizures). The predictive task’s goal is to distinguish the
pre-seizure state from the other three states. However, this
is a time-consuming and costly task even for a single patient.
For this reason, recent research focuses on machine learn-
ing techniques for EEG signal processing such as CNN.
However, CNNs are known to be computationally inten-
sive, which makes them difficult to implement on wearable
medical devices. Alternatively, SNN is an energy-efficient
candidate for choice for embedded hardware. This section
aims to deploy a deep convolutional SNNfor epileptic seizure
detection using a conversion method.

5.1 Methods

In this research, we propose a deep convolutional SNNs to
make epileptic seizure predictions from the EGG samples.
The proposed approach consists of the same procedure dis-
cussed in Sect. 4. Firstly, a number of modifications have
been done to make the VGG16 model transferable to spiking
model. After training the model with the ReLU activations
function and getting the weights, the model transformed into
a spiking domain by replacing the ReLU units with IF units.
We also applied a weight–threshold balancing technique to
ensure an accurate translation of continuous-valued neuron
activations into the firing rates of a spiking neuron. Because
the SNN layers only received binary spikes as inputs, the
numerical EEG signals must be represented as spikes. We
employ rate coding, which encodes each signal value nor-
malised to (0, 1) as a spike train of length T . Figure 10 shows
the conversion process of the Deep CNN to Deep SCNN for
epileptic seizure prediction.

5.2 Dataset

We used the EEG recordings provided by the children’s
Hospital of Boston—Massachusetts Institute of Technology
(CHB-MIT) to train and test the model for seizure predic-
tion [56]. It includes 23 individuals and 969 h of scalp EEG
recordings. The EEG recordings are divided into 24 sets and
were recorded with a 16-bit resolution. Table 3 shows the
details of the CHB-MIT EEG dataset.

Each patient’s data is divided into 70/15/15 ratios for train-
ing, validation, and test, respectively.We need tomention the

Table 2 Accuracy of Deep CNN
and Deep CSNN models Network

architecture
Spiking neuron model ANN Acc (%) SNN Acc (%) Conversion loss

(%)

VGG16 IF (rate-based) 95.36 94.88 0.48
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Fig. 10 Conversion process of the Deep CNN to Deep CSNN for epileptic seizure prediction

Table 3 Specifications of the CHB-MIT datasets

Dataset Num of
seizures

Num of
patients

Sampling
frequency
(HZ)

CHB-MIT
(EEG)

198 23 256

raw recorded signals used in this work, as they need less com-
putational resources from a hardware implementation point
of view.

5.2.1 Data pre-processing

Imbalance number of sample in each class is one of the com-
mon problems in most classification datasets. This problem
can also be found in the CHB-MIT, where only 198 seizures
are available, suffering from class imbalances and few pos-
itive samples. To address this issue, we divided the EEG
records into overlapping time windows with 50% overlap
and 4-s window size. To get more samples from the seizure
class, we increase the number of windows.

5.3 Performance

To evaluate the performance of Deep CSNN classifier, we
used two well-known metrics, namely sensitivity and speci-
ficity. Sensitivity is the probability of seizure samples that
the model correctly classifies as a seizure. Specificity is the
proportion of non-seizure samples that the model correctly
classifies as non-seizure.

The patient-specific Deep CNN algorithm was evaluated
on the CHB-MIT database. Our results reveal that the sensi-
tivity is 96.4% and the specificity is 99.66%.After converting
Deep CNN to Deep CSNN, model was evaluated on test
dataset. Our results reveal that the sensitivity is 95.06% and
the specificity is 99.45% with T � 200. Figure 11 shows the
sensitivity and specificity of the Deep CSNN model on test
dataset. Table 4 shows the average sensitivity and specificity
of Deep CNN and Deep CSNN models.

Table 4 Sensitivity and specificity of DeepCNNandDeepCSNNmod-
els

ANN (%) SNN (%) Conversion loss
(%)

Average
sensitivity

96.4 95.06 1.34

Average
specificity

99.72 99.45 0.27

6 Discussion

In the first case study, deep convolutional SNNs were used
to tackle the problem of LULC classification. For this task,
a well-known learning architecture, namely, VGG16 was
employed on the EuroSAT dataset. After training the VGG16
model, we transform it into an SNN by replacing the ReLU
units with IF units. We transfer the trained weights to a
network of IF units and apply weight–threshold balancing
technique. The best overall model was able to accurately
predict the classification for 94.88% of the testing set. The
performance of the introduced model compared with differ-
ent existing methods is presented in Table 5.

Dewangkoro and Arymurthy [57] combined CNN with
Channel Squeeze&Spatial Excitation (sSE) block for LULC
classification. The sSE block is used in their design to recal-
ibrate the CNN function. They also used support vector
machine (SVM) and Twin SVM (TWSVM) instead of the
SoftMax classifier. Their three models (ResNet50, Incep-
tionV3, and VGG19) accurately predicted the classification
for 64.32%, 80.36%, and 94.57% of the testing set, respec-
tively. Sonune [58] tackled the problem of land use and land
cover classification with two models, namely random forest
and ResNet-50. The authors achieved an accuracy of 94.25%
and 61.46% using a ResNet50 and random forest model,
respectively. In another work, Chen et al. [60] applied the
knowledge distillation training approach for remote sensing
scene classification on the EuroSAT dataset. Their experi-
mental results showed overall an accuracy of 94.74%.
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Table 5 Performance of the introduced model compared to different
methods

Reference Model Dataset Accuracy
(%)

This work Deep
convolutional
SNN
(VGG 16)

EuroSAT
80/10/10

94.88

Dewangkoro
and
Arymurthy
[57]

ResNet50 + sSE
+ SVM

EuroSAT
70/30

64.32

InceptionV3 +
SVM

80.36

VGG19 + sSE +
TWSVM

94.57

Sonune [58] Random forest EuroSAT
80/20

61.46

ResNet-50 94.25

VGG19 97.66

Senecal et al.
[59]

SpectrumNet
w/standard
convolution

EuroSAT
NA

92.01

Chen et al. [60] Knowledge
distillation

EuroSAT
50/25/25

94.74

For the second case study,wehavepresented adeep convo-
lutional SNNs for seizure detection.We used the overlapping
windows method to address the problem of imbalanced
datasets. As it is shown in Table 6, our model performance is
comparable to state-of-the-art methods, with a sensitivity of
95.06% and a specificity of 99.45%. In the spiking domain,
Tian et al. [61] proposed a Spiking-CNN to make seizure
prediction. Their experiments only consider lead seizures
that occur at least 4 h after the previous seizure, which

means seven subjects in the CHB-MIT dataset. According
to their experimental results, the sensitivity and specificity
of 95.1% and 99.2% are achieved. Zhao et al. [62] proposed
an FT-VGG16 classifier to classify seizure and non-seizure
EEG signals. Their experimental results reveal the sensi-
tivity and specificity of 98.75% and 98.18%, respectively.
Several researchers applied SVMmethods for epilepsy clas-
sification [63]. For example, Song et al. [64] used SVM and
the weighted-permutation entropymethod. They achieved an
epilepsy detection accuracy of 91.62 for six different cases.

Considering the event-driven computational and resource-
consuming benefits of the spiking neuron model, SNNs are
promising for low-power embedded applications compared
to conventional ANNs. To verify the energy consumption
of our developed DCSNN, a neuromorphic hardware, like
Loihi [66] or SpiNNaker [67], is needed as it has non-von
Neumann architecture. Here, however, we provide an insight
into energy consumption by evaluating the computational
complexity of our DCSNN and against DCNN.

We employ the multiply-and-accumulate (MAC) opera-
tion to determine the computational complexity. Due to the
use of different neuron models, the number of operations
for the DCSNN and the DCNN is calculated differently. The
computation cost of the DCNN is generally defined by the
MACprocedure inEq. (1), Sect. 2.2.Whereas in theDCSNN,
data transferred between layers is a binary spike, and it per-
forms asynchronous accumulate (AC) operations to update
the state of each neuron in Eq. (2), Sect. 2.3.

We need to mention that the integration is event-driven in
spiking neurons, indicating no computation occurs, if there
is no spike delivered. The computation cost can be calculated
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Table 6 Performance of the
introduced patient-specific
seizure detection model
compared to different methods

Authors Model Sensitivity% Specificity% Dataset

This work Deep convolutional 96.4 99.66 CHB-MIT

Deep convolutional
SNNs

95.06 99.45

Tian et al. [61] S-CNNs 95.1 99.2 CHB-MIT (Patients
1, 5, 6, 8, 10, 14,
22)

Gao et al. [65] DCNNs 92.6 97.1 CHB-MIT

Zhao et al. [62] FT-VGG16 and
CWT

98.75 98.18 CHB-MIT

Karimi and Kassiri
[53]

RBF-SVM 96.87 99.95 CHB-MIT

Song et al. [64] SVM 95.83 96.15 CHB-MIT

as follow:

CANN � Cmul + Cadd (10)

CSNN � Cadd (11)

where Cadd is the computation cost of additions and Cmul is
the computation cost for multiplications.

Although the DCSNN is required to evaluate over
timesteps, its computation cost is lower than the DCNN,
because the AC operations cost less than MAC operations.
According to the findings in [66], an energy cost for a 32-
bit AC operation is 5.1× more energy-efficient than a MAC
operation. AC operation needs 0.9 pJ, whereas aMACopera-
tion needs 4.6 pJ for 32-bit floating-point computation (45nm
CMOS technology).

We have calculated the number of AC and MAC opera-
tions and energy consumption in 45nm technology, proposed
by Horowitz [68]. Tables 7 and 8 compare the DCNN and
DCSNN for patient-specific seizure detection, and LULC
classification in terms of their energy cost with 50 timesteps,
respectively.

We can see that the DCSNN has more addition operation
than the DCNN, because of the rate coding time window. On
the other hand, removing costly multiplication operations
is helpful for energy reduction. According to calculations of
energy consumption, the ratio of SNN energy toANN energy
for patient-specific seizure detection is 1.88 lower and the
ratio for LULC classification is 1.86.

An important characteristic of SNNs is the time required
to generate output. If the number of timesteps is too few, the
SNN will not get enough information for training or infer-
ence. By contrast, a large number of timesteps results in an
increase in prediction latency. Another observation is that
a longer time window can result in improved accuracy but
increases computing costs and energy consumption. As an

example, Fig. 12 illustrates the comparison of LULC classi-
fication accuracy with different timesteps and its associated
energy consumption.

As we expected, higher timestep leads to higher accu-
racy. However, this causes higher energy consumption. The
timestep of 400 is sufficient to achieve 94.88 accuracy, while
the lowest accuracy is obtained with a timestep of 50. Hence,
having a trade-off between accuracy, inference latency, and
energy remains a significant challenge in neuromorphic com-
puting. One of the main reasons for this issue is the difficulty
in determining proper hyperparameter values for the SNNs.

Future works will include applying a multi-objective opti-
mization method to produce high-accuracy and low-latency
inference. Moreover, we plan to continue this work by
deploying the models on neuromorphic hardware, such as
Loihi or SpiNNaker, enabling us to perform more accurate
measurements and checking of the actual energy consump-
tion of the SNNs.

7 Conclusion

This study presents an investigation on developing a deep
convolutional spiking neural network for energy-efficient
land cover and land use classification and epileptic seizure
prediction. We convert pre-trained VGG16 into correspond-
ing spiking equivalents with nearly comparable perfor-
mance to the original one. We have tested the model
datasets: EuroSAT dataset and CHB-MIT dataset. Experi-
mental results show a classification accuracy of 94.88%, and
seizure detection specificity of 99.45% and a sensitivity of
95.06%. Deep convolutional SNN training with a conversion
method is promising and confirms that the benefits of DNNs
are available for SNNs.
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Table 7 The energy consumption
comparison between DCNN and
DCSNN for patient-specific
seizure detection

Model Task Dataflow Energy consumption
In 45 nm technology

SNN
ANN

DCNN Patient-specific seizure
detection

32-bit float value 0.0993e−3J 1.88

DCSNN Single bit of 0 or 1 0.0526e−3J

Table 8 The energy consumption
comparison between DCNN and
DCSNN for LULC classification

Model Task Dataflow Energy consumption
In 45 nm technology

SNN
ANN

DCNN LULC classification 32-bit float value 30.95e−3J 1.86

DCSNN Single bit of 0 or 1 16.57e−3J

Fig. 12 The trade-off between
accuracy, power consumption,
and inference timesteps. The
x-axis is SNN inference latency,
the y-axis on the left measures
the SNN inference accuracy, and
the data label is estimated energy
consumption based on 45 nm
CMOS technology
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