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Abstract
Machine learning, particularly classification algorithms, has beenwidely employed for diagnosingCOVID-19 cases. However,
these methods typically rely on labeled datasets and analyze a single data view. With the vast amount of patient data available
without labels, this paper addresses the novel challenge of unsupervised COVID-19 diagnosis. The goal is to harness the
abundant data without labels effectively. In recent times, multi-view clustering has garnered considerable attention in the
research community. Spectral clustering, known for its robust theoretical framework, is a key focus. However, traditional
spectral clustering methods generate only nonlinear data projections, necessitating additional clustering steps. The quality of
these post-processing steps can be influenced by various factors, such as initialization procedures and outliers. This paper
introduces an enhanced version of the recent “Multiview Spectral Clustering via integrating Nonnegative Embedding and
Spectral Embedding” method. While retaining the benefits of the original technique, the proposed model integrates two
essential constraints: (1) a constraint for ensuring the consistent smoothness of the nonnegative embedding across all views
and (2) an orthogonality constraint imposed on the columns of the nonnegative embedding matrix. The effectiveness of this
approach is demonstrated using COVIDx datasets. Additionally, the method is evaluated on other image datasets to validate
its suitability for this study.

Keywords Multi-view clustering · Constrained nonnegative embedding · Similarity graph · Smoothness constraints · Spectral
embedding

1 Introduction

With theglobal proliferationofCOVID-19and thewidespread
usage of the RT-PCR test, known for its limited accuracy,
particularly in the early stages of the disease [1], there is an
urgent need to employmachine learning algorithms onX-ray
images for the detection and diagnosis of COVID-19 cases.
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The field of machine learning has seen remarkable progress,
simplifying dataset handling. In contrast to the RT-PCR test,
outcomes obtained from these images tend to be more pre-
cise.

Clustering, a critical area of research, involves categoriz-
ing data into distinct groups known as clusters. The nature
and structure of datasets significantly impact the perfor-
mance of clustering approaches. Consequently, identifying
the most effective strategy for clustering a given dataset is of
paramount importance. Utilizing different data perspectives
can provide more comprehensive insights into cluster dis-
tributions, ultimately leading to more meaningful clustering
outcomes. These various data perspectives should be inte-
grated using a method that minimizes dissimilarity between
them while emphasizing their commonalities.

In recent years, numerousmethods have been proposed for
multi-view clustering. Spectral clustering algorithms [2–4]
are among themost widely used clustering techniques. These
methods typically follow a three-step process: (1) creating a
similaritymatrix among data points, (2) computing a spectral
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projection matrix, and (3) generating clustering results using
additional methods such as k-means, k-medoids, or spectral
rotation. It is crucial to note that the final step has limitations,
as it depends on the initialization phase and is vulnerable to
noise and outliers.

Subspace clustering algorithms [5–7] are used to estab-
lish a consistent graph frommultiple views within the shared
subspace of the data, enabling clustering using spectral clus-
tering techniques. To address clusters with arbitrary shapes,
multiple kernels algorithms [8, 9] are employed by select-
ing the most suitable kernel for each view. Additionally,
matrix factorization algorithms [10, 11] are widely adopted
to reduce the number of features, offering a more computa-
tionally efficient alternative compared to other approaches,
although they are less suited for handling nonlinear data.

In this paper, we introduce a novel approach, OCNE (One-
step multi-view spectral clustering by learning Constrained
Nonnegative Embedding), inspired by the “Multi-view spec-
tral clustering via integrating nonnegative embedding and
spectral embedding” (NESE) method presented in Hu et al.’s
work [12]. Our approach aims to address certain limitations
observed in previous methods.

OCNEcapitalizes on the strengths of theNESE technique,
particularly its ability to simultaneously construct nonneg-
ative and spectral projection matrices. This simultaneous
construction enables direct clustering without the need for
additional steps such as k-means or the introduction of extra
parameters.Additionally, our approach introduces twoessen-
tial constraints to the nonnegative embedding matrix: the
first constraint enforces the smoothness of cluster indices
across the various graphs,while the second constraint ensures
the orthogonality of columns in the nonnegative embedding
matrix, thereby facilitating cluster separation. We provide an
efficient optimization framework for optimizing the speci-
fied criteria. Furthermore, we put OCNE to the test using the
COVIDx dataset, which aggregates data frommultiple public
datasets. This dataset comprises chest X-ray images catego-
rized into three classes and offers three different views. (Each
image is associated with three distinct sets of deep features.)

Diagnosing a specific disease typically falls within the
realm of supervised learning. However, in practical scenar-
ios, gathering a substantial and accurately labeled dataset for
a disease like COVID-19 can be both financially demand-
ing and time-intensive. Consequently, we have chosen to
embrace an unsupervised approach primarily due to the prac-
tical complexities associated with acquiring a sufficiently
large andmeticulously labeled dataset suitable for supervised
machine learning. By opting for an unsupervised approach,
our aim is to make the most efficient use of the available data
resources without the dependency on an extensive collection
of labeled COVID-19 cases. This decision is grounded in
the recognition that unsupervised methods, such as multi-
view clustering, possess the capacity to unveil underlying

patterns and structures within the data, even in scenarios
where labeled examples are scarce or entirely absent.

Moreover, the exploration of multi-view learning is
notably absent in these areas. Multi-view learning tech-
niques have the capacity to comprehensively exploit the
informative aspects ofmultiple perspectives, thereby enhanc-
ing the predictive performance of data. The integration of
various data views is additionally justified by the varying
degrees of importance and prior information associated with
each view. Consequently, a multi-view COVIDx dataset and
unsupervised learning models are employed for COVID-
19 diagnosis. While unsupervised clustering functions as a
class-agnostic classifier, the resultant clusters can readily be
correlated with actual labels. In addition, we extend to the
exploration of diverse scenarios within the COVIDx dataset.
By systematically removing specific views and examining
different dataset subsets, we comprehensively assess the
effectiveness of our approach across varying conditions.

Figure 1 shows examples of lung X-rays images with their
corresponding labels.

The following is a summary of the main contributions of
the paper.

1. The proposed approach amalgamates the strengths of
both graph-based and matrix factorization-based meth-
ods. Notably, our method eliminates the need for post-
processing steps likeK-means, streamlining the clustering
process for improved efficiency and effectiveness.

2. Building upon this foundation, we introduce innovative
elements into the clustering framework. Our approach
incorporates a smoothing term for cluster indices and
enforces an orthogonality constraint on the nonnega-
tive embedding matrix. These constraints contribute to
improved clustering outcomes compared to the NESE
approach.

3. Our work represents a pioneering effort in the application
of multi-view clustering algorithms to the detection of
COVID-19 cases. By seamlessly integrating information
from diverse data sources, we unlock new potential for
disease diagnosis and showcase the versatility of multi-
view learning technologies.

4. To substantiate the selection of the multi-view clustering
algorithm for application to this dataset, we conducted
tests on other datasets to demonstrate its efficiency. Addi-
tionally, we introduce an efficient optimization frame-
work, utilizing an alternating minimization scheme, to
optimize the specified criteria.

5. Furthermore, we evaluate the performance of our method
by examining various subsamples from the COVIDx
dataset. These subsamples are generated by excluding a
specific view from the COVIDx dataset, resulting in two
distinct data subsets. We subject these samples to testing
using the OCNE, NESE, and SC methods.

123



Progress in Artificial Intelligence

Fig. 1 Lung X-rays images for
the three mentioned classes:
Normal, Pneumonia and
COVID-19

6. Diagnosing a specific disease typically falls under the
domain of supervised learning. However, in real-world
applications, collecting a substantial amount of labeled
COVID-19 data proves to be a costly and time-consuming
endeavor. Furthermore, the exploration of clustering with
multiple views, also referred to as multi-view cluster-
ing, has been notably absent in this context. Leveraging
multi-view learning technology can offer a comprehen-
sive understanding of the valuable insights across various
perspectives, ultimately enhancing data prediction per-
formance. The amalgamation of diverse data views is
driven by the recognition that different views carry vary-
ing degrees of significance and prior information. Hence,
we applied theCOVIDx dataset, which encompassesmul-
tiple views, in conjunction with unsupervised learning
models for the purpose of COVID-19 diagnosis.

Collectively, these contributions underscore the significance
and innovation of our work in the domain of COVID-19
diagnosis, offering a promising avenue for efficient, cost-
effective, and accurate disease detection, particularly in
resource-constrained environments.

The remainder of this paper is structured as follows: In
Sect. 2, we delve into relevant work on multi-view clustering
and provide an overview of the NESE approach introduced
by Hu et al. in [12]. Section 3 offers a comprehensive
exposition of our proposed approach and the associated
optimization scheme. Section 4 presents our experimental
findings, including a comparative analysis of our method
with several state-of-the-art techniques. Finally, the paper
concludes with Sect. 5.

2 Related work

2.1 Notations

In this study, matrices are denoted in bold uppercase, while
vectors are represented in bold lowercase. Let X(v) repre-
sent the data matrix of view v, with v = 1, . . . , V . X(v)

is equivalent to (x(v)
1 , x(v)

2 , . . . , x(v)
n ) ∈ R

n×d(v)
, where n is

the total number of samples, and dv is the dimensionality of
the data in each view v. Our objective is to cluster the data
into K clusters. Additionally, x(v)

i signifies the i-th sample

Table 1 Main notations used in this paper

Notations Description

X(v) Data samples ∈ R
n×dv , v = 1, ..., V

Sv The similarity matrix for each view

‖M‖2 Frobenius or l2-norm of a matrixM

H The consistent nonnegative embedding matrix

Pv The spectral embedding matrix for each view

Lv Laplacian matrix for each view

I Identity matrix

D Diagonal matrix

V Total number of views.

K Number of clusters

n Total number of samples

wv and δv The weight parameters

α and λ Regularization parameters

within the matrixX(v). The trace of a matrixM is denoted by
Tr(M), and the transpose is represented as MT . Mi j refers
to the element in the i-th row and j-th column of the matrix
M. The Frobenius norm of this matrix is expressed as ‖M‖2,
and the l2-norm of a vectorm is given by ‖m‖2. The primary
matrices utilized in our work include:

The similarity matrix of each view denoted as Sv , with
the corresponding spectral projection matrix and Laplacian
matrix represented by Pv and Lv , respectively. The diago-
nal matrix is symbolized by D, and the identity matrix is
represented as I. The cluster index matrix (non-embedding
matrix) is denoted asH. 1 signifies a column vector in which
all elements are set to one. The balance parameters employed
in this article are denoted as α and λ.

The notations utilized in this paper are detailed in Table 1.

2.2 Related work

Nowadays, variousmultiviewclusteringmethodshave shown
promising performance in different domains. In this paper,
various multiview clustering methods are used to detect
COVID-19 cases using chest X-ray datasets. In this sec-
tion, the main categories of multiview clustering methods
are explained. There are four main categories of multiview
learning methods: (1) spectral clustering, (2) graph-based
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methods, (3) matrix factorization, and (4) subspace cluster-
ing methods

The goal of spectral clustering methods [13, 14] is to
project data into a space where they are linearly separable.
First, a similarity matrix is created between the data points
for each view. Then, a unified similarity matrix is created
by merging the different similarity matrices. Then, a spec-
tral projection matrix corresponding to this similarity matrix
is computed, whose rows lead to the final clustering results
using the k-means method. The co-training method, as pro-
posed in [3], is a widely recognized technique for multi-view
spectral clustering. In this method, the same set of instances
is clustered across multiple views. It achieves this by using
the clustering result from the first view to adjust the affin-
ity matrix of the second view, making it more similar to the
first view. Co-regularized spectral clustering [4] is another
prominent method that adaptively combines multiple simi-
larity matrices from various views to achieve more accurate
clustering results.

There are other multi-view clustering methods that take
into account the importance of each view by assigning
weights to each view, as outlined in references such as [2, 15].
While these approaches offer a practical solution by provid-
ing a common framework to combine different graphs, they
do so at the expense of introducing extra weighting factors
for each view. These weighting parameters can increase the
computational complexity of the proposed methods.

To address this limitation, several methods have incor-
porated automatic weight learning, eliminating the need for
manually set hyperparameters. Notable examples include
[16–20], where the weight for each view is calculated auto-
matically.

Recently, spectral clustering has gained prominence in
clusteringwithmultiple views [21–23]. Spectral-basedmeth-
ods create a similarity matrix across all views and generate
the spectral projection matrix with K connected compo-
nents from V graphs. Notably, the authors of [24] introduced
the “Adaptively Weighted Procrustes” (AWP) method, a
spectral-based clustering variant that utilizes spectral rotation
to learn the cluster indicator matrix. Compared to previ-
ous graph-based approaches, AWP is characterized by lower
computational complexity and higher precision. Further-
more, there is the Multi-View Subspace-based Clustering
(MVSC) algorithm introduced by the authors in [5–7]. These
methods aim to generate the most coherent representation
matrix of the data in a low-dimensional space.

In the work presented in [25], the authors introduced
the Multi-View Learning with Adaptive Neighbors (MLAN)
algorithm, which can simultaneously learn the graph struc-
ture and perform the clustering step. However, thesemethods
have a significant drawback in terms of computational cost
due to matrix inversion and eigenvalue decomposition.

Another approach presented in [26] employs two weight-
ing systems: one for each view and the other for the features
within each view. This method selects both the best view and
the most informative features for each view. The rationale
behind this is that feature selection can enhance the qual-
ity of clustering. This algorithm is particularly useful when
dealing with high-dimensional features, as it performs fea-
ture selection and multi-view clustering concurrently.

The approach detailed in [27] can concurrently handle
three tasks: (1) learning the similarity matrix, (2) creat-
ing the unified graph matrix, and (3) making the final
clustering assignment. It utilizes an innovative multi-view
fusion technique that automatically assigns weights to the
graphs from each view to construct the unified graph matrix.
Additionally, this method enforces a rank constraint on the
Laplacian matrix to guarantee the presence of exactly K
clusters. In addition, the researchers in [22] introduced a
comprehensive framework for a multi-view spectral clus-
tering approach that provides various learned graphs from
each view, the unified fused graph, and the spectral clustering
matrix simultaneously. Furthermore, [16] presents two auto-
matic weighted clustering algorithms specifically designed
for multiple views.

To reduce the computation time of graph-based methods,
matrix factorization methods [12, 28] have become popu-
lar approaches for multi-view clustering. The basic idea of
these methods is to convert the initial matrix into a product
of two smaller matrices, which allows them to handle large
datasets. Moreover, in [28], the authors present a method
for multi-view clustering by consensus graph learning and
non-negative embedding (MVCGE). This method benefits
from kernelized graph learning methods and matrix factor-
ization methods. The kernel is used to project the data into
a space where it can be linearly separated. Thus, it can rep-
resent the similarity between the data points and account
for the nonlinearity of the data. Moreover, the nonnega-
tive matrix factorization matrix calculated by this method is
introduced to directly obtain the final clustering result. This
method is also able to automatically compute robust simi-
larity and spectral projection matrices as well as the weights
of each view. The authors of [29] develop a new method
called one-step multi-view spectral clustering with cluster-
label correlation graph. This method represents a significant
innovation over existing multiview clustering methods. In
addition to maintaining the advantages of methods for fac-
torizing nonnegative matrices, this approach introduces an
innovation inspired by semi-supervised learning. An addi-
tional graph is created to represent the similarity of the
predicted labels. This graph is called the cluster label graph
and is used in addition to the graphs associated with the data
space.

A recent method called Dual Shared-Specific Multi-view
Subspace Clustering (DSS-MSC) was introduced in [30].
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DSS-MSC employs a dual learning model to simultaneously
explore the characteristics of each view in a low-dimensional
space. This approach aims to leverage the valuable and pre-
cise information from each view, while also considering the
relationships among the shared information across different
views. Additionally, the authors of [31] propose an innova-
tive approach for learning a unified consistent graph. They
achieve this by jointly computing the self-expressive coef-
ficients and affinity matrix derived from different kernels.
This unified graph is then used for the final clustering pro-
cess. Two comprehensive surveys on the subject ofmultiview
clustering can be found in [32, 33]. These surveys offer an
extensive overview of multiview clusteringmethods, encom-
passing both generative and discriminative approaches.

2.3 Review of the (NESE) method

The “Nonnegative Embedding and Spectral Embedding
method” (NESE) is presented in [12]. NESE takes a dis-
tinctive approach by concurrently estimating the nonnegative
embedding and spectral embedding matrices. This method
aims to produce clustering results directly, obviating the
necessity for supplementary clustering steps or additional
parameters. The authors in [12] introduce a novel objective
function for computing a unified nonnegative embedding
matrix H. This objective function draws inspiration from
symmetric nonnegative matrix factorization and the relaxed
continuous Ncut. The primary objective function of NESE
is:

min
H, Pv

V∑

v=1

‖Sv − HPT
v ‖2s.t . H ≥ 0, PT

v Pv = I. (1)

In this method, Sv represents the similarity matrix for the
respective view v, Pv denotes the spectral projection matrix,
and H serves as the unified nonnegative embedding matrix
used for clustering assignments (where each row corresponds
to a sample). Notably, this approach removes the require-
ment for supplementary parameters or additional clustering
steps, like k-means, which can be notably influenced by the
selection of an initial configuration. The authors employ
an iterative optimization technique to compute the results
of their approach, which encompass the spectral projection
matrices and the unified nonnegative embeddingmatrix. This
iterative process ensures the accuracy of themethod’s results.

3 Proposed approach

This article introduces a novel approach, an enhancement of
the NESE method, known as “One-step multi-view spectral
clustering by learningConstrainedNonnegativeEmbedding”

(OCNE). Our method introduces an additional constraint to
the nonnegative embedding matrix H aimed at improving
clustering quality. The key distinction between our approach
and the NESE method is the inclusion of two constraints
on the matrix H: the view-based label-like smoothness con-
straint and the orthogonality constraint.Here,n represents the
total number of samples, and with V views, the data for each
view can be expressed as: X(v) = (x(v)

1 , x(v)
2 , ..., x(v)

n ). Sim-
ilar to NESE, with the graph matrices of each view denoted
as Sv ∈ R

n×n serving as input to the algorithm, the objective
is to compute the spectral projection matrix Pv ∈ R

n×K and
the coherent nonnegative embedding matrix H ∈ R

n×K .
In the NESE method (as seen in Eq. (1)), only the non-

negative condition on the matrix H is imposed. To enhance
clustering accuracy, we propose adding a set of additional
constraints to the matrix H. One of these constraints aims
to ensure the smoothness of cluster labels across all views.
This constraint implies that if the similarity between two data
points x(v)i and x(v) j is high, then the vectors Hi∗ and H j∗
should be similar. This mathematical formulation is achieved
by minimizing the following term:

1

2

∑

i

∑

j

‖Hi∗ − H j∗ ‖22 S(v)
i j = Tr

(
HT Lv H

)
, (2)

where Lv ∈ R
n×n is the Laplacian matrix of the similarity

matrix Sv . Lv is equal to Dv − Sv where Dv is a diagonal
matrix whose i-th diagonal element in the v-th view is given

by: D(v)
i i = ∑n

j=1
S(v)
i j +S(v)

j i
2 .

The authors of [34] have demonstrated that introducing an
orthogonality constraint on the soft label matrix can lead to
improved results in semi-supervised classification. We con-
sequently impose orthogonality constraints on the columns
of the nonnegative embedding matrix H. This constraint is
enforced by minimizing the following term.

||HT H − I ||22 = Tr
(
(HT H − I)T (HT H − I)

)
. (3)

Finally, the objective function of the OCNE method will
be :

min
Pv, H

V∑

v=1

‖Sv − HPT
v ‖2 + λ

V∑

v=1

√
Tr

(
HT Lv H

)

+ α Tr
(
(HT H − I)T (HT H − I)

)
s.t . H

≥ 0, PT
v Pv = I,

(4)

where λ is a balance parameter, and α is a positive scalar
that ensures the orthogonality of the matrixH. Furthermore,
our approach integrates the benefits of specific methods,
as observed in [16, 18–20], which utilize an auto-weighted
scheme in their objective function to minimize the need for
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Fig. 2 Illustration of the OCNE
method

additional parameters. In our approach, we employ two sets
of adaptive weights, corresponding to the first and second
terms in our objective function (4). The first set of weights is
defined as follows:

δv = 1

2 ∗ ‖Sv − HPT
v ‖2 v = 1, ...., V . (5)

The second set of weights is given by:

wv = 1

2 ∗
√
Tr

(
HT Lv H

) v = 1, ...., V . (6)

In the end, the minimization problem corresponding to our
method can be expressed as minimizing the following objec-
tive function:

min
Pv, H

V∑

v=1

δv ‖Sv − HPT
v ‖22 + λ

V∑

v=1

wv Tr
(
HT Lv H

)

+α Tr
(
(HT H − I)T (HT H − I )

)
s.t . H

≥ 0, PT
v Pv = I. (7)

Once H is estimated, the cluster index for each sample is
determined by the position of the highest value in the corre-
sponding row of H.

Figure 2 shows an illustration of our proposed multi-view
clustering method.

3.1 Optimization

In this section, we will outline our approach to optimizing
the objective function defined in (7). To update the matrices
H and Pv , we employ an alternating minimization approach.
This approach entails updating one of these two matrices
while keeping the other fixed, and this process is reiterated
until convergence is achieved.

Initially, we set the parameters λ and α to zero and sub-
sequently solve the resultant minimization problem, which
yields the results akin to the NESE method. Consequently,
the matrix H estimated by NESE acts as the initial matrix
for our optimization. We also implement the same method-
ologies described in [35] for computing the matrices Sv for
each view v and initializing Pv .

Update Pv: Fixing H, wv , and δv , the objective function
of OCNE will be equivalent to:

min
Pv

V∑

v=1

δv ‖Sv − HPT
v ‖22 (8)

Given that PT
v ,Pv = I, this problem is the well-known

orthogonal Procrustes problem, and its solution can be
obtained using the singular value decomposition of STv ,H.
Let O�QT = SVD(STv ,H). The solution to equation (8) is
then given by:

Pv = OQT with O�QT = SV D (STv H). (9)

Update H:
If we fix Pv , wv , and δv , we calculate the derivative of the

function in (7) w.r.t. H:

∂ f

∂H
= 2

V∑

v=1

δv (H − Sv Pv ) + 2 λ

V∑

v=1

wv Lv H

+ 4αH (HT H − I).

Knowing that any real matrix T can be written as the dif-
ference of two nonnegative matrices, i.e., T = T+ − T−
where T+ = 1

2 (|T| + T) and T− = 1
2 (|T| − T). Suppose

that Nv = SvPv = N+
v − N−

v ,

and Lv = L+
v − L−

v .
After some algebraic manipulations, the gradient matrix will
be equivalent to:

∂ f
∂H = 2 (�− − �+) where:
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Table 2 Algorithm 1 (OCNE)

Algorithm 1 OCNE

Input: Data samples X(v) ∈ R
n×dv , v = 1, ..., V

The similarity matrix Sv for each view

Parameters α and λ

Output: The consistent nonnegative embedding matrix H

The spectral embedding matrix Pv for each view

Initialization: The weights wv = 1
V and δv = 1

Initialize Pv and H as mentioned in Sect. 3.1

Repeat

Update Pv, v = 1, ..., V using (9)

Update H using (11)

Update wv, v = 1, ..., V using (6)

Update δv, v = 1, ..., V using (5)

Until convergence

�− = ∑V
v=1 δv H+∑V

v=1 δv N−
v + λ

∑V
v=1 wv L+

v H+
2 αHHT H .

�+ = ∑V
v=1 δv N+

v + λ
∑V

v=1 wv L−
v H + 2αH .

According to the nonnegative embedding matrix H, it is
updated by using the gradient descent algorithm. A step is
given by:

Hi j ← Hi j − μi j
∂ f

∂Hi j

= Hi j − 1

2�−
i j

Hi j ∗ 2 ∗ (�−
i j − �+

i j )

= Hi j ∗ �+
i j

�−
i j

. (10)

The learning parameter of the above equation μi j is set to
1

2�−
i j
Hi j . Therefore, the matrixH can be updated as follows:

Hi j ← Hi j ∗ �+
i j

�−
i j

i = 1, ...., n; j = 1, ..., K . (11)

Update wv and δv: The weights are updated using Eqs. (6)
and (5), respectively, after all the mentioned matrices have
been updated.

A summarized procedure of our OCNE method can be
found in Table 2.

4 Performance evaluation

4.1 Experimental setup

Five image datasets were utilized to assess the effectiveness
of our approach: MSRCV1, Caltech101-7, MNIST-10000,

NUS, and COVIDx (Table 3). The MNIST-10000 and
COVIDx datasets are relatively large for graph-based multi-
view clustering approaches. The COVIDx dataset comprises
13,892 chest X-ray images categorized into three classes:
COVID-19, normal, and pneumonia. Although this dataset
is commonly employed for supervised classification,we used
it to evaluate the proposed unsupervisedmethod. For each X-
ray image, three different deep CNNs provided three image
descriptors: ResNet50, ResNet101 [41], and DenseNet169
[42], trained on the ImageNet dataset. The dimensions of
these descriptors are 2048, 2048, and 1664, respectively.

Our method was compared with several other approaches,
including:

• Auto-weighted Multi-View Clustering via Kernelized
graph learning (MVCSK).

• Spectral Clustering applied on the average of all views’
affinity matrices (SC Fused).

• Multi-viewspectral clusteringvia integratingNon-negative
Embedding and Spectral Embedding approach (NESE).

• Multi-ViewSpectralClustering via Sparse graph learning
(S-MVSC).

• Consistency-aware and Inconsistency-awareGraph-based
Multi-View Clustering approach (CI-GMVC).

The evaluation compared the performance of these methods
on the datasets mentioned earlier.

With respect to the dataset NUS, we compare the OCNE
method with the following competing methods:

• Multi-view clustering via Adaptively Weighted Pro-
crustes (AWP)

• Multi-viewLearning clusteringwithAdaptiveNeighbors
(MLAN) [25]

• Self-weightedMulti-viewClusteringwithMultipleGraphs
(SwMC) [18]

• Parameter-free Auto-weighted Multiple Graph Learning
(AMGL) [19]

• Affinity Aggregation for Spectral Clustering (AASC)
[36]

• Graph Learning for Multi-View clustering (MVGL) [37]
• Co-regulated Approach for Multi-View Spectral Cluster-
ing (CorSC) [4]

• Co-training approach for multi-view Spectral Clustering
(CotSC) [3].

For all these methods, we directly reproduce the best
experimental results from the corresponding published paper
[12]. The optimization procedure in our approach involves
two hyperparameters: α and λ. We set α to 106 to enforce
the orthogonality constraint. The parameter λ is varied in the
range from 10 to 108 in our experiments. To evaluate the
performance of our method, we use four metrics: cluster-
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Table 3 Description of the datasets used in the paper

View COVIDx COVIDx-2468 COVIDx-6468

1 (2048) ResNet50 (2048) ResNet50 (2048) ResNet50

2 (2048) ResNet101 (2048) ResNet101 (2048) ResNet101

3 (1664) DenseNet169 (1664) DenseNet169 (1664) DenseNet169

# of samples 13,892 2468 6468

# of classes 3 3 3

View MSRCv1 Caltech101-7 MNIST-10000 NUS

1 (512) GIST (512) GIST (4096) VGG16 FC1 (500) SIFT

2 (256) LBP (928) LBP (2048) Resnet50 (73) Edge direction histogram

3 (24) Color moment (48) Gabor – (128) Wavelet texture

4 (254) Centrist (254) Centrist – (144) Color moment

5 (512) SIFT (40) Wavelet moment – (64) Color histogram

6 – (1984) HOG – (255) Block-wise color moment

# of samples 210 1474 10,000 2400

# of classes 7 7 10 12

ing accuracy (ACC), normalized mutual information (NMI),
purity indicator, and adjusted rand index (ARI). These met-
rics are defined in [21]. Higher values of these metrics
indicate better performance, meaning that the resulting clus-
ters are more similar to the real clusters.

4.2 Experimental results

In this section, we provide a detailed evaluation of the exper-
imental results. The best-performing results are indicated
in bold, and for methods requiring an additional clustering
step such as K-means, the standard deviation of the indicator
parameters over multiple trials is shown in parentheses.

Our approach is compared to several state-of-the-artmeth-
ods, including SCFused,MVCSK,NESE, S-MVSC, andCI-
GMVC. We assess the performance of our method not only
on the COVIDx dataset but also on other datasets, includ-
ing NUS, MSRCv1, Caltech101-7, and MNIST-10000. The
results are presented in Tables 4, 5, and 6. Best results are
shown in bold.

From these tables, it is evident that OCNE outperforms
most of the competing methods across the five datasets.
Furthermore, OCNE demonstrates superior performance on
large datasets such as MNIST-10000 and COVIDx, high-
lighting its effectiveness on datasets of varying sizes.

It’sworth noting that thiswork represents a significant step
in applying clustering algorithms to detect COVID-19 cases
in lung images. While the clustering results on this dataset
may not be perfect, this study lays the groundwork for the
use of unsupervised and semi-supervised learning algorithms
in such scenarios. This approach enables the utilization of

datasets with missing labels, which is particularly valuable
in the context of medical image analysis.

4.3 Convergence study

Regarding the convergence of OCNE, Fig. 4 displays the
variation of the objective function concerning the number
of iterations, focusing on the MSRCv1 dataset. The figure
clearly demonstrates that our method converges rapidly, typ-
ically before reaching 10 iterations. This fast convergence is
a valuable characteristic of OCNE, as it leads to efficient and
effective clustering results.

4.4 Parameter sensitivity

In this section, we explore the sensitivity of the λ parameter.
Figure 3 presents the values of the ACC and NMI indica-
tors when varying the λ parameter from 10 to 10+8 for the
MSRCv1 dataset. The α parameter was fixed at 10+6.

From this figure, it is evident that OCNE achieves its best
performancewhen the value of the λ parameter is set to 10+5.
This result highlights the importance of parameter tuning for
optimizing the performance of the OCNE method.

4.5 Performance on different subsets of COVIDx

In this section, we delve into a comprehensive analysis of
the performance of our approach across various scenarios
using different-sized subsets of the COVIDx dataset, aiming
to gain deeper insights into its adaptability and robustness.
The exploration of these scenarios serves the dual purpose
of assessing the scalability of our method and shedding light

123



Progress in Artificial Intelligence

Table 4 Clustering performance on the COVIDx dataset

Dataset Method ACC NMI Purity ARI

COVIDx SC Fused 0.44 (± 0.03) 0.08 (± 0.02) 0.40 (± 0.02) 0.07 (± 0.05)

MVCSK 0.43 (± 0.05) 0.07 (± 0.03) 0.55 (± 0.02) 0.09 (± 0.03)

NESE 0.62 (± 0.00) 0.11 (± 0.00) 0.71 (± 0.00) 0.15 (± 0.00)

S-MVSC 0.57 (± 0.01) 0.11 (± 0.00) 0.57 (± 0.02) 0.15 (± 0.03)

CI-GMVC 0.63 (± 0.00) 0.10 (± 0.00) 0.63 (± 0.00) 0.08 (± 0.00)

OCNE 0.65 (± 0.00) 0.12 (± 0.00) 0.72 (± 0.00) 0.16 (± 0.00)

Table 5 Clustering performance on the NUS dataset

Dataset Method ACC NMI Purity ARI

NUS SC-Best 0.21 (± 0.01) 0.09 (± 0.01) 0.21 (± 0.01) 0.07 (± 0.02)

AWP 0.28 (± 0.00) 0.15 (± 0.00) 0.29 (± 0.00) 0.09 (± 0.00)

MLAN 0.25 (± 0.00) 0.15 (± 0.00) 0.26 (± 0.00) 0.04 (± 0.00)

SwMC 0.15 (± 0.00) 0.08 (± 0.00) 0.17 (± 0.00) 0.01 (± 0.00)

AMGL 0.25 (± 0.01) 0.13 (± 0.01) 0.27 (± 0.01) 0.07 (± 0.01)

AASC 0.25 (± 0.00) 0.13 (± 0.00) 0.27 (± 0.00) 0.06 (± 0.00)

MVGL 0.15 (± 0.00) 0.07 (± 0.00) 0.16 (± 0.00) 0.01 (± 0.00)

CorSC 0.27 (± 0.01) 0.14 (± 0.01) 0.29 (± 0.01) 0.09 (± 0.01)

CotSC 0.29 (± 0.01) 0.16 (± 0.01) 0.30 (± 0.01) 0.09 (± 0.01)

MVCSK 0.26 (± 0.01) 0.15 (± 0.00) 0.28 (± 0.00) 0.08 (± 0.00)

NESE 0.30 (±0.00) 0.17 (± 0.00) 0.32 (± 0.00) 0.10 (± 0.00)

OCNE 0.30 (±0.00) 0.17 (± 0.00) 0.33(± 0.00) 0.10(± 0.00)

Table 6 Clustering performance on the MSRCv1, Caltech101-7 and MNIST-10000 datasets

Dataset Method ACC NMI Purity ARI

MSRCv1 SC Fused 0.77 (± 0.00) 0.70 (± 0.00) 0.79 (± 0.00) 0.61 (± 0.00)

MVCSK 0.70 (± 0.02) 0.59 (± 0.03) 0.70 (± 0.02) 0.50 (± 0.04)

NESE 0.77 (± 0.00) 0.72 (± 0.00) 0.80 (± 0.03) 0.64 (± 0.00)

S-MVSC 0.60 (± 0.00) 0.69 (± 0.02) 0.74 (± 0.02) 0.79 (± 0.01)

CI-GMVC 0.74 (± 0.00) 0.72 (± 0.00) 0.77 (± 0.00) 0.59 (± 0.00)

OCNE 0.86 (±0.00) 0.76 (±0.00) 0.86 (± 0.00) 0.72 (± 0.00)

Caltech101-7 SC Fused 0.53 (± 0.03) 0.45 (± 0.03) 0.60 (± 0.02) 0.40 (± 0.03)

MVCSK 0.57 (± 0.02) 0.51 (± 0.02) 0.83 (± 0.01) 0.45 (± 0.03)

NESE 0.67 (± 0.00) 0.55 (± 0.00) 0.87 (± 0.00) 0.52 (± 0.00)

S-MVSC 0.64 (± 0.03) 0.55 (± 0.02) 0.72 (± 0.01) 0.51 (± 0.03)

CI-GMVC 0.74 (± 0.00) 0.54 (± 0.00) 0.85 (± 0.00) 0.48 (± 0.00)

OCNE 0.69 (± 0.00) 0.58 (± 0.00) 0.88 (± 0.00) 0.56 (± 0.00)

MNIST-10000 SC Fused 0.20 (± 0.00) 0.13 (± 0.00) 0.20 (± 0.00) 0.05 (± 0.00)

MVCSK 0.49 (± 0.00) 0.41 (± 0.00) 0.50 (± 0.00) 0.29 (± 0.00)

NESE 0.81 (± 0.00) 0.83 (± 0.00) 0.85 (± 0.00) 0.76 (± 0.00)

S-MVSC 0.77 (± 0.01) 0.81 (± 0.01) 0.81 (± 0.02) 0.76 (± 0.07)

CI-GMVC 0.66 (± 0.00) 0.71 (± 0.00) 0.71 (± 0.00) 0.51 (± 0.00)

OCNE 0.81 (± 0.00) 0.83 (± 0.00) 0.86 (± 0.00) 0.78 (± 0.00)
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Fig. 3 Clustering performance ACC (%) and NMI (%) as a function of
λ on the MSRCv1 dataset
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Fig. 4 Convergence of OCNE on the MSRCv1 dataset

on its effectiveness under different data distributions. This is
done by considering different sizes of this dataset and testing
them with the SC, NESE and OCNE approaches.

First, a small sample of 2468 instances is extracted from
the large dataset, consisting of 1000 instances of the Pneu-
monia class, 468 instances of the COVID-19 class, and
1000 instances of the Normal class. This sample is referred
to as COVIDx-2468. This sample, while relatively lim-
ited in size, provides an initial glimpse into our method’s
capabilities in scenarios where data resources may be con-
strained. It challenges our approach to effectively distinguish
COVID-19 cases from other conditions in a context where
class imbalance is prevalent. The second sample contains
6468 instances, divided into 3000 instances of the Pneumo-
nia class, 468 instances of the COVID-19 class, and 3000
instances of the Normal class. This sample is referred to
as COVIDx-6468. This dataset size better aligns with real-
worldmedical datasets and poses a different set of challenges
related to class balance and diversity in the data. The final
sample is the largeCOVIDxdataset,which consists of 13,892
instances, as described previously. This extensive dataset
encompasses a wide range of cases, providing a compre-
hensive evaluation of our approach’s performance across a
diverse set of instances.

First, the famous “spectral clustering” method SC [38]
is tested on these different samples, adapted for multi-view
analysis. To assess the individual contributions of each view,
we applySC separately to each view, by considering the affin-
ity matrix of the corresponding view, which can be obtained
using the same method as in [12]. We refer to this method
as SC1, SC2, and SC3 corresponding to V iew1, V iew2, and
V iew3, respectively. Also, SC is applied to all views together
by considering the affinitymatrix as the average of all affinity
matrices for all views. Table 7 summarizes the correspond-
ing experimental results. By dissecting the results across
different views and considering their collective impact, we
gain an understanding of the strengths and limitations of our
approach. This analysis serves to underscore the significance
of multi-view clustering techniques and their potential for
enhancing the diagnostic capabilities of our methodology.

Once we have a particular predicted clustering, we look
for the best mapping between the three clusters obtained and
the three classes. We can then compute the confusion matri-
ces from which we can derive three evaluation metrics to
measure the quality of the clustering results: Precision (indi-
cates the percentage of all items predicted as positive that
were actually positive), Recall (indicates the percentage of
all true positive samples that the model was able to detect),
and Selectivity Indicator (indicates the percentage of all true
negative samples that the model was able to detect). All of
these metrics have been widely used in previous studies, and
their definitions can be found in [39]. In Table 7, we report
these indicators for the three different classes: (1) pneumo-
nia, (2) COVID-19, and (3) normal, which are referred to
as class 1, 2, and 3, respectively. These evaluation metrics
offer a comprehensive assessment of the clustering quality
for each class. Importantly, a higher value for each metric
corresponds to superior clustering results, emphasizing the
significance of achieving higher precision, recall, and selec-
tivity in ourmethodology. By reporting thesemetrics for each
class in Table 7, we provide a detailed performance analysis
that underscores the diagnostic potential of our approach.The
focus on these well-established metrics ensures the robust-
ness and reliability of our evaluation methodology, aligning
with best practices in medical diagnostic research. For each
evaluation metric, the larger the values, the better the results.

Therefore, NESE and OCNE are also evaluated with dif-
ferent cases. First, these methods are applied to two views
each (V iew1 & V iew2, denoted v1 & v2, V iew1 & V iew3,
denoted v1 & v3, and V iew2 & V iew3, denoted v2 & v3).
Then all views are considered. The experimental results are
shown in Table 8.

From Table 7 which presents the results of the classi-
cal spectral clustering method, we can clearly see for the
COVIDx-2468 subset that View 2 is the most informative
for detecting COVID-19 cases, as indicated by Class 2 in
the table (see Precision and Recall indicators). However,
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Table 7 Clustering performance of the classic spectral method SC, applied to different views of the different subsets of the COVIDx dataset. Here,
class 1 denotes the Pneumonia class, class 2 denotes the COVID-19 class, and class 3 denotes the Normal class

Dataset Method Precision (Classes: 1, 2, 3) Recall (Classes: 1, 2, 3) Selectivity (Classes: 1, 2, 3)

COVIDx -2468 SC1 (View 1) 0.56/ 0.10/ 0.07 0.32/ 0.23/ 0.06 0.83/ 0.53/ 0.46

SC2 (View 2) 0.58/ 0.22/ 0.62 0.54/ 0.47/ 0.32 0.74/ 0.50/ 0.86

SC3 (View 3) 0.53/ 0.15/ 0.54 0.63/ 0.34/ 0.13 0.62/ 0.56/ 0.93

SC (All) 0.35/ 0.11/ 0.20 0.22/ 0.18/ 0.21 0.73/ 0.65/ 0.41

COVIDx -6468 SC1 (View 1) 0.83/ 0.03/ 0.47 0.57/ 0.21/ 0.25 0.89/ 0.56/ 0.75

SC2 (View 2) 0.69/ 0.06/ 0.69 0.54/ 0.48/ 0.30 0.79/ 0.57/0.88

SC3 (View 3) 0.42/ 0.07/ 0.67 0.11/ 0.59/ 0.58 0.86/ 0.54/ 0.74

SC (All) 0.40/ 0.06/ 0.77 0.24/ 0.41/ 0.50 0.68/ 0.59/ 0.87

COVIDx SC1 (View 1) 0.83/ 0.03/ 0.85 0.68/ 0.24/ 0.63 0.91/ 0.75/ 0.85

SC2 (View 2) 0.60/ 0.02/ 0.70 0.61/ 0.09/ 0.50 0.73/ 0.81/ 0.71

SC3 (View 3) 0.22/ 0.05/ 0.65 0.23/ 0.63/ 0.13 0.45/ 0.54/ 0.91

SC (All) 0.66/ 0.02/ 0.64 0.65/ 0.17/ 0.30 0.78/ 0.65/ 0.77

Table 8 Clustering performance of the NESE and OCNE methods applied to different views of the different subsets of the COVIDx dataset

Subset Method Precision (Classes: 1, 2, 3) Recall (Classes: 1, 2, 3) Selectivity (Classes: 1, 2, 3)

COVIDx -2468 NESE v1 + v2 0.21/ 0.39/ 0.23 0.21/ 0.70/ 0.15 0.48/ 0.65/ 0.75

NESE v1 + v3 0.22/ 0.08/ 0.74 0.18/ 0.16/ 0.53 0.55/ 0.59/ 0.87

NESE v2 + v3 0.31/ 0.24/ 0.60 0.07/ 0.63/ 0.59 0.89/ 0.52/ 0.73

NESE (All) 0.25/ 0.13/ 0.70 0.20/ 0.27/ 0.49 0.58/ 0.59/ 0.85

OCNE v1 + v2 0.30/ 0.21/ 0.40 0.53/ 0.29/ 0.03 0.16/ 0.75/ 0.97

OCNE v1 + v3 0.20/ 0.15/ 0.63 0.08/ 0.33/ 0.65 0.78/ 0.56/ 0.75

OCNE v2 + v3 0.31/ 0.23/ 0.58 0.04/ 0.64/ 0.62 0.95/ 0.51/ 0.69

OCNE (All) 0.29/ 0.23/ 0.69 0.04/ 0.74/ 0.57 0.94/ 0.41/ 0.83

COVIDx -6468 NESE v1 + v2 0.22/ 0.06/ 0.63 0.17/ 0.49/ 0.22 0.48/ 0.52/ 0.88

NESE v1 + v3 0.27/ 0.04/ 0.77 0.12/ 0.38/ 0.51 0.70/ 0.53/ 0.86

NESE v2 + v3 0.31/ 0.07/ 0.63 0.32/ 0.55/ 0.08 0.37/ 0.55/ 0.96

NESE (All) 0.24/ 0.06/ 0.63 0.19/ 0.57/ 0.16 0.44/ 0.51/ 0.91

OCNE v1 + v2 0.33/ 0.06/ 0.75 0.14/ 0.48/ 0.53 0.75/ 0.53/ 0.84

OCNE v1 + v3 0.33/ 0.06/ 0.75 0.14/ 0.48/ 0.53 0.75/ 0.53/ 0.84

OCNE v2 + v3 0.31/ 0.07/ 0.63 0.32/ 0.55/ 0.08 0.37/ 0.55/ 0.96

OCNE (All) 0.26/ 0.06/ 0.63 0.23/ 0.59/ 0.10 0.41/ 0.50/ 0.95

COVIDx NESE v1 + v2 0.16/ 0.06/ 0.30 0.15/ 0.40/ 0.22 0.51/ 0.80/ 0.29

NESE v1 + v3 0.67/ 0.02/ 0.70 0.73/ 0.17/ 0.27 0.77/ 0.64/ 0.84

NESE v2 + v3 0.24/ 0.04/ 0.71 0.30/ 0.55/ 0.08 0.38/ 0.56/ 0.96

NESE (All) 0.18/ 0.04/ 0.72 0.18/ 0.59/ 0.16 0.44/ 0.54/ 0.92

OCNE v1 + v2 0.16/ 0.01/ 0.37 0.17/ 0.01/ 0.35 0.42/ 0.96/ 0.20

OCNE v1 + v3 0.67/ 0.02/ 0.70 0.72/ 0.18/ 0.27 0.77/ 0.64/ 0.84

OCNE v2 + v3 0.24/ 0.04/ 0.71 0.30/ 0.56/ 0.08 0.38/ 0.56/ 0.95

OCNE (All) 0.18/ 0.04/ 0.71 0.18/ 0.58/ 0.16 0.44/ 0.54/ 0.91

for the COVIDx-6468 and COVIDx datasets, view 3 is the
most informative view. The difference between the clustering
results of the different classes can be interpreted as fol-
lows. Our dataset contains “468” COVID-19 samples. This
number is small compared with the other two classes (pneu-

monia and normal) for all subsets considered. Therefore,
our data are imbalanced, which may reduce the efficiency
of clustering methods for COVID-19 case detection. This
highlights the importance of addressing class imbalance in
future research endeavors and underscores the need for more
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advanced techniques in handling such scenarios. Because
COVID-19 disease has similar symptoms to pneumonia, the
algorithm may be confused when clustering images corre-
sponding to these two different classes because they may
have similar and overlapping patterns. Table 7 also shows
that the result of Multiview Spectral Clustering (SC) for all
subsets is generally lower than the result obtained by the
best single view. This result can be interpreted by the fact
that there is one view that gives significantly worse results
than the other two views, which distorts the overall result
of the multiview method SC. Furthermore, the graph fusion
was performed with a simple averaging of the view graphs.
It is worth noting that the graph fusion in our methodology
offers a glimpse into the potential for further refinement. In
summary, the detailed analysis of our experimental results in
Table 7 unravels the intricate dynamics of multi-view clus-
tering in the context of COVID-19 diagnosis. These findings
not only enhance our understanding of clustering perfor-
mance but also pave the way for future research focused on
refining multi-view methodologies for medical diagnostics.
Finally, we can observe that the clustering performance of
the methods NESE and OCNE decreases as the imbalance if
the ground-truth classes increases.

Regarding the results obtained by applying the method
NESE using to the three subsets of the COVIDx dataset,
Table 8 shows that the combination of all views did not
provide the best clustering results for the three subsets. For
the NESEmethod, the clustering performance was relatively
good for both the combination of V iew1 & V iew2 and the
combination of V iew2 & V iew3.

From Table 8, it can be seen that the proposed OCNE
method gives the best clustering results when we consider
V iew2 & V iew3 for all three subsets. It can also be observed
that the fusion of all views in both NESE and our proposed
OCNE method helps to improve the recall indicator asso-
ciated with COVID-19 (class 2). The recall associated with
OCNE was also higher than that obtained with NESE. We
emphasize that a high recall indicator is required for this type
of problem. In conclusion, the performance of both clustering
methods NESE and OCNE decreases with increasing imbal-
ance of ground-truth classes.

The results of our experiments have promising practical
implications for the field of medical diagnostics, especially
for the detection and diagnosis ofCOVID-19 cases.Although
our method is currently still in the research phase, its poten-
tial applications in clinical practice are remarkable. If further
developed and rigorously validated, our approach could
become a valuable complementary tool for medical pro-
fessionals. In settings where access to extensive labeled
COVID-19 data is difficult, such as in resource-limited
regions, the ability of our method to work with unlabeled
data demonstrates its resource efficiency. Moreover, the
transparent and interpretable results of our approach are

indispensable in the medical field, as they allow physicians
to make informed decisions based on the clustering results.
However, we recognize that our work is a step toward prac-
tical implementation. Future clinical trials and collaboration
with healthcare institutions will be instrumental in validat-
ing the effectiveness and safety of our method in practice and
ultimately establishing it in the healthcare system.

5 Conclusion

Our work on Nonnegative Embedding and Spectral Embed-
ding method, and its application for the first time to detect
COVID-19 cases, is a significant contribution to the field of
data analysis and medical diagnostics. By adding constraints
to the nonnegative embedding matrix, you’ve enhanced the
clustering performance and demonstrated its effectiveness on
various datasets.

The potential extensions and applications of the method
are promising. Using additional image datasets like CT
images for patients is a valuable direction to explore, as it can
provide complementary information for diagnosis. Detecting
diseases at an earlier stage and tailoring treatment plans are
critical for improving patient outcomes, and your method
could contribute to this area. Expanding this work to diag-
nose other types of diseaseswould also have a positive impact
on the field of medical diagnostics.

Our proposed method offers several notable advantages
in the context of COVID-19 diagnosis. By integrating multi-
ple data views, it captures a comprehensive representation of
the disease, which can improve diagnostic accuracy. Since it
works in an unsupervised manner, it does not require exten-
sive labeled data, so it can be used in the real world. In
addition, the introduction of constraints, including a smooth-
ing term for cluster indices and an orthogonality constraint
for the non-negative embedding matrix, improves the qual-
ity of clustering results, potentially outperforming other
unsupervised methods. Rigorous tests on various datasets
demonstrate its robustness and generalizability, suggesting
potential broader applicability.However, there are other chal-
lenges, such as the complexity introduced by data with
multiple views, dependence on the availability and rele-
vance of data views, sensitivity to hyperparameters, and
interpretability of complex unsupervised models. Although
our approach offers promising solutions, further research and
validation are essential to evaluate its practical utility in the
clinical setting and to effectively address these limitations.

In terms of future directions, we foresee the development
of a scalable variant of the proposed approaches that can
handle large datasets without incurring excessive computa-
tional costs. Additionally, similar to the CSNE method in
[40], our methods could be extended to estimate two nonneg-
ative embedding matrices: the joint and specific nonnegative
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embedding matrices, instead of estimating only a single non-
negative matrix. Furthermore, a promising avenue for future
research involves the integration of clinical data alongside
imaging data. This integration can enhance the diagnos-
tic capabilities of our approach by combining radiological
information with patient history, symptoms, and clinical out-
comes.
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