
Progress in Artificial Intelligence (2022) 11:411–423
https://doi.org/10.1007/s13748-022-00293-3

REGULAR PAPER

Improving graph prototypical network using active learning

Mona Solgi1 · Vahid Seydi2

Received: 27 December 2021 / Accepted: 17 September 2022 / Published online: 10 October 2022
© The Author(s) 2022

Abstract
Due to the growth of using various devices and applications in modern life, the amount of data available is skyrocketing, but
labeling all of this data is beyond the reach of data scientists. Thus, it is necessary to categorize data with a small amount
of labeled data. In fact, it should be possible to prioritize data for labeling. To achieve this goal in this study, we have used
few-shot learning with active learning and also used the power of graph convolutional networks in classifying data with a
graphical structure. To implement the proposed model, we use two graph convolutional networks in parallel to calculate the
embedding and the importance of each node. Using the output of both networks, we create prototypes of classes, and then,
we classify them according to the distance of each node of these prototypes. We have also used active learning to select data
more intelligently, which improves the overall model performance. As well as this, we have tested our proposed model in
the field of electronic commerce for tagging goods in big online stores, which encounter a large number of diverse products,
where high accuracy categorization in a short time without the interference of human factor and with the help of artificial
intelligence is needed to reduce costs. The results of implementing the model on the Amazon dataset and its comparison with
the state-of-the-art models in this field show the superiority of our method.

Keywords Data classification · Few-shot learning · Active learning · Graph convolutional network · Product tagging · Online
shopping

1 Introduction

There aremanymethods for data classification, amongwhich
using machine power and artificial intelligence to determine
the category of each data can be mentioned. Especially when
the data volume is very large, using a method with high accu-
racy and spending less time cost will be very significant.

Data classification is one of the hot topics in the field of
machine learning. Systems need data with specific categories
for learning, so-called labeled data, through which they can
classify unlabeled data. Gathering labeled data in any field
is very time-consuming and costly, and data are growing in
every category. A way in which new data can be assigned to
a particular category with a small amount of labeled data is
notable.

B Vahid Seydi
V.seydi@bangor.ac.uk

1 Department of Information Technology Engineering, Science
and Research Branch, Islamic Azad University, Tehran, Iran

2 Centre for Applied Marine Sciences, School of Ocean
Sciences, Bangor University, Menai Bridge, UK

One of these methods is to classify data using learning
from a small number of samples. The purpose of these algo-
rithms is to train a classifier so that it can classify samples
that have not been seen before using only a limited number
of labeled training samples (selected from the target data set)
[1]. In this method, with the addition of a new category, it
is not required to collect thousands of labeled samples and
retrain the network.

The key to deal with unfamiliar and new categories is to
transfer knowledge gained from familiar data to unknown
data. One of the patterns of knowledge transfer, which helps
network learning to cluster data, is using implicit knowl-
edge representation such as Semantic Embedding, in which
a vector representation of different categories is learned
using textual data, and then, a mapping between the vector
representation and the data classifier is learned. Graph con-
volutional network (GCN) method can be used to perform
the above classification method. GCN is a powerful type of
neural network designed for direct work on graphs, which
strengthens the information structure of neural networks.

Active learning method can be used to improve the per-
formance of the proposed learning networks with a small

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-022-00293-3&domain=pdf
http://orcid.org/0000-0001-5702-2209

412 Progress in Artificial Intelligence (2022) 11:411–423

number of examples. In this type of learning, the system can
request the label of one of the unlabeled data. If trained, the
network will recognize and request the sample label that is
most useful for forecasting, thereby reducing the cost func-
tion.

One of the applications of data classification is in the e-
commerce field. This market has found a special status and
importance due to the growth of technologies and the avail-
ability of platforms. The impacts that influencers and social
networks have gained today also have led to a change in peo-
ple’s buying patterns which increase sales in online markets
[2]. On the other hand, in order to be able to stay in the field
and be successful, these markets need advanced strategies,
one of which is to have a suitable strategy and model for
the appropriate classification and product tagging, which is
an important and ongoing issue in online marketing. Proper
product classification plays a major role in searching and
comparing products offered in electronic markets and will
also lead to a visual shopping experience, giving the user
the ability to find the product, and most importantly increase
sales [3]. Especially in the case of large online stores that
offer a wide range of products, properly classified data are
an important asset and a competitive advantage.

In this article, we have used GCNs to learn embedding
and calculate the importance of network nodes, and we have
used the output obtained in the tasks created in learning with
a small number of instances to create prototypes of classes,
and in addition, we have used active learning to intelligently
select samples used in few-shot tasks to select more valuable
samples to create more accurate prototypes of classes and
thus better classification.

In the end,we have compared the results obtained from the
model with the proposedmodels that have been implemented
on the Amazon electronic dataset, the results show a signif-
icant increase in the experiment’s accuracy of the proposed
model and its superiority over other models.

2 Related works

2.1 Graph convolutional networks (GCNs)

Graph neural networks are in fact a natural generalization
of convolutional networks to nonEuclidean diagrams. GCNs
were first proposed in 2016 [4] by Thomas Kipf and Max
Welling, inspired by semi-supervised learning on graph-
structured data as well as neural networks applied to graphs.
The proposed method in the given article was based on spec-
tral graph convolution neural network. These networks form
by putting several layers of convolution graphs together.
After aggregating features in each layer, a non-linear function
is applied to it. In 2018 and 2019, GCN has been developed

by other people in various articles in terms of efficiency, anal-
ysis and simplification.

In [5–8], the recursive learning problems in GCN and the
consequent need for high memory usage and impracticality
for large graphs have been explored. Some ideas were put
forward that could be implemented for deeper networks. In
fact, in thesemodels, the number of neighboring nodes is lim-
ited, which is better in terms of the need for computational
resources and memory usage than other methods that use
the whole graph. In 2018, [9], several instances of GCNs on
pairs of nodes discovered at different distances through Ran-
dom Walks were taught, and their outputs were combined,
optimizing the target subject classification.

In 2018, DGCNs were mentioned in [10]. In this paper,
two GCN networks were developed in parallel to embed
knowledge in local and global compatibility, in which the
parameters were shared between the two networks. The
authors of [11] in 2018 evaluated the low performance of
GCN for large-scale graphs and used the batch algorithm in
GCN to solve this problem.

In 2018, limitations of GCNs when there are few labeled
data were analyzed in [12]. The paper proposed combining
Co-Training using RandomWalk and Self Training in GCN,
to identify reliable nodes, indicating the closest neighbors
to the labeled node of each class. The parameters are also
optimized in the training phase so that no additional labeled
data are required for validation.

In 2019, the authors of [13] analyzed theGCNand theoret-
ically examined the stability of the network and guaranteed
its generality. In this paper, the experiments showed that the
stability of the algorithmdepends on the largest specific value
of the graph convolution filter.

In 2019, the authors of [14] addressed the issue of GCN
containing unnecessary complexity and additional computa-
tions. In SGCN, the feature collection process has become
a simple linear propagation. Besides, the number of learn-
able parameters (filters) has also decreased. Experiments on
citation network datasets show that this method performed
equally well and, in some cases, slightly better than GCN.

2.2 (FSL) Few-shot learning

Many researchers have generalized deep learning approaches
to solve FSL problems. Most of these approaches used a
meta-learning or learning-to-learn strategy,whichmeans that
they extract transferable knowledge from the previous task
or some auxiliary tasks, such as the transfer learning method
[15].

Few-shot learning can be divided into two general cat-
egories of meta-learning and metric learning. In the meta-
learning method, an algorithm is taught by several learning
tasks. Each task contains a set of supports that mimics an N-
way, K-shot classification problem. Along with the support

123

Progress in Artificial Intelligence (2022) 11:411–423 413

set, there is a query set that includes samples of unseen tasks,
which are used to test the network’s accuracy. Model param-
eters are updated in each step, based on a randomly selected
training task. The loss function of the query set measures the
performance of the training task. Since the network presents
a different task at each step of the process, it must learn how
to distinguish data classes in general rather than a specific set
[1]. The agnostic model (MAML) [16] and the LSTM-based
few-shot optimization learning method [17] are in this cate-
gory. The major problem with the proposed methods is that
these approaches require fine-tuning to the target issues.

Another common method of FSL is the metric learning
method. Metric learning-based methods solve few-shot clas-
sification problems by” learning to compare.” Algorithms
seek to learn embedding in which the data vector is not pri-
marily affected by changes within the class, but preserves
class information. Preliminary studies focused on binary
comparators that take two samples in parallel and determine
if they belong to the same or different classes [1]. Matching
networks [18], prototypical networks [19], relation networks
[20] and Siamese networks [21] belong to themetric learning
approach.Matching networks no longer need to be fine-tuned
to adapt to new class types, but the problem with this method
is that the algorithm is not flexible in data heterogeneity, indi-
cating that if there are more instances for a class, it prefers
that class. In prototype networks, averaging in class samples
flexes the method against the problem of data heterogeneity
[15].

2.3 Active learning

Active learning is a technique inwhich the learning algorithm
participates in selecting its training data and tries to limit the
amount of labeled data by allowing the algorithm to select its
training samples [22]. There are several ways to select data in
this type of learning, such as the Membership Query Synthe-
sis method, which requests label for any unlabeled sample.
These unlabeled items can be produced by the learner itself
[23]. In the stream-based selective sampling method intro-
duced in [24], assuming that obtaining an unlabeled sample is
charge-free, after obtaining such a sample, themodel decides
whether this sample should be labeled by the oracle or not.
Another approach is to find the uncertainty zone [25], mean-
ing that if both models agree on all labeled data, but disagree
in some unlabeled cases, that sample is in the uncertainty
zone. The next method is pool-based sampling, which is sug-
gested by [26]. A large collection of unlabeled items can be
collected, and then, the queries are selectively taken from the
unlabeled item collection [27]. Therefore, the model decides
which items have the most information in the pool; thus, it
should be labeled by an oracle.

3 The proposedmethod

3.1 Relationship with existingmodels

We have developed our active learning model upon graph
prototypical network (GPN) [28] which is based on graph
convolutional network (GCN) [4] and also used the ideas
that were previously proposed in several papers including
prototypical network [19] and relation network [20].

GPN proposed a graph meta-learning framework to solve
the problem of few-shot learning in node classification on
attributed networks. It learns a transferable learning method
in which labels of nodes will be predicted according to the
distance to a class prototype. In other words, the less dis-
tance to a class, the more similarity the node has to that
class. This framework consists of two pivotal networks, that
exploit GCNs and work together seamlessly. The first one is
named Encoder Network to compress the data in the network
and extract the feature embedding of nodes. The second one
estimates the importance of labeled nodes and maps each
node to a scalar score parallelly. By doing so, the output
of two networks yields features of the labeled node along
with their scores that are used to create prototypes of every
class. It performs meta-learning on a semi-supervised pool
and extracts meta-knowledge gradually from an attributed
network, which is in the form of a graph, to generalize learn-
ing ability more effectively on few-shot classification tasks.

As mentioned above, the essential part of GPN is based
on graph neural networks (GCNs). Convolution neural net-
work generalizes convolution operation on spectral-domain
to learn network representation and then was used on graphs.
Graph neural network learns an aggregator function to aggre-
gate features from neighboring nodes instead of training
embedding for each node since it is assumed that connected
nodes have similar features and consequently the same label.
It represents an approach for semi-supervised learning on
data in a graph-structured to classify nodes. To improve node
classification, a gathering of node features is done in every
layer. The propagation rule is defined as below:

H (l+1) � σ
(
ÂH (l)W (l)

)
(1)

Here, Hl ∈ R
N×D is the matrix of activation in the lth

layer; H0 � X , X is a matrix of node feature vectors, σ

is an activation function, Â is Â � D̃−1/2 ÃD̃−1/2 which
Ã is Ã � A + IN that is the adjacency matrix with a self-
loop added for nodes to have features of themselves too and
D̃ � ∑

j Ãi j to prevent exploding vanishing gradients in
deep neural networks.

A two-layers GCN is described as:

Z � f (X , A) � Sof tmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
(2)

123

414 Progress in Artificial Intelligence (2022) 11:411–423

Cross-entropy error is then evaluated on labeled samples to
minimize the loss and W (0) and W (1) are learned by using
gradient descent through the full batch in every training iter-
ation.

The idea of using two modules in parallel is according to
relation network [20]. In this work, twomoduleswere used to
tackle the problemof a few-shot setting by learning a distance
metric during meta-learning. The first one is to obtain node
embedding and another one for estimating relation scores
within the episode. Firstly, samples in the support set and
query set are fed through a four-blocks convolution network
(f ϕ) to produce feature maps. Secondly, after concatenation
of samples (xi) and queries (x j), a two-convolution layer
network yields a scalar between (0,1), which is called relation
score (r), to show the similarity between xi and x j .

ri j � g∅
(
C

(
fϕ(xi)

)
,
(
fϕ

(
x j

)))
(3)

Here, g∅ is the relation module and C (0,0) is the con-
catenation of input features. This yields an N relation that is
the number of classes we have in an episode, which means
that the framework is designed to learn by comparing node
embeddings between query nodes and those in support sets
(that each belongs to a specific class) to classify queries
according to the highest relation score to support samples.

In GPN, the prototypes of classes were created according
to prototypical networks which were proposed to deal with
over-fitting issues in few-shot learning. This metric-based
approach trains episodically, and each one selects support
and query samples from training classes randomly. It learns
a non-linear mapping of node embeddings within a neural
network to create class prototypes by computing the mean
of support embedding for each class. After that, embedded
query samples are classified via a softmax over distances to
class prototypes.Moreover, it shows that using the Euclidean
distance function outperforms othermethods in this problem.

Another paper helps GPN compute node importance to
create class prototypes more efficiently. This paper [29]
investigated different methods for estimating node impor-
tance in a knowledge graph. The framework consists of score
aggregation layers followed by centrality adjustment to score
nodes.

For the active learning method, we got the idea from [30]
inwhich a framework is presented to dealwith the problemof
few-shot learning on graph-structured data and extended for
semi-supervised and active learning. The network is trained
via both labeled and unlabeled nodes. They considered a fully
connected graph in which every edge has a different weight
and these weights are given by a learnable similarity kernel.
In this graphneural network structure, the trainable adjacency
matrix is computed in every layer, and then, a convolution
layer is applied. In the active learning experiments, the net-
work can learn to query the label of an unlabeled node which
is the most informative one for prediction and can improve
the performance of the whole network.

3.2 Proposedmodel

Our active learning method on graph neural networks for
solving a few-shot learning problem is trained episodically
according to the meta-learning approach which is defined in
[28]. In the training phase, the network is trained on several
different tasks. Then, the learned knowledge is generalized
to the test phase and classes it has never seen before. The
overall architecture of the method is shown in Fig. 1.

Specifically, an N-way, N-Shot learning task is created in
each episode:

St � {(υ1, y1), (υ2, y2), . . . , (υN×K , yN×K)},
Qt � {

(υ∗
1 , y

∗
1),

(
υ∗
2 , y

∗
2

)
, . . . ,

(
υ∗
N×M , y∗

N×M

)},
Tt � {St , Qt } (4)

Fig. 1 GPN + AL network architecture

123

Progress in Artificial Intelligence (2022) 11:411–423 415

The St support set and the Qt query set in the Tt task
are both from training classes. The entire training process
is based on a set of meta-learning tasks. The model learns
on the training set to minimize the prediction error in the
training query set and goes episode by episode to achieve
convergence. In this way, the model gradually acquires meta-
knowledge so that it can generalize it to the test tasks T test �
S, Q (which are created from new classes in the same way as
N-way, N-shot).

3.3 Computing node representation

Wehave used a two-layerGCN, tomap each node into a latent
representationwith lowdimensions. Generally, GCNs follow
an idea to gather information from neighbors and calculate
the representation of nodes byobtaining and recursively com-
pressing node features from local neighbors. This network is
somewhat similar to the GCN described in [4] except for
two things: the final layer, in which no softmax function is
applied for classification, and its output is node embeddings,
the second difference is our active learning network that has
been embedded after the first layer. According to [31], if we
have the G � (V, E) graph, the GCN input is:

Matrix X with N × F dimensions, N is the number of
nodes, F represents features per node and adjacency matrix
A with N × N dimensions that forms the graph structure. A
hidden layer is written in GCN as in formula 4, where H0 �
X and f is the propagation rule.

Hi � f
(
Hi−1, A

)
(5)

Asmentioned, the input of a N×F matrix is from features,
where each row corresponds to one of the nodes.

In each layer, the features are collected using the prop-
agation rule to form the features of the next layer (H i). To
obtain the node embeddings, the propagation rule, which acts
similarly to the convolution kernel function, is as formula 6:

Z � f (x , A) �
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
(6)

whereW (0) ∈ RC×H is the input weight matrix to the hidden
layer with the H attribute and W (1) ∈ RH×F is the hidden
layer weight matrix to the output layer.

Neural network weights W (0) and W (1) are learned using
gradient descent, and in each iteration of the training, the
entire dataset is used. Stochasticity in the training process is
also done through dropout. In all rules, aggregation occurs
at the neighboring nodes, which allows nodes with similar
features and labels to communicate with each other and share
their features.

3.4 Active learningmethod

In order to improve the results of classification on few-shot
learning tasks, we have used the active learning method
described in [30] to select one of the classes and its sam-
ples intelligently for the support set. So that in each episode,
N− 1 classes are selected randomly and theN th class will be
selected using active learning instead of choosing N classes
and k samples of each. For this purpose, as illustrated in
Fig. 1, after the first layer of the embedding network, the
active learning function is called to select the class, which
the network is more certain about, from the training classes
(excluding the selected classes in that episode), as the most
informative class. Then, k samples are selected from the
available samples that are most likely to belong to the cho-
sen class. The selected samples’ indices will be added to the
support set in that episode.

The attention mechanism is used to find the most infor-
mative node to obtain its label. The node query operation
is performed after the first layer of our embedding network,
defined in the previous section, using attention softmax over
the graph’s unlabeled nodes. Todo this, a g function is applied
that maps each unlabeled node’s graph to a scalar value. The
g function is implemented by a two-layer neural network
(according to formula 7)

Attention � Sof tmax
(
g
(
x (1)
{1, ...,𝓇}

))
(7)

It consists of a two-layer, one-dimensional convolutional
network that uses the softmax function to obtain the proba-
bility that each node belongs to different classes. Then, the
sample with the maximum value, about which the network is
more certain, is selected as themost valuable node.After that,
it obtains the selected sample’s label and adds it to the collec-
tion.After integrating the new label into the selected node, the
information is propagated forward, and this attention part is
trained end-to-end along with the rest of the network through
the backward propagation of the loss obtained from the neu-
ral network’s output.

The general structure of the active learning method is
shown in Fig. 2.

3.5 Computing prototypes of classes

By learning the node representations from the first network,
the next step is to calculate the representation of each class
using the labeled nodes in the support set. This section fol-
lows the paradigmof prototypical networks [19], inwhich the
nodes of each class cluster form a specific prototype. Class

123

416 Progress in Artificial Intelligence (2022) 11:411–423

Fig. 2 Proposed structure for active learning using a two-layer neural network

prototypes can be calculated using formula 8:

Pc � 1

|Sc|
∑
i∈Sc

Zi (8)

where Sc are the labeled instances of c class and Zi are the
learned features of the nodes from the representation net-
work, and the prototype of each class (Pc) is calculated by
averaging the total embeddings of the nodes belonging to that
class.

It is worth noting that by using active learning method to
select one of the classes, the network learns how to select a
muchmore valuable instance in each iteration so that the class
prototypes will be created more accurately. Consequently,
node classification will be done more precisely as well as
minimizing the amount of network loss and error.

3.6 Determine the importance of each node

Despite the simplicity of this method, whichmeans the direct
use of the average embedding vectors of support samples as a
prototype, it may not provide promising results for few-shot
learning problem [28]. In fact, it ignores that each node has
different importance in the network andmakes the FSL (Few-
shot Learning) model very noise-sensitive since the labeled
data are very limited. Therefore, the way class prototypes are
created is essential to build a robust and effective FSLmodel.

To identify the value of each labeled node, it is considered
that the node importance is closely related to its neighbors’
importance. Accordingly, we have followed the simplified
node valuator method (as shown in Fig. 1) to estimate the
importance degree of the node through it, which is again cal-
culated using a two-layer GCN considering a fully connected
layer at the end that map each node to a scalar value. There-
fore, the network output is a score for each node, which is
represented by SLi .

Since the importance of each node is positively related
to its centrality in the graph, and each node’s degree is a
measure of its centrality and popularity, a node’s centrality
in the graph is calculated by formula 9:

C(i) � log(deg(i) + ε) (9)

(ε is a small constant value) To calculate the final impor-
tance of each node, the calculated centrality of formula 11

is applied to the output obtained from the node valuator
discussed earlier; then, the sigmoid non-linear function is
applied to it according to formula 10.

S̃i � sigmoid
(
C(i) · SLi

)
(10)

So, the significance of the labeled samples in the support
set is adjusted; by doing so, the prototypes of the classes
are represented much stronger. The significance of nodes
is applied to the support set’s embeddings, and then, the
prototype of each class is calculated from the set of new
embeddings obtained.

3.7 Training

The network that obtains node embeddings, the active learn-
ing network, and the node valuator network is trained end
to end with the rest of the model. At the end of the train-
ing, to classify and calculate the probability that each of
the query set samples (Vi) belongs to the desired classes,
the squared Euclidean distance of embeddings of the sample
set (Zi) (which is from the resulting of the first network) is
obtained from the class prototypes (Pc), and then, the soft-
max function is applied (formula 11):

P
(
c|υ∗

i

) � exp
(−d

(
Z∗
i , Pc

))
∑

C ′ exp
(−d

(
Z∗
i , PC ′

)), (11)

(d(0)) is the distance function. After calculating the
network loss function, the backward propagation and opti-
mization are calculated. In an episodic training context, the
goal of each task is to minimize the classification errors
between model prediction on the query set and the actual
samples label. The classification error is calculated by for-
mula 12:

L � − 1

N × M

N×M∑
i�1

logP(y∗
i |υ∗

i) (12)

After training a significant number of meta-training tasks,
its generalized performance in the test phase is measured.
In each test episode, the predictor model generated by our
model is used to classify each node of the query set into the

123

Progress in Artificial Intelligence (2022) 11:411–423 417

Table 1 Statistics of the
evaluation datasets Dataset Nodes Edges Attributes Labels

Amazon—electronics 42,318 43,556 8669 167

Amazon—clothing 24,919 91,680 9034 77

DBLP 40,672 288,270 7202 137

most probable class (according to formula 13):

ŷ∗
i � argmaxC P(c|υ∗

i) (13)

4 Experimental results

4.1 Datasets

In this section, we evaluate the performance of our proposed
method on different datasets.

Amazon-electronics dataset [32] spanning May 1996–July
2014. To use this dataset in our model, each node represents
an Amazon product in electronics category and features of
nodes are derived from the product description. And a com-
plementary relationship (bought-together) between products
is used to create the edges.

From this dataset, we select 90/37/40 classes for train-
ing/validation/testing. For the input graph of our model,
product descriptions (on which the bag of words model is
applied) form the features matrix, the adjacency matrix uses
the “also_bought” values between products that were bought
together to create links between nodes and the labels of prod-
ucts are given by the low-level categories in themetadata such
as digital camera and monopod.

Amazon-Clothing, Shoes andJewelrydataset [32] ranging
from May 1996–July 2014 is also similar to the previous
dataset in which each node is a product, its description on
Amazon website is used to create features by applying bag
of words model and low-level category is related to the class
of nodes. But for creating links between nodes, substitution
relation (“also_viewed” value), which means those similar
products recommended to you to buy instead, is considered.
Here, we use 40/17/20 classes for training/validation/testing.

DBLP dataset [33] (version 11): It is a dataset of citation
networks in which each paper represents a node and its cita-
tion to other papers defines links among them. Applying Bag
of word model on papers’ abstract creates features of a node
and publication venue, e.g., journal or conference is used
as the labels of each node (only venues which have lasted
at least 20 years). We use 80/27/30 node classes for train-
ing/validation/test.

In all datasets, only classeswith 100 to 1000nodes are kept
and others are excluded. The generated graph’s information
from the dataset is summarized in Table 1.

4.2 Setup

The settings of representation and evaluator module are
the same as the suggestion of their original paper, a two-
layer GCN with 16 and 32 dimensions and ReLU activation
function with a learning rate of 0.005, 0.0005 of weight
decay, (random) dropout amount of 0.5, and Adam opti-
mizer are used. In our active learning network, we use 2
one-dimensional convolution networks with (1×1) filter size
which the features from the first layer of representation net-
work are given as input, and the number of classes in each
dataset is the output, followed by batch normalization, Leaky
ReLU function and softmax.

A total of 300 episodes are considered in the training pro-
cess. For the test also, 50 extra-test tasks, similar to what we
created in the training task, are randomly selected from the
test-related classes.

We evaluate the performance of our active learning GPN
model on Amazon electronic and clothing datasets as well as
DBLP dataset in four FSL classification tasks of: Since the
usual values of the N parameter in related studies vary from
5, 10, 20 and for k parameter 1, 3 and 5 are common. So,
we select 5 and 10 for the number of our classes and 3 and
5 for shots to assess our model on few-shot tasks problem.
5way-3shot, 5way-5shot, 10way-3shot, and 10way-5shot (in
each task, the size of the query set is equal to the number
of shots in support set), and presented the results in Table 2
(Performances of other models are cited from our base paper,
GPN [28]).

4.3 Comparison

In order to compare, the two common criteria accuracy
(ACC) and Micro-F1 (F1) are used for performance eval-
uation. We compare our model against related baseline
methods:

Deepwalk [34]: uses local information obtained from trun-
cated random walks as input to learn latent representations
of nodes in a graph.

123

418 Progress in Artificial Intelligence (2022) 11:411–423

Table 2 Comparison of the
performance of different
algorithms on the
Amazon-electronic dataset

Model 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 23.5 22.2 26.1 25.7 14.7 12.9 16.0 14.7

Node2vec 25.5 23.7 27.1 24.3 15.1 13.1 17.7 15.5

GCN 53.8 49.8 59.6 55.3 42.3 38.4 47.4 48.3

SGC 54.6 53.4 60.8 59.4 43.2 41.5 50.0 47.6

PN 53.5 55.6 59.7 61.5 39.9 40.0 45.0 44.8

MAML 53.5 52.1 59.0 58.3 37.4 36.1 43.4 41.3

Meta-GNN 63.2 61.5 67.9 66.8 58.2 55.8 60.8 60.1

GPN 64.6 61.8 70.9 70.6 58.6 56 62.4 63.7

GPN + AL 66.3 62 73 72 60.1 57.6 65.9 64.9

Node2vec [35]: It generalizes Deepwalk by exploring net-
work neighborhoods flexible and controllable by designing
biased random walk procedure.

GCN [4]: GCN model uses an efficient layer-wise prop-
agation rule that is based on a first-order approximation of
spectral convolutions on graphs to learn representations of
nodes.

SGC [14]: SGC simplifies GCN through removing non-
linearities and collapsing the resulting function into a single
linear transformation.

PN [19]: It learns a metric space in which classification
can be performed by computing distances to prototype rep-
resentations of each class for few-shot learning.

MAML [16]: represents a model to enable fast learning of
new tasks for meta-learning.

Meta-GNN [36]: This model incorporates the meta-
learning approach into graph neural networks, providing the
capability of well generalizing to new classes that have never
been encountered before, with very few samples.

GPN [28]: It proposes a novel paradigm to solve few-shot
learning problem by using GCNs to learn class prototypes.

The results of Tables 2, 3 and 4 show that the pro-
posed GPN + AL approach, which its results are bolded, has
achieved the best performance in all FSL tasks compared to
other models. (The results of our model are the average of
all performances after 30 runs.) In general, DeepWalk and
node2vec fall behind other methods in FSL Tasks. These
RandomWalk-based randommethods rely on large amounts
of labeled data for acceptable performance. Similarly, GNN-
based methods cannot achieve competitive results in the
mentioned issues. Conventional GNN models have been
developed for the semi-supervised node classification and
simply suffer fromover-fittingwith a small number of labeled
samples.

MAML and PN also perform poorly in such tasks. The
main reason is that thesemethods cannot maintain the depen-
dency between the nodes to learn their representation.

By integrating the approach of meta-learning into graph
neural networks, Meta-GNN has made significant advances
over other basic methods in FSL classification in most cases
[28]. GPN has surpassed the previous methods by providing
a method based on encoder and evaluator networks. Finally,
our model by adding active learning method demonstrates
significantly higher performance in all cases. The observa-
tions show that our proposed method has competitive results
than the best model, GPN.

Additionally, we can further observe that by increasing
the class size from 5 to 10, the performance of all few-shot
studied models decreases. The GPN model performed bet-
ter than previous ones due to the impact of evaluating node
values to learn class prototypes. Furthermore, the effect of
active learning addition on the performance of that model is
evident owing to the creation of more accurate class proto-
types, which have achieved better results than other models.
The results in Tables 2, 3 and 4 also illustrate that the perfor-
mance of all models increases as the number of shots grows
from 3 to 5. Also, among prior listed classification methods,
the GPN model has provided better performance by increas-
ing the number of shots due to the need for more support
set samples to create more accurate prototypes of classes,
and our proposed model has also helped this by selecting
more useful samples and has significantly improved results.
In the next section, Kruskal–Wallis statistical test is carried
on ensuring that the proposed model performance has a sta-
tistically significant difference.

4.3.1 Statistical test

To demonstrate the contrast in performance of the proposed
model, we have computed the Kruskal–Wallis statistical
test and Bonferroni post hoc analysis on accuracy and F1
results of models with different N-way K-shot tasks on three
datasets.

123

Progress in Artificial Intelligence (2022) 11:411–423 419

Table 3 Comparison of the
performance of different
algorithms on the
Amazon-clothing

Model 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 36.7 36.3 46.5 46.6 21.3 19.1 35.3 32.9

Node2vec 36.2 35.8 41.9 40.7 17.5 15.1 32.6 30.2

GCN 54.3 51.4 59.3 56.6 41.3 37.5 44.8 40.3

SGC 56.8 55.2 62.2 61.5 43.1 41.6 46.3 44.7

PN 53.7 53.6 63.5 63.7 41.5 41.9 44.8 46.2

MAML 55.2 54.5 66.1 67.8 45.6 43.3 46.8 45.6

Meta-GNN 74.1 73.6 77.3 77.5 61.4 59.7 64.2 62.9

GPN 75.4 74.7 78.6 79.0 65.0 63.2 67.7 68.9

GPN + AL 80.5 79.4 83.4 82.5 67.4 65.5 72.1 71

Table 4 Comparison of the
performance of different
algorithms on the DBLP

Model 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 44.7 43.1 62.4 60.4 33.8 30.8 45.1 43.0

Node2vec 40.7 38.5 58.6 57.2 31.5 27.8 41.2 39.6

GCN 59.6 54.9 68.3 66.0 43.9 39.0 51.2 47.6

SGC 57.3 54.7 65.0 62.1 40.2 36.8 50.3 46.4

PN 37.2 36.7 43.4 44.3 26.2 26.0 32.6 32.8

MAML 39.7 39.7 45.5 43.7 30.8 25.3 34.7 31.2

Meta-GNN 70.9 70.3 78.2 78.2 60.7 60.4 68.1 67.2

GPN 74.5 73.9 80.1 79.8 62.6 62.6 69.0 69.4

GPN + AL 79 76.9 81.8 81.1 66 63.0 71.2 69.8

This paired comparison test is presented in Table 5.
Regarding the p values we can conclude that our pro-
posed method had a significant distinction with Deep Walk,
Node2vec, GCN, PN, andMAML in various tests. It can also
be obvious that although its comparisons with SGC, Meta-
GNN, andGPNwere not dramatically different, the proposed
model surpassed them as well.

4.4 Loss analysis

Moreover, we also compare our model in terms of loss rate
with GPN which has the highest performance among others
in similar conditions and settings in 5way-5shot stance (in
which best results in all datasets were obtained). The com-
parison results of the two models are given in Table 6 and
Fig. 3.

This table illustrates that our model has lower loss rate in
three datasets against GPN model. Therefore, it can be con-
cluded that themore intelligently classes and their samples in
the support set are selected, the more accurate the prototypes
of embeddings will be, leading to an overall improvement in

model’s prediction. Consequently, makes it more robust and
reliable for solving classification problems with few shots.

4.5 Parameters analysis

To analyze the models’ sensitivity to the number of classes
(N-way), the size of the support set (K-shot), and the size of
the query set, we have performed experiments on our model
and GPN, which will be discussed in this section.

4.5.1 Effect of class size (N-way)

First, we analyze the effect of class size on tasks that are
controlled by the parameter N. The performance changes
in the models in terms of accuracy (ACC) by adjusting the
different values of N are presented in Fig. 4.

As can be seen, by increasing the class size, the per-
formance of models decreases as more classes lead to the
prediction of more types of nodes, increasing the difficulty
of classifying with a few-shot approach.

123

420 Progress in Artificial Intelligence (2022) 11:411–423

Table 5 Pairwise comparisons of
models F1

10-way
5-shot

10-way
3-shot

5-way 5-
shot

5-way 3-
shot

p-
va

lu
e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e
St

d.
 E

rr
or

H
 st

at
ist

ic

00
1

/0

24
1

/3–

21–00
2

/0

13
8

/3 –

33
3

/
20–
00
2

/0

13
8

/3–

33
3

/
20–
00
1

/0

24/3–

21–

Node2vec-
GPN + AL

00
3

/0

98
4

/ 2–

33
3

/
19–
00
2

/0

08
6

/ 3–

20–00
5

/0

77
8

/2–

18 –00
2

/0

13
8

/ 3–

33
3

/
20–

Deep Walk-
GPN + AL

02
4

/0

26
3

/ 2–

66
7

/
14–
06
4

/0

85
2

/ 1–

12–04
2

/0

03
2

/2–

16
7

/
13 –
05
1

/0

95
5

/ 1–

66
7

/
12–

PN-GPN
+ AL

01
2

/0

52
1

/2–

33
3

/
16–
03
5

/0

10
9

/2 –

66
7

/
13–
03
5

/0

10
9

/2–

66
7

/
13–
03
1

/0

16/2–

14–

MAML-
GPN + AL

09
5

/0

67
2

/1 –

83
3

/
10–
05
7

/ 0

90
3

/ 1–

33
3

/
12–
03
1

/0

16
1

/2 –

14 –04
5

/ 0

00
6

/ 2–

13 –

GCN-GPN
+ AL

09
5

/0

67
2

/1–

83
3

/
10–

1/ 064
6

/ 1–

66
7

/
10–
07
6

/0

77
5

/1–

5/
11–
30
4

/0

02
9

/1–

66
7

/6–

SGC-GPN
+ AL

50
4

/ 0

66
9

/0–

33
3

/4–
64
3

/0

46
3

/0 –

3–57
1

/0

56
6

/0–

66
7

/3–
60
7

/0

51
4

/0–

33
3

/3 –
Meta-GNN-
GPN + AL

79
7

/0

25
7

/0–

66
7

/1–
87
7

/0

15
4

/0 –

1–79
7

/0

25
7

/0–

66
7

/1 –
79
7

/0

25
7

/0 –

66
7

/1 –

GPN-GPN
+ AL

ACC
10-way
5-shot

10-way
3-shot

5-way 5-
shot

5-way 3-
shot

p-
va

lu
e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e

St
d.

 E
rr

or

H
 st

at
ist

ic
p-

va
lu

e

St
d.

 E
rr

or

H
 st

at
ist

ic

00
1

/0

21
6

/ 3–

83
3

/
20 –
00
1

/0

18
9

/3 –

66
7

/
20 –
00
1

/0

18
9

/3–

66
7

/
20–
00
1

/0

18
9

/3–

66
7

/
20–

Node2vec-
GPN + AL

00
4

/0

88
1

/2–

66
7

/
18–
00
2

/0

13
8

/3–

33
3

/
20–
00
6

/0

72
6

/2–

66
7

/
17–
00
2

/0

13
8

/3–

33
3

/
20–

Deep Walk-
GPN + AL

00
9

/0

62
4

/2 –

17–01
8

/0

36
6

/2 –

33
3

/
15–
02
4

/0

26
3

/2 –

66
7

/
14–
01
3

/0

49
5

/2–

16
7

/
16–

PN-GPN
+ AL

01
4

/0

47/ 2–

16–03
5

/ 0

10
9

/ 2–

66
7

/
13 –
02
4

/0

26
3

/2–

66
7

/
14–
02
5

/0

23
8

/2–

5 /
14–

MAML-
GPN + AL

09
4

/0

67
2

/1–

83
3

/
10–

1/ 064
6

/1–

66
7

/
10–
06
4

/0

85
2

/1–

12–11
1

/0

59
5

/1–

33
3

/
10–

GCN-GPN
+ AL

13
6

/0

49
2

/1–

66
7

/9 –
11
1

/ 0

59
4

/1 –

33
3

/
10 –

09/0

69
7

/1 –

11 –16
5

/0

38
9

/1 –

9–

SGC-GPN
+ AL

57
1

/0

56
6

/0 –

66
7

/3–
60
7

/0

51
4

/0 –

33
3

/3 –
57
2

/0

56
6

/0 –

66
7

/3 –
60
7

/0

51
4

/0–

33
3

/3–

Meta-GNN-
GPN + AL

71
9

/0

36/0–

33
3

/ 2–
79
7

/0

25
7

/ 0–

66
7

/ 1–
79
7

/ 0

25
7

/0–

66
7

/1–
79
7

/ 0

25
7

/0–

66
7

/1–

GPN-GPN
+ AL

Table 6 Comparison of the loss of two algorithms on the different
datasets

Model/dataset Electronics Clothing DBLP

GPN 1.0237124 0.62608 0.6786

GPN + AL 0.7767061 0.53433 0.5269

4.5.2 Effect of support set size (k-shot)

Next, we examine the effect of the sample size of the sup-
port set, which is represented by the K parameter. We have
reported the results in terms of accuracy (ACC) in Fig. 5.
According to the diagram, it can be clearly seen that the
performance of models increases as the value of k grows,
indicating that a larger support set can produce better proto-
types.

0

0.5

1

1.5

Electronics clothing DBLP

Lo
ss

Gpn GPN+AL

Fig. 3 Loss comparisons of GPN and GPN + AL on different datasets.
(5-way 5-shot)

4.5.3 Effect of query set size (M)

In this section,wehave used5way-5shot tasks. Then,wehave
changed the number of query set samples from each class
and reported the relevant results in Fig. 6. From the reported

123

Progress in Artificial Intelligence (2022) 11:411–423 421

Fig. 4 The diagram of the class
size effect in Nway-5shot task

Amazon-Electronics Amazon-Clothing DBLP

55

60

65

70

75

5 6 7 8 9 10

A
CC

Class Size (N)

GPN GPN+AL

0

20

40

60

80

100

5 6 7 8 9 10

A
CC

Class Size (N)

GPN

60

65

70

75

80

85

5 6 7 8 9 10

A
CC

Class Size (N)

GPN GPN+AL

Fig. 5 The diagram of the shot
size effect in 5way-Kshot task

Amazon-Electronics Amazon-Clothing DBLP

0

20

40

60

80

100

2 3 4 5 6 7

A
CC

Support Size (K)

GPN GPN+AL

60

65

70

75

80

85

2 3 4 5 6 7

A
CC

Support Size (K)

GPN GPN+AL

65

70

75

80

85

90

1 2 3 4 5 6

A
CC

Support Size (K)

GPN GPN+AL

Fig. 6 The diagram of the query
size effect in 5way-5shot, M
query task

Amazon-Electronics Amazon-Clothing DBLP

66

68

70

72

74

76

78

1 5 10 15 20

A
CC

Query Size (M)

GPN GPN+AL

65

70

75

80

85

90

1 5 10 15 20

A
CC

Query Size (M)

GPN GPN+AL

70
72
74
76
78
80
82
84
86

1 5 10 15 20
A

CC
Query Size (M)

GPN GPN+AL

results, we can see that increasing the size of the query set
increases themodels’ accuracy andwhenM� 20, the highest
performance of themodels is obtained. For example, our pro-
posed model reached an accuracy of 87.2% in this situation
on Amazon-Clothing dataset because an episodic learning
model couldmatch the knowledgegained frommeta-learning
tasks with larger query sets and gain a better generalization
ability to the desired tasks [28].

The observations show that the proposedmethod has a bet-
ter performance than theGPNmodel and it ismore robust and
reliable for solving classification problems with few shots.
Therefore, it can be concluded that the more intelligently
classes and their samples in the support set are selected, the
more accurate the prototypes of embeddings will be, leading
to an overall improvement in model prediction.

5 Conclusion

In this paper, we presented an efficient way to classify
data with a small number of samples. According to what
is described in the third section, this method includes two
powerful networks of convolutional graphs, one of which
is to obtain node embeddings and the other is to determine
the importance of nodes according to their centrality and
connection with neighboring nodes. Also, another convolu-
tional network is built into the first network to intelligently
select samples. So, it chooses themost valuable sample, about
which the network is more certain, from unlabeled data, to
minimize network loss. The score obtained from the second
network affects the output of the first network to create a class
prototype, and in the final step, according to the distance
between the embedding of the sample we want to classify
and the class prototype, we predict the sample label. Then,

123

422 Progress in Artificial Intelligence (2022) 11:411–423

we generalize the knowledge obtained from these steps to the
test phase for classifying new classes. Experimental results
show that the proposed method of using active learning has
made remarkable progress compared to the basicmethod and
has led to increased accuracy and reduced network loss. In
future studies, other few-shot learning methods, discussed
in the second section, on convolutional graph networks can
be used, and samples can be selected intelligently through
active learning or making changes in the calculating method
of the classes’ prototypes and evaluator network, which has
a significant impact on the results and the examination of
whether they will perform better than the method discussed
in this paper or not. The performance of the proposedmethod
can also be tested on a larger dataset.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Haider, S.: Few Shot Learning for Text. M.S thesis. Faculty of
Media, Bauhaus-Universität, Weimar, Germany (2020)

2. Estay, B. [Online]. https://www.bigcommerce.com/blog/online-
shopping-statistics/#ecommerce-is-growing-every-day. Accessed
1 Sept 2021

3. [Online]. https://catsy.com/blog/product-categorization/.
Accessed 1 Sept 2021

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks (2016). arXiv:1609.02907

5. Wang, Z., Gao, H., Ji, S.: Large-scale learnable graph convo-
lutional networks. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Min-
ing, pp. 1416–1424. ACM (2018)

6. Ying, Z., Leskovec, J., Hamilton, W.: Inductive representation
learning on large graphs. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems, December
2017 (NIPS’17), pp. 1025–1035 (2017)

7. Ma, T., Xiao, C., Chen, J.: Fastgcn: fast learning with graph convo-
lutional networks via importance sampling. In: Proceedings of the
7th International Conference on Learning Representations (2018)

8. Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J., Chiang, W.L.: Clus-
tergcn: an efficient algorithm for training deep and large graph
convolutional networks (2019). arXiv:1905.07953

9. Kapoor, A., Perozzi, B., Lee, J., Abu-El-Haija, S.: NGCN: multi-
scale graph convolution for semi-supervise node classification
(2018). arXiv:1802.08888

10. Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-
based semi-supervised classification. In: Proceedings of the 2018
World Wide Web Conference, pp. 499–508 (2018)

11. Zhu, J., Song, L., Chen, J.: Stochastic training of graph con-
volutional networks with variance reduction. In: International
Conference on Machine Learning, pp. 941–949 (2018)

12. Han, Z., Wu, X.M., Li, Q.: Deeper insights into graph convo-
lutional networks for semi-supervised learning. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

13. Verma, S., Zhang, Z.L.: Stability and generalization of graph con-
volutional neural networks (2019). arXiv:1905.01004

14. Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K., Wu, F.:
Simplifying graph convolutional networks. In: International Con-
ference on Machine Learning, pp. 6861–6871 (2019)

15. Han, Y.: A New Method to Solve Same-Different Problems with
Few-Shot Learning. M.S thesis, Western University, Ontario,
Canada (2019)

16. Abbeel, P., Levine, S., Finn, C.: Model-agnostic meta-learning for
fast adaptation of deep networks. In: Proceedings of the Interna-
tional Conference on Machine Learning (2017)

17. Ravi, S., Larochelle, H.: Optimization as a model for few-shot
learning. In: ICLR (2017)

18. Blundell, C., Lillicrap, T., Wierstra, D., Vinyals, O.: Matching net-
works for one shot learning. In: Advances in Neural Information
Processing Systems, pp. 3630–3638 (2016)

19. Swersky, K., Zemel, R., Snell, J.: Prototypical networks for few-
shot learning (2017). arXiv:1703.05175

20. Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., Sung,
F.: Learning to compare: relation network for few-shot learning
(2017). arXiv:1711.06025

21. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks
for one-shot image recognition. In: ICML Deep Learning Work-
shop, vol. 2 (2015)

22. Sörsäter, M.: Active Learning for Road Segmentation using Con-
volutional Neural Networks. M.S thesis. Department of Electrical
Engineering, Linköping University, Linköping, Sweden (2018)

23. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4),
319–342 (1988)

24. Cohn, D., Ladner, R., Atlas, L.: Training connectionist networks
with queries and selective sampling. In: Advances in Neural Infor-
mation Processing Systems, pp. 566–573 (1990)

25. Atlas, L., Ladner, R., Cohn, D.: Improving generalization with
active learning. Mach. Learn. 15(2), 201–221 (1994)

26. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text
classifiers. In: SIGIR’94, pp. 3–12. Springer (1994)

27. Settles, B.: Active Learning Literature Survey. Technical report,
University of Wisconsin-Madison Department of Computer Sci-
ences (2009)

28. Wang, J., Li, J., Shu, K., Liu, C., Liu, H., Ding, K.: Graph proto-
typical networks for few-shot learning on attributed networks. In:
Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management (2020)

29. Kan, A., Dong, X.L., Zhao, T., Faloutsos, C., Park, N.: Estimating
node importance in knowledge graphs using graph neural networks.
In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2019)

30. Garcia, V., Bruna, J.: Few-shot learning with graph neural net-
works. InProceedings of the International Conference on Learning
Representations (2018)

31. Kipf, T. [Online]. http://tkipf.github.io/graph-convolutional-
networks. Accessed 23 July 2021

32. Pandey, R., Leskovec, J.,McAuley, J.: Inferring networks of substi-
tutable and complementary products. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (2015)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.bigcommerce.com/blog/online-shopping-statistics/#ecommerce-is-growing-every-day
https://catsy.com/blog/product-categorization/
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1905.07953
http://arxiv.org/abs/1802.08888
http://arxiv.org/abs/1905.01004
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1711.06025
http://tkipf.github.io/graph-convolutional-networks

Progress in Artificial Intelligence (2022) 11:411–423 423

33. Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z., Tang, J.: Arnetminer:
extraction and mining of academic social networks. In: Proceed-
ings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2008)

34. Al-Rfou, R., Skiena, S., Perozzi, B.: Deepwalk: online learning of
social representations. In: Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(2014)

35. Leskovec, J., Grover, A.: node2vec: Scalable feature learning for
networks. In:Proceedings of the ACMSIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2016)

36. Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J., Zhou, F.:
Meta-gnn: on few-shot node classification in graph meta-learning.
In: Proceedings of the ACM International Conference on Informa-
tion and Knowledge Management (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Improving graph prototypical network using active learning
	Abstract
	1 Introduction
	2 Related works
	2.1 Graph convolutional networks (GCNs)
	2.2 (FSL) Few-shot learning
	2.3 Active learning

	3 The proposed method
	3.1 Relationship with existing models
	3.2 Proposed model
	3.3 Computing node representation
	3.4 Active learning method
	3.5 Computing prototypes of classes
	3.6 Determine the importance of each node
	3.7 Training

	4 Experimental results
	4.1 Datasets
	4.2 Setup
	4.3 Comparison
	4.3.1 Statistical test

	4.4 Loss analysis
	4.5 Parameters analysis
	4.5.1 Effect of class size (N-way)
	4.5.2 Effect of support set size (k-shot)
	4.5.3 Effect of query set size (M)

	5 Conclusion
	References

