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Abstract
Dynamic Topic Modeling (DTM) is the ultimate solution for extracting topics from short texts generated in Online Social
Networks (OSNs) like Twitter. It requires to be scalable and to be able to account for sparsity and dynamicity of short texts.
Current solutions combine probabilistic mixture models like Dirichlet Multinomial or Pitman-Yor Process with approximate
inference approaches like Gibbs Sampling and Stochastic Variational Inference to, respectively, account for dynamicity and
scalability of DTM. However, these methods basically rely on weak probabilistic language models, which do not account
for sparsity in short texts. In addition, their inference is based on iterative optimizations, which have scalability issues when
it comes to DTM. We present GDTM, a single-pass graph-based DTM algorithm, to solve the problem. GDTM combines
a context-rich and incremental feature representation method with graph partitioning to address scalability and dynamicity
and uses a rich language model to account for sparsity. We run multiple experiments over a large-scale Twitter dataset to
analyze the accuracy and scalability of GDTM and compare the results with four state-of-the-art models. In result, GDTM
outperforms the best model by 11% on accuracy and performs by an order of magnitude faster while creating four times better
topic quality over standard evaluation metrics.

Keywords Topic modeling · Dimensionality reduction · Distributional semantics · Language modeling · Graph partitioning

1 Introduction

Motivation topic modeling [1] is the problem of automatic
classification ofwords,which form the context of documents,
into similarity groups, known as topics. More specifically, it
is a dimensionality reduction problem [2] where the goal is
to reduce the high-dimensional space of words into a signifi-
cantly low-dimensional and semantically rich space of topics.
Traditional solutions considered topic modeling as a batch
processing problemwhere a fixed number of documentswere
read into a system and iteratively analyzed, following an opti-
mization function. However, documents generated in today’s
socialmedia (likeTwitter or Facebook) are (i) fast (large scale
and continuous), (ii) sparse (short length) and (iii) dynamic
(with constant emergent of newly generated phrases or con-
text structures). This is a problem known as Dynamic Topic
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Modeling (DTM). A legitimate solution to DTM should con-
stantly receive a large number of short texts, extract their
topics and adapt to the changes in the topics.

Current solutions Latent Dirichlet Allocation (LDA) [3]
is one of the most well-known solutions to topic modeling
that proposes a probabilistic modeling of the feature space
and employs a deterministic inference approach, known as
Expectation Maximization (EM), to extract the topics. LDA
is an online topic modeling approach by nature. However, for
three reasons, it cannot be considered as a solution for DTM:
first, the iterative structure of the EM algorithm that limits
the scalability of LDA; second, the naive probabilistic model
and the strong assumption on having a fixed number of topics
that limit the adaptation of the model to the dynamicity in
DTM; and third, the simplistic language model, known as
Bag Of Words (BOW), that does not account for sparsity in
short texts.

To address sparsity, BTM [4] creates stronger context rep-
resentations using a more complex language model, called
bigram, and to cope with dynamicity, DTM [5], CDTM [6]
and DCT [7] use stronger probabilistic modeling approaches
by interconnecting the transition probabilities. However, all
these solutions still use a fixed number of partitions that
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Fig. 1 The protocol of GDTM, a graph-based algorithm for dynamic topic modeling. A stream of documents pass through a set of four components
to extract and dynamically maintain their topics

limits their power to account for dynamicity. GSDMM [8],
FGSDMM [9] and PYPM [10] propose to solve this prob-
lem using stochastic optimization approaches like Dirichlet
Multinomial Mixture (DMM) [11]models orPitman-Yor [10]
processes to consider infinite number of topics and allow the
algorithm to dynamically adapt the number of partitions. In
addition, all these approaches strive to achieve scalability
by reducing the sample size using approximate optimization
algorithms such as Gibbs Sampling [12] and Stochastic vari-
ational inference [13]. However, they are still relying on the
same iterative optimization mechanisms and therefore sensi-
tive to scalability issues when it comes to DTM.

Our approach This paper presents GDTM, a Graph-based
Dynamic Topic Modeling algorithm designed to overcome
those limitations by taking all the above-mentioned aspects
into consideration. The solution combines a dimensional-
ity reduction technique, called Random Indexing (RI) [14],
to overcome the scalability, an advanced language modeling
approach based on the Skip-Gram [15] technique, used in nat-
ural language modeling and speech recognition, to address

the sparsity and an innovative graph modeling together with
a single-pass graph partitioning algorithm to account for
dynamicity. Figure 1 shows the overall protocol of the algo-
rithm that is constructed in a pipeline approach.

A stream of documents pass through the pipeline of four
components where each document gets processed by each
component until the topic is assigned to it. First, the Feature
Vector Extraction component reads and tokenizes the docu-
ment and extracts a vector representation for eachword in the
document using RI. Then, the Feature Vector Composition
combines the corresponding feature vectors to construct the
document representation vector using the skip-gram model.
After that, the Graph Representation component converts
each document vector into a graph representation called
document graph. Finally, the Graph Partitioning component
extracts the topics by aggregating the document graphs into a
single,weighted andhighlydensegraph representation called
Knowledge Graph (KG). The algorithm uses the KG for two
reasons: first, to assign topics to new documents based on the
overlap between their corresponding document graph and the
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KG and second, to maintain the dynamics of the topics fol-
lowing a deterministic optimization function.

Main contribution The key element of success in our algo-
rithm is to distinguish between the two main components,
namely (i) feature representation and (ii) topic extraction.
This allows us to develop a single-pass algorithm where
each document only passes once through the entire process.
Moreover, the two main characteristics that play a signifi-
cant role in this scenario are (i) the incremental nature of the
RI technique that allows us to extract semantically rich and
highly low-dimensional feature representation vectors with-
out the need to access the entire dataset and (ii) the single-pass
streaming graph partitioning that enables the extraction of
high-quality topics encoded in the graph representation using
the rich language representation model.

Summary of experiments and results We run two sets of
experiments to analyze the (i) accuracy and (ii) scalability
of GDTM. To show the accuracy, we define a topic mod-
eling task on a tagged Twitter dataset and compare GDTM
with four state-of-the-art approaches on performing the task
using a standard evaluation metric, called B-Cubed [16].
For scalability, we run a set of experiments on a large-
scale Twitter dataset and compare the execution time and the
quality of the extracted topics, using the evaluation method
called Coherency [17]. The results show that GDTM outper-
forms all the state-of-the-art approaches in both accuracy
and scalability. In particular, GDTM provides more than
11% improvement on accuracy compared to the best results
over the state-of-the-art approaches. In addition, we show
that GDTM is by an order of magnitude faster than the
best approach over scalability, while the extracted partitions
exhibit significantly higher quality in terms of coherency.

2 Related work

Classical solutions for topic modeling on text, such as PLSI
[18] and LDA [3], proposed to model the co-occurrence
patterns as a probability distribution over a batch of long doc-
uments and infer the topics using statistical techniques such
as variational inference and Gibbs Sampling [12]. However,
with the emergence of the online social networks and the
appearance of short texts, like tweets, these solutions faced
various challenges related to the size, the number and the
dynamics of the documents in such new environments.

Yan et al. [4] and ghoorchian et al. [26] presented amethod
to solve the sparsity in short texts by applying a more com-
plex language model, known as bigram. The authors used the
bigrammodel to overcome the sparsity by constructing richer
context representations from short texts. However, they did
not consider the dynamicity as their model still requires to
know the number of topics in advanced and therefore lacks

flexibility when it comes to fast dynamic changes in the doc-
uments.

Blei et al. [5] proposed the first solution specifically
designed to alleviate the dynamicity in DTM. They devel-
oped a family of probabilistic time-series models to analyze
and extract the evolution of topics in a stream of documents.
The authors tried to solve the dynamicity by discretizing the
stream of documents and developing a stream of batches
by interrelating the consequent models through variational
approximation methods based on Kalman Filters [19]. Their
model was limited in scalability when the discretization
of the topics went to infinity. Wang et al. [6] proposed
another solution, called Continuous-time Dynamic Topic
Model (CDTM), to overcome the discretization problem in
DTM using a continuous generalization approach. DTM and
CDTM are basically designed for topic modeling on large
documents and do not account for sparsity and scalability in
short texts.

Liang et al. [7] proposed another solution based on short-
term and long-term inter-dependency between the mean of
the distributions across multiple time stamps to solve the dis-
cretization problem and also account for the sparsity in short
texts. However, their model, similar to DTM and CDTM,
requires to know the number of topics, which limits its power
to account for the dynamicity. In addition, their inference
approach is based on the same iterative Gibbs Sampling opti-
mization mechanism that limits the scalability.

To solve the problem of the fixed number of topics, Yin
et al. proposed solutions, GSDMM [8] and FGSDMM [9],
based on Dirichlet Multinomial Mixture (DMM) Processes.
Qiang et al. [10] improved Yin’s solution using a new clus-
tering with probabilities derived from a Pitman-Yor Mixture
Process [20]. These approaches have significantly improved
the accuracy of the extracted topics. However, they are basi-
cally designed for application on batch processing problems
and therefore, face scalability issues when it comes to DTM.

Multiple solutions are developed to overcome different
challenges in DTM but to our knowledge, a single approach
that can tackle all the challenges at once is missing. Thus,
we present GDTM as a universal model that is designed to
meet all the challenges in DTM.

3 Solution

In this section, we will explain the details of our single-pass
graphs-based dynamic topic modeling algorithm. The algo-
rithm is designed using a pipeline approach that receives
a stream of documents. The documents pass through four
components: FeatureVectorExtraction, FeatureVectorCom-
position, Graph Representation and Graph Partitioning. In
the following sections, we will explain each of these compo-
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nents and the way they interact with each other to extract the
topics.

3.1 Feature vector extraction

We consider words as the atomic features and use a vec-
tor representation model to construct the feature vectors as
the building blocks of the document representation model.
GDTM requires a representation model that (i) is low-
dimensional to account for scalability, (ii) is incremental to
be useful in streaming setting, and (iii) creates relatively rich
representations that contributes to efficiency in a single-pass
optimization approach. RI is a reliable [21] dimensional-
ity reduction technique that perfectly satisfies all the above
requirements.

RI follows the famous statement “you shall know a word
by the company it keeps” [22] based on distributional seman-
tics [23]. The algorithm iterates through the document and
constructs a low-dimensional vector representation for each
word as follows. First, for each new word, RI creates a new
vector W V of a fixed dimension d and randomly initializes
an arbitrary number of its elements ζ to 1 and the rest d − ζ

to 0. Then, the algorithm updates the W V of each word by
looking into a window of an arbitrary size ω around the cor-
responding word and aggregating their corresponding W V s.
The dimension of the vectors d is fixed and is significantly
lower than the original feature space n (e.g., the total num-
ber of words) d << n. To avoid redundancy, we maintain a
list of previously seen words together with their correspond-
ing feature vectors and update the feature vectors only upon
the observation of new context structures. This mechanism
allows each feature vector to contain a rich representation of
the context structure around the corresponding word without
any clue on the significance of those structures. This is the
requirement that the algorithm will address in graph parti-
tioning component.

Neural Language Models [15], are another group of vector
representation models that create low-dimensional and rich
feature vector representations. However, they use classifica-
tion based on iterative back-propagation algorithm, which
does not suit the dynamic ecosystem of the GDTM.

3.2 Feature vector composition

The next step is to compose the extracted feature vectors to
construct a document representation vector. A valid compo-
sition method should satisfy two properties: (i) preserving
the complexity of the original feature vectors without losing
any information (ii) accounting for sparsity in the documents.

Mitchell et al. [24] proposed a variety of vector com-
position methods such as pairwise multiplication, pairwise
addition, weighted pairwise multiplication, etc., that satisfy
the lossless property. However, these simple composition

Table 1 List of skip-grams
corresponding to each word
using a m-skip-bigram model
with m = 1

w1 {w1w2, w1w3}
w2 {w2w1, w2w3, w2w4}
w3 {w3w1, w3w2, w3w4}
w4 {w4w2, w4w3}

methods do not account for sparsity. For example, pairwise
addition is similar to the BOW [3] approach used in LDA
method that does not address the sparsity. Therefore, a more
complex composition method is required. The choice of the
composition depends on the languagemodel used in the anal-
ysis. We use a well-known technique called Skip-gram [25]
for this purpose. Skip-gram drives the probability of a feature
given the history of its surrounding context. (This provides
a more complex model compared to its descendant model
called N-gram, which only considers the history of the previ-
ous context). More specifically, we use a m −skip−bigram
modelwherem is a parameter to be specified by the user. This
model drives the context structure of a wordw in a given con-
text by looking at the bigramswith M = [0, m] step(s) before
and after the w. Let us explain the composition model and
the weighting mechanism with an example.

Assume we are given a document D containing four con-
sequent words WD = {w1, w2, w3, w4} and we set m = 1.
To construct the document vector, we iterate through the
document and for each word first, we extract the set of 1-
skip-bigrams that contains all the bigrams with skip value
between 0 and 1. For example, w2 has three bigrams includ-
ing two 0-skip-bigrams w2w1, w2w3 and one 1-skip-bigram
w2w4. Table 1 shows the list of all 1-skip-bigrams extracted
for all the words in D. Afterward, for each bigram wiw j , we
create a bigram vector by weighted pairwise multiplication
of its corresponding feature vectors vi = {ei1, . . . , eid} and
v j = {e j1, . . . , e jd}, constructed in the previous step:

BVwi w j = αi × α j × {ei1 × e j1, . . . , eid × e jd} (1)

αi andα j are theweights, respectively, related to thewords
wi andw j , which are calculated using a Sigmoid function as
follows:

αl = 1

1 + exp (δ × |wl |∑
∀l |wl | )

(2)

Theweight αl is inversely proportional to the frequency of
the corresponding wordwl and is used to reduce the negative
effect of highly frequent words in the dataset. We use an
adjustment parameter δ to indicate the significance of the
ratio and a threshold parameter γ that indicates the words to
remove from the document representation. In particular, if
αl < γ , then we set αl = 0 that eliminate the bigram vector
from the construction of the document vector.
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The final step is to combine all valid bigram vectors to
construct the corresponding document vector. We use a nor-
malized pairwise addition as the composition method in this
step. In the above example, given that none of the weights
are zero and all bigrams are valid, we will have ten bigram
vectors corresponding to the skip-grams presented in Table 1.
Now assuming that each bigram vector is a vector containing
d elements bvi = {li1, . . . , lid}, then the document vector is
created as follows:

DV = 1

10
×

{
∑

i

li1, . . . ,
∑

i

lid

}

(3)

3.3 Graph construction

In previous steps, the algorithm encoded topics as unique
structures in the form of document vector representations.
The goal, in this step, is to project those structures into a
graph representation model to be used for extracting topics
by graph partitioning component. A graph G < V , E > is
a set of vertices V connected with a set of edges E . Graphs
provide a simple representation model to present a set of
concepts and the relation between those concepts (e.g., users
and their friendship relation in Facebook). GDTM considers
elements in document vectors as the concepts and extracts
the patterns as the relation between those elements. Let us
explain it with an example.

Assume we are given a document together with a d-
dimensional document vector DV = {l1, . . . , ld}. The
corresponding graph representation of the document DG
is defined as a set of d vertices V = {v1, . . . , vd},
which are connected using a set of d×(d−1)

2 edges E =
{e0,1, . . . , ed−1,d}. Each vertex vi corresponds to one ele-
ment li in the DV , and each edge ei j represents the relation
between its incident vertices vi and v j in the graph represen-
tation. The edges are weighted, and the weightwi j of a given
edge ei j is calculated as themultiplication of the values of the
corresponding elements in the DV , wi j = li × l j . The con-
struction methods suggests that the created graph is a mesh.
However, this is not the case since the document vectors are
often highly sparse with most of their elements being zero.
Therefore, the created document graph will also be sparse.

After converting each DV into a DG, which is representa-
tive of the topical structure of the corresponding documents
in the stream, the next step is to combine the DGs and extract
the topics using graph partitioning.

3.4 Graph partitioning

Let us first present a set of definitions required for under-
standing the mechanism of the graph partitioning algorithm,
before explaining the details:

Knowledge graph (KG): is a graph with the same number
of vertices d and the same number of edges d×(d−1)

2 as DGs.
GDTM uses KG as the universal model in the algorithm to
aggregate the DGs, keep track of the topics and assign topics
to the documents.

Partition given a graph G < V , E >, a partition is defined
as a sub-graph G ′ < V ′, E ′ > of G such that V ′ ⊆ V and
E ′ ⊆ E .

Density 4: is ametric tomeasure the degree of connectedness
of the nodes in a graph. We define the density d of a given
graph G < V , E > as the average weight over the total
possible edges in the graph:

d(G) = 1
1
2 |V |2

∑

e∈E

we. (4)

Therefore, the higher the weights of the edges, the higher
the density will be. Consequently, a nonexisting edge makes
zero contribution to the density.

Average density 5: is a measure to show the average total
density over a graph and is calculated as the average of
the densities of all partitions in that graph. Given a graph
G(V , E) and a set of n partitions P = {p1, . . . , pn}, the
average density is calculated as follows:

ad(G) = 1

n

n∑

i=0

d(Pi ). (5)

Now, let usmove forward to explain the graph partitioning
algorithm. The main assumption is that each DG is represen-
tative of the unique topical structure of its corresponding
document. Thus, the goal is to aggregate the DGs into a sin-
gle graph representation, called KG and extract the topics
by partitioning the KG following an optimization mecha-
nism. GDTM is an online approach that requires to apply
partitioning upon receiving every single document. Thus, the
algorithm is designed in two steps (i) topic assignment and
(ii) optimization. The first step assigns a topic to each doc-
ument by comparing its DG with the KG. The second step
aggregates the corresponding DG into the KG and applies
an optimization mechanism such that the partitioning of the
KG gets continuously updated over aggregating every single
edge from the DG. The next sections will explain the details
of these two steps and how they interact with each other to
extract the topics.

3.4.1 Topic assignment

Before aggregating each document into the KG, we need
to know the topic of the document in order to apply the
correct optimization. The basic idea is to extract the dis-
tribution of the topics over that document and choose the
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Fig. 2 Example topic assignments before aggregating the document graphs (e.g., DGi ) into the knowledge graph (KG). The figure shows three
sample document graphs DG1, DG2 and DG3 which are assigned different topics based on their overlap with the KG

topic with the largest probability as the representative topic
of the document. Assume a partitionedKGwith a set of edges
E = {e1, . . . , en} and a DG containing its own set of edges
E ′ = {e′

1, . . . , e′
m}. Also, assume that every edge ei in theKG

has a weight wi and a partition pi assigned to it. To extract
the topic distribution, first we create a list containing all the
topics and their weights initialized to zero. Then, we iterate
through all the edges in the DG and for each edge e′

i GDTM
finds the related edge ei in the KG and adds its weight wi to
the corresponding partition pi in the list. Finally, we select
the topic with the highest probability as the representative
topic of the document. Figure 2 shows an example of this
operation. As we can see, DG1 and DG2 show examples
of documents that are assigned to different topics, Red and
Blue, based on their highest overlap with the KG.

The only challenge in this step happens when one or
more edges in the DG have no overlapping edges in the
KG and therefore cannot be assigned a topic. This condi-
tion occurs when the document under operation belongs to
a new topic other than those currently presented in the KG
(e.g., note the Orange topic on DG3 in Fig. 2 that does not
exist in the KG before aggregating DG3). In this situation,
GDTM creates a new topic and assigns it to the correspond-
ing edge(s) in the DG. The new topic will then be added to
the KG upon aggregating the corresponding DG. This is one
of the key advantages of the GDTM that enables the model
to account for an infinite number of partitions, in contrast
to the approaches with fixed partition count. Following the
same argument, it is important to note that the first document
in the stream will always be assigned a new topic as the KG
is initially null and there are no topics to be assigned. After
assigning a topic to the DG, the next step is to aggregate the
DG with the KG and update the KG following an optimiza-
tion mechanism.

3.4.2 Optimization

Optimization is an online process to extract high-quality top-
ics encoded as dense weighted partitions in the KG. We
consider the quality of partitioning in terms of average den-

sity. More specifically, the higher the average density, the
better the partitioning. Thus, the goal, in this step, is to
define an optimization problem tomaximize the average den-
sity of the partitioning over the KG and develop an accurate
algorithm to solve it. Next comes a formal definition of the
problem followed by the detailed explanation of the algo-
rithm.

Problem definitionGiven a partitioned KG and a DGwith a
dominant partition assigned to it, how can we aggregate the
DG to the KG and update the partitioning of the KG such
that the average density of the partitioning is maximized.

SolutionGDTM develops a local deterministic optimization
algorithm to solve this problem. The algorithm establishes
and applies a set of policies upon aggregating each DG to the
KG. The policies ensure maximization of the local density of
the partitions, which in turn guarantee the monotonic opti-
mization of the global average density. Let us present and
prove the basic proposition that ensures the monotonically
increasing behavior of the algorithm before explaining the
conditions and their corresponding policies.

Proposition 1 Assume a set of real numbers R = {r1, . . . , rn}
with mean μ. Consider the set R\{r j } = {r1, . . . , r j−1,

r j+1, . . . , rn} with mean denoted by μn( j). We have that
μn( j) ≥ μ, for all j such that r j ≤ μ.

Proof We have

μ = 1

n

n∑

i=1

ri (6)

μn( j) = 1

n − 1

⎡

⎣
j−1∑

i=1

ri +
n∑

i= j+1

ri

⎤

⎦ (7)

We start by simple rearrangements:

r j ≤ μ

= 1

n

n∑

i=1

ri
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= 1

n
r j + 1

n
(r1 + · · · + r j−1 + r j+1 + · · · + rn) (8)

Deducting 1
n r j from both sides and using (7) yields:

n − 1

n
r j ≤ n − 1

n
μn( j)

Adding 1
n μn( j) to both sides results in:

n − 1

n
r j + 1

n
μn( j) ≤ n − 1

n
μn( j) + 1

n
μn( j)

μ ≤ μn( j).

The two main intuitions behind the above preposition,
relative to our definitions of partition and density, are as
follows. Given a partition p with the density μ, (i) removing
an edge e with the weight we ≤ μ will not decrease the den-
sity, (ii) adding an edge e with the weight we ≥ μ always
increases the densitywith a positive value. Now let us present
the details of the algorithm and the way it applies the above
intuitions in the aggregation process to appeal optimization.

Given apartitionedKGandaDGwith a dominant partition
assigned to it, the algorithm iterates through all the edges in
the DG and for each edge e′ with the corresponding weight
w′ and dominant partition p′, it applies an optimization upon
aggregating e′ with the matching edge e having the weight
w and the partition p in the KG. Different conditions can
happen depending on the type of p′ and the weights of the
edges w and w′. GDTM requires to apply an appropriate
policy upon aggregation in each condition in order to ensure
the optimization requirements. Two types of partitions can
be assigned to a DG, as explained in Sect. 3.4.1. First, a New
Partition (NP) when majority of edges in DG do not match
any edge in the KG, and Second, an Old Partition (OP) that
currently exists in the KG and the edges in the DG has the
highest overlap with edges of this partition in the KG. Also,
there are three different conditions depending on the current
status of the edges and partitions in the KG and the DG (i)
e = φ meaning that the edge does not exist in the KG (ii)
e �= φ and p �= p′, meaning that the edge e exists in the
KG but it has a different partition than e′ and (iii) e �= φ

and p = p′ indicating that e exists and belongs to the same
partition as e′. Table 2 shows a summary of all conditions
labeled as {c1, . . . , c5}. Note that the condition e �= φ and
p = p′ is not a valid condition when p′ is new (NP), which
is clear by definition.

Next, we will present different conditions and explain the
appropriate policy applied in each condition. Algorithm 1
shows the overall process of the optimization mechanism
and the corresponding policy applied depending on the con-
dition. Each condition is numbered according to the numbers
in Table 2. We use e, w and p to refer to the elements in the

Table 2 Possible conditions that can happen during the aggregation
process of an edge from a Document Graph (DG) to the corresponding
edge in the Knowledge Graph (KG)

New partition (NP) Old partition (OP)

e = φ C1 C3

p �= p′ C2 C4

p = p′ NA C5

KG and the e′,w′ and p′ for elements in the DG. In addition,
we use a function called density(p) that is used to retrieve
the density of a given partition p. For performance reasons,
GDTM creates and maintains a key-value storage to retrieve
the partition densities in the KG.

Algorithm 1 Optimization
1: K G ← K nowledge Graph
2: lp ← last parti tion
3: densi ty[P, V ]
4: procedure Aggregate(DG, PDG )
5: for all e ∈ DG do
6: if p′ > lp then 
 New Partition (NP)
7: if p = φ then 
 c1
8: p = p′
9: w = w′
10: if p �= p′ then 
 c2
11: if w ≤ densi ty(p) then
12: p = p′
13: w = w + w′
14: if p′ ≤ lp then 
 Old Partition (OP)
15: if p = φ then 
 c3
16: if Internal(e) then
17: p = p′
18: w = w′
19: else
20: if w′ > densi ty(p) then
21: p = p′
22: w = w′
23: if p �= p′ then 
 c4
24: if w < densi ty(p) then
25: if Internal(e′) then
26: p = p′
27: w = w + w′
28: else
29: if (w + w′) > densi ty(p′) then
30: p = p′
31: w = w + w′
32: if p = P ′ then 
 c5
33: e = e + e′

C1: In this condition, we can simply add the new edge e′
to the KG and assign p′ as its corresponding partition. This
will result in the increasing of the average density for two
reasons. First, it will not affect the average density of any
other partitions in the KG. Second, it will always increase
the average density of the new partitions p′

i as it did not
previously exist in the KG.

C2: In this condition, we can only aggregate if the weight of
the current edgew is less than the density of its corresponding
partition, w ≤ densi ty(p). The reason is that according to
Proposition 1 removing e will not reduce the density of p.
We call it an expansion condition, where a partition tries
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to expand its territory around the borders and take over the
other partition. Proposition 1 ensures that no partition P can
completely take over another partition P ′ unless the weight
of the largest edge in P ′ is smaller than the density of P .

C3: This is when a nonexisting edge is going to be added
to an existing partition p. There are two possible scenarios
depending on either the newly created edge e is going to be
an internal edge related to the partition p or not. An edge
E is called internal with respect to a specific partition P
if both vertices incident to E are connected to other edges
with the same partition P . Based on this, if e will become an
internal edge, then the algorithmaggregates e′ without further
consideration because the aggregation always increases the
density of p and does not affect the density of any other
partitions in the KG. On the other hand, if e is not an internal
edge, then it can only be aggregated if w ≥ densi ty(p)

according to Proposition 1.

C4: In this condition, the aggregation will change the parti-
tion p of an existing edge e to another existing partition p′
and moving its weight w to the p′. Since we are dealing with
two existing partitions p and p′, we need to check the opti-
mization conditions on both partitions. In particular, we have
tomake sure that removing an edgewithweightw from p and
adding an edge with weight w + w′ to p′ do not reduce their
corresponding densities. Following Proposition 1, removing
is allowed if w ≤ densi ty(p). However, aggregation to the
p′ depends on whether the new edge is internal or not. If it
is an internal edge, then we can apply the aggregation fol-
lowing the same reasoning in C3. However, for noninternal
edge, the aggregation is only allowed if the weight of the new
edge is larger than the density w + w′ ≥ densi ty(p′). This
is another example of the expansion condition similar to C3.

C5: The last condition is aggregating an edge with partition
p′ fromDG to an existing edge e with the same partition p in
the KG. We call this a reinforcement condition, where only
the weight of an edge in a specific partition will increase.
It is explicitly clear that this operation always results in the
increase in the density of the corresponding partition p and
does not affect any other partitions in the KG. Thus, the algo-
rithm aggregates w′ with w on e in the KG.

4 Experiments and result

In this section, we demonstrate the accuracy and scalabil-
ity of GDTM by running the algorithm over two sets of
experiments. To measure the accuracy, we run a set of super-
vised experiments on a tagged Twitter dataset and report
the B-Cubed [16] score, and for scalability, we use a large-
scale Twitter dataset and report the execution time and the
coherence score [17] of the extracted topics. B-Cubed is

an standard evaluation metric that measures the accuracy
of a classification task. Each experiment is repeated 100
times, and the average is reported. We compare the results
with four state-of-the-art approaches and show that GDTM
significantly outperforms the others on both accuracy and
scalability. All experiments are executed on a machine with
48 cores of 2G H z CPUs and 20G Bs of RAM.

4.1 Datasets

In our experiments, we use a Twitter dataset collected dur-
ing 2014 over the geographic area of London. The dataset
contains 9.8 million tweets. We extracted the data related
to 3months of March, April and May from the original
dataset to use in our scalability experiments. The dataset
contained 1.8M tweets. We cleaned the dataset by remov-
ing URLs, Punctuation Marks, Hashtags, and Mentions and
keep the tweets containingmore than threewords. The result-
ing dataset was reduced to 1.2M tweets. Next, we created a
tagged dataset from the cleaned dataset for the experiments
on accuracy. To create the tagged dataset first, we extracted
a list of trending topics, during the corresponding time-
span (Mar–May 2014), from Twitter’s Official Blog1 and the
English Wikipedia page for Reporting the Events from 2014
in the United Kingdom.2 Then, we hand-tagged the tweets in
the clean dataset using the extracted topics and removed the
topics with less than 100 occurrences. The remaining con-
tained 26K tweets from 22 different topics. Figure 3 shows
the titles and the overall distribution of the topics. As we can
see, the topics cover a wide range of events from domestic
(e.g., London Marathon) to international (e.g., EuroVision,
WorldCup and Oscar’s Award) and contain subjects from
overlapping categories (e.g., WorldCup, FACup and London-
Marathon from the sports category) (Table 3).

4.2 Evaluationmetrics

B-Cubed [16] is a statistical metric to measure the accu-
racy of a classification compared to the ground truth. It is
calculated as the average F-score over all documents. Given
a dataset D with n documents, tagged with k hand labels,
L = {l1, . . . , lk} and a classification of the documents into k
class labels, C = {c1, . . . , ck}, the B-Cubed of a document
d with hand label ld and class label cd is calculated as:

B(d) = 2 × P(d) × R(d)

P(d) + R(d)
, (9)

1 https://blog.twitter.com/official/en_gb/a/en-gb/2014/2014-the-
year-on-twitter.html.
2 https://en.wikipedia.org/wiki/2014_in_the_United_Kingdom.
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from March to April 2014 in London

Table 3 Comparison between different approaches and GDTM with
respect to support for the three main properties in DTM, namely (i)
sparsity, (ii) scalability and (iii) dynamicity

Sparsity Scalability Dynamicity

LDA × × ×
BTM � × ×
GDTM � � �
CDTM × × �
PYPM × × �

where P and R stand for precision and recall, respectively,
and are calculated as follows:

P(d) = |d ′|{∀d ′∈D:cd′=cd ,ld′=ld }
|d ′|{∀d ′∈D:cd′=cd }

(10)

R(d) = |d ′|{∀d ′∈D:cd′=cd ,ld′=ld }
|d ′|{∀d ′∈D:ld′=ld }

. (11)

Precision shows the likelihood of documents correctly
classified in a specific class c, with respect to the total num-
ber of documents in that class, whereas the recall represents
the likelihood with respect to the total number of documents
in a specific label l. The total B-Cubed score is calculated as
the average over all documents in the dataset:

Btotal = 1

n
×

n∑

i=1

B(di ). (12)

Note that precision and recall measure the quality of the
classifications with respect to the tagged labels for individ-
ual categories of the problem (e.g., individual topics), and
therefore, they provide more accurate evaluation compared
tomore generalmethods likeCoherency that provide an aver-
age over all instances. That is themain reason thatwe decided
to use precision and recall in our supervised classification
task.

Coherency [17] is an evaluation metric for measuring the
quality of extracted topics in a topic classification prob-
lem. It assumes that the most frequent words in each class
tend to have higher co-occurrence among the documents in
that class rather than the documents across multiple classes.
.Thus, given a set of documents classified into k topics,
T = {t1, . . . , tk}, first, the coherency of each topic, z, with
top m probable words, W z = {w1, . . . , wm}, is calculated
as,

C(z, W z) =
m∑

i=2

i−1∑

j=1

log
D(wi

z, w j
z)

D(w j
z)

, (13)

where D(wi
z, w j

z) is the co-occurrence frequency of the
wordsvi andv j amongdocuments in z and D(w j

z) is the total
frequency ofw j in z. Then, the total coherency of partitioning
is calculated as:

C(T ) = 1

k
×

∑

z∈T

C(z, W z). (14)
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4.3 Baseline and experimental settings

We compare GDTM with four state-of-the-art approaches,
namely LDA [3], BTM [4], CDTM [6] and PYPM [10].
The source codes are available and downloaded from their
corresponding URLs (LDA3, BTM4, CDTM5 and PYPM6).
Table 2 shows a summary of all approaches with respect
to their support for sparsity, scalability and dynamicity, in
comparison with GDTM. As we can see, GDTM is the only
approach that satisfies all three properties, which we will
analyze and show in the coming sections.

Accuracy. In this experiment, we use the tagged Twitter
dataset to compare the accuracy of different algorithms on
dealing with sparsity in short texts. We run each approach
100 times and report the average B-Cubed results. To set
the parameter values, we run a set of validation experiments
and use the values with the best performance during the main
experiments. ForGDTM,we set RI parameters as: d = 1000,
ω = 2 and ζ = 8, and we use m = 1 for the skip-gram
parameter and set the rest of the parameters as: δ = 60 and
γ = 0.01. For LDA, BTM, CDTM and PYPM, the param-
eter values are set to α = 0.01, β = 0.05 and the number
of Gibbs sampling iterations is set to 10. For LDA, BTM
and CDTM, which require to know the number of topics k in
advanced, we set the correct number of topics in the dataset
k = 22. In addition, the value of the CDTM’s specific param-
eter, called top_chain_variance, is set to 0.005, as suggested
by the authors.

Scalability. This experiment is designed and run in an online
structure to show the power of the GDTM to account for
dynamicity and scalability in comparison with the state-
of-the-art approaches. Since none of the four baseline
approaches are real streaming solutions, to comply with our
streamingmodelwedeveloped amini-batch streamingmech-
anism as follows. First, we sorted the documents by date
and considered the cardinal number of the documents as the
lowest possible discretization value for the streaming. Then,
we used a snapshot period to extract the results for each
algorithm. The snapshot was set to 10K , and we run each
algorithm over the entire dataset. More specifically, for every
10k documents, we calculate and report the coherence score
for the extracted partitioning for each algorithm. Our initial
experiments show that CDTM and PYPM are not tractable
using the available resources. In particular, they required
more than 20G Bs of memory after processing around 350K
and 80K number of documents, respectively. Therefore, we
had to exclude those two approaches from the scalability

3 http://gibbslda.sourceforge.net/.
4 https://github.com/xiaohuiyan/BTM.
5 https://github.com/blei-lab/dtm.
6 https://github.com/qiang2100/PYPM.
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Fig. 4 Comparing the average performance accuracy of GDTM with
four state-of-the-art approaches. The experiments were run on a tagged
Twitter dataset containing 26K tweets from 22 different topics, and the
results are reported as the average over 100 runs. GDTM shows the
best performance on both precision and recall compared to the other
solutions

experiments and already confirm their limitation to scale.
Based on that, in this experiments we only compare GDTM
with LDA andBTMandwe set all the parameters to the same
values as the experiments on accuracy. We only changed the
number of topics in LDA and BTM to 100, which is the most
commonly used value in conditions with unknown number
of topics. The topic qualities are measured over each snap-
shot state using coherence score for three different values 5,
10 and 20 as the number of top words per partition in each
evaluation step.

5 Discussion

We now turn into the details of the results over the two sets
of experiments.

Accuracy. Figure 4 shows the results of the accuracy of the
topic assignment task performed by different algorithms over
the tagged Twitter dataset. The results show that GDTM sig-
nificantly outperforms the other approaches with a P value
less than 0.01 over 95% confidence interval, in all cases.
GDTM shows the largest value on precision, which is an
illustration of its strong language modeling approach. In
particular, the application of the skip-gram method enables
GDTM to cope with the sparsity by extracting the modest
amount of information from the sparse contexts of the tweets
and enriching the feature vector representations.

A more interesting outcome to be considered is the
remarkable improvement over the value of precision on
GDTM compared to all other approaches. This is due to
the strong partitioning mechanism in GDTM that allows the
algorithm to automatically choose the best number of topics
and prevents the incorrectmixing of the documents. Note that
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linear time complexity as opposed to the baseline models. In particular,
GDTM performs at least three times faster than both models

the higher recall value on PYPM compared to the other three
approaches, namely LDA, BTM and CDTM, confirms this
statement, as PYPM supports an infinite number of topics,

similar to GDTM. In summary, GDTM is the only approach
with high values on both precision and recall, which ensue the
largest overall F-score of 77.5%. This result is around 11%
larger than the second best approach, PYPM, with B-Cubed
score of 65.8%.

Scalability Figure 5 shows the comparison between the
execution time of running different algorithms over the large-
scale Twitter dataset. GDTM has a constant execution time
compared to the other approaches. In particular, it performs
by around 3 times faster than the LDA and an order of mag-
nitude faster than the BTM over 1.2M documents. At the
same time, GDTM does not sacrifice the quality to gain
such significant performance gain. In fact, the quality of
extracted partitions is significantly higher than both LDA
and BTM as shown in Fig. 6. The coherence scores of
the partitions created by GDTM are between four and five
times larger than those extracted by BTM and LDA, respec-
tively. Also, the analogous results over multiple experiments
with 5, 10 and 20 number of top words per partition con-
firm the significance of the outcomes. The main justification
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behind this remarkable result is the rich feature represen-
tation model in GDTM that enables the algorithm to create
and extract high-quality partitionswithout requiring the usual
iterative optimization algorithms used in other approaches.
The other justification lies in the automatic feature repre-
sentation model in GDTM that enables the emergence and
disappearance of the partitions following the natural dynam-
ics of their representative topics in the stream, which enables
the algorithm to adapt to the changes of the topics in the
stream.

6 Conclusion

We developed GDTM, a solution for dynamic topic model-
ing on short texts in online social networks. Natural language
is the best model for its own representation; however, the
sparsity, velocity and dynamicity of short texts make it a
difficult task to develop appropriate models for extracting
topics from these texts. GDTM overcomes this problem with
an online topicmodeling approach. It first combines an incre-
mental dimensionality reduction method called Random
Indexing with a language representation technique called
Skip-gram to construct a strong feature representationmodel.
Then, it uses a novel graph representation technique and
a graph partitioning algorithm to extract the topics in an
online approach. We examine the accuracy and scalability
of GDTM and compare the results with four state-of-the-
art approaches. The results show that GDTM significantly
outperforms all other solutions on both accuracy and scala-
bility.

Even though we only applied GDTM on short texts in this
paper, we strongly claim that application is not limited to lin-
guistic data. In fact, GDTM provides a generic algorithm for
automatic feature extraction over any stream of data that can
be presented in some form of discrete representation level.
This opens a new track of research to be considered in our
future plans.
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