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Abstract
A learning machine, in the form of a gating network that governs a finite number of different machine learning methods, is
described at the conceptual level with examples of concrete prediction subtasks. A historical data set with data from over 5000
patients in Internet-based psychological treatment will be used to equip healthcare staff with decision support for questions
pertaining to ongoing and future cases in clinical care for depression, social anxiety, and panic disorder. The organizational
knowledge graph is used to inform the weight adjustment of the gating network and for routing subtasks to the different
methods employed locally for prediction. The result is an operational model for assisting therapists in their clinical work,
about to be subjected to validation in a clinical trial.

Keywords Learning machine · Machine learning · Ensemble learning · Gating network · Internet-based psychological
treatment

1 Introduction

Machine learning is here employed to help answer ques-
tions concerning prediction of outcome and engagement in
psychological treatment. The purpose is to learn how to suc-
cessfully assist therapists in their daily work in delivering
treatment, using machine learning, and resting on a unique
historical data set involving more than 5000 patients. As the
interesting questions as well as the data at hand are complex,
amyriad ofmachine learningmethods and algorithms are put
to use for analyses of historical as well as new data. The data
set goes back more than 10 years and is in a sense complete:
relatively few details about the treatment and the entities
constituting its environment are beyond reach, because the
care is Internet-delivered self-help material and all commu-
nication between patient and therapist is recorded as text

B Magnus Boman
mab@kth.se

1 KTH/EECS/SCS/MCS, Electrum 229, 16440 Kista, Sweden

2 RISE, Box 1263, 16429 Kista, Sweden

3 Department of Clinical Neuroscience, Centre for Psychiatry
Research, Karolinska Institutet and Stockholm Health Care
Services, Stockholm County Council, Sweden

4 Department of Psychology, Faculty of Health and Life
Sciences, Linnaeus University, Växjö, Sweden

messages. Each machine learning method employed helps
identify and amplify signals of bias, but due to the differ-
ent nature of data points (e.g., standardized questionnaires,
long texts, logs of system use) no machine learning method
can be used to analyze every weak signal well enough to
address the task of predicting future patient behavior and
the clinical outcome of treatment. For this reason, a number
of machine learning methods are used in tandem, with their
signal analyses fused and unified to produce decision sup-
port for the clinician. The output of one method may be the
input to another method in this model. Because new data are
added over time, the fusion and unification procedures may
adapt dynamically. This fact does not prompt any changes to
the employment of individual machine learningmethods, but
instead requires efficient meta-learning. A learning machine
is therefore employed, which takes into account the dynamic
success rate of the individual methods and their relevant
combinations. The object here is to describe that learning
machine, a form of super learner, at the conceptual level. We
start by describing this machine and the data at hand. We
then describe related research and the computational model
and how it relates to the knowledge graph of the clinic. Some
of our initial experiments are then described and discussed,
before conclusions and some pointers to next steps.
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1.1 Learningmachines

A learning machine can be defined as an autonomous self-
regulating open reasoning system that actively learns in a
decentralizedmanner, overmultiple domains [6], or fromone
abstract model of its world to another. The basic definition of
machine learning is as follows. “A computer program is said
to learn from experience Ewith respect to some class of tasks
T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E” [19, 2].
A learning machine, by contrast, not only learns, but also
meta-learns, since it has to adjust its behavior according to
the individual machine learning modules that it continually
receives and assesses output from. This leads to: A computer
program learns to learn if its performance of each task in T
improveswith experienceE and alsowith the number of tasks
(cf. [29]). Feedback allows it to self-correct its models and
its processes of learning. Autonomy yields the possibility of
sustained autonomous learning [14]. Openness indicates that
newmachine learning modules could be added at any time to
the learning machine. That its learning is active means that it
can pursue learning goals without explicitly being told to do
so, guided by self-testing in accordance with the principles
of operant conditioning [27].

Important aspects of learning machine “education” were
mapped out by Turing [31]. The machine trains and dynam-
ically adjusts its perception, after which it can move into
reasoning,which requires further education, and then to inter-
action. The machine can then interact with humans, e.g., by
presenting a prediction of an outcome, or by explaining its
reasoning steps. The behavior of a learning machine is ide-
ally interpretable to authorized observers, i.e., they should
be able to follow its reasoning and not accept it as merely an
educated black box. In some cases, less than optimal perfor-
mance (cf. [21]) could be accepted to provide interpretability,
e.g., when explicating a model by reference to its education
from training data [17].

The learning machine has internal states, and rules for
switching between them, like an ordinary Turing machine.
Intuitively, each patient in treatment will pass through dif-
ferent states of a much simpler representation, in the form
of finite automata: one automaton per patient. An end state
can correspond to labels indicating, e.g., level of engagement
with the treatment program, or successful response to it. To
learn underwhich circumstances state-switching in the learn-
ing machine controlling this array of automata occurs is an
important component of meta-learning. For a self-supervised
Turingmachine to be able to study its own tape operations and
state changes, self-observation must be possible. This sepa-
rates the learning machine from the much simpler machine
learning modules that it incorporates, as finite automata are
too simple models for managing introspection. The learn-
ing machine will not monotonically improve its performance

over time and over tasks, but will have test modes in which
experimental reasoning and inference will be self-evaluated
and possibly lead to revisions of state-switching rules, e.g.,
probability or utility values.

To generalize from one domain to another, as in, e.g.,
switching between groups of patients having been referred
to different Internet treatment programs, learning machines
must adopt their learning to the settings in which they are
situated. Such multitask learning is realized by means of
inductive bias created from training inputs of related tasks
[8]. This allows for perception, reasoning, and interaction
about things pertaining to more than one domain [13]. In
return, the reasoning may be directed by meta-rules that
help steer cross-domain inference. Such steering involves
ethics, norms, rules, laws, and all other forms of constraints.
The interplay between perception, reasoning, and interac-
tion makes reductionist approaches unsuitable for learning
machines. Instead, a systemic methodology in which the
machine can learn more than the sum of its learning from
each task performed, should be adopted for its design. Given
the generality of a learningmachine, very few currently exist,
and for very specialized tasks, or subject to meta-level con-
straints on data or its distributions [21]. Our aim is therefore
to provide a constructive example of what a learningmachine
can be and how it can be applied to a case of practical signifi-
cance. The hypothesis is that a learning machine can provide
robust decision support to clinicians. This hypothesis will
be evaluated in 2020 in a large and pre-planned randomized
controlled trial. The confirmatory role of that evaluation will
determine the importance of the contribution from the clini-
cal side, thereby assessing the value of the exploratory search
for regularities in the data.

1.2 Data

The data analyzed by the learning machine in the here pre-
sented case study are unique in that it represents virtually all
of the information passed between patients and therapists in a
particular mental health care setting. Because care is Internet
based, there are few subtle pieces of information missed out
on. Given such a special data set, why is it reasonable to think
that learning machines can contribute to the task of drawing
important conclusions about patients? Deductive inference
from data can be valuable for clinical decision support (in
spite of the fact that deductive methods only make explicit
what is already there) because patient data are multimodal.
Methods for multimodal fusion let different modalities be
represented in one database (or knowledge base, or expert
system component, or some other external explicit repre-
sentation), allowing for new propositions to be deduced that
could not be deduced from either of its constituents. Inferring
unknowns from knowns, where the latter come in the form
of data, is the general challenge for drawing useful inductive
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conclusions. To generalize from what has been observed in
order to predict future data with a minimum of error is done
through classification or regression. Precisely which results
pattern matching methods can achieve has been mapped out
in statistical learning theory [32].

Data are not the sole resource for machine learning, as in
most clinical applications there is expert knowledge available
on, e.g., diagnoses, treatments, substances, and prevention.
In the ideal situation, all such knowledge is assembled into
a knowledge graph, indicating how pieces of knowledge are
interrelated. Even if knowledge elicitation can be costly in
that clinical staff is a scarce resource, it is generally worth
the effort, as the knowledge graph is so useful. Knowledge
fusion therefore sometimes involves knowledge from experts
being integrated into learning machines, e.g., for bootstrap-
ping training by finding reasonable initial weights instead of
just starting from random values.

2 Methodology

2.1 Application case

A unique opportunity for testing learning machines recently
arose at the Internet Psychiatry Clinic at Psykiatri Sydväst
in Stockholm. Since 2008, the clinic has offered Internet-
based Cognitive Behavioral Therapy (ICBT) for depression,
social anxiety, and panic disorder with documented signifi-
cant treatment effects [30]. The clinic would in the future like
to predict, as early as possible, if the current treatment will
have a positive effect on the primary problems the treatment
aims to reduce, e.g., on symptoms of social anxiety. Over
time, the goal of introducing a learning machine for ICBT
decision support will become an important part of an adap-
tive treatment strategy that has already been tested for one of
the treatments [11], but could be further improved.

At the clinic, 10-week ICBT interventions with diagnose-
specific content based on established CBT techniques are
divided into step-wisemodules,with therapist support chiefly
via asynchronous messages on a secure platform. The ther-
apists normally see their patients face to face neither during
treatment nor during intake and follow-up. The ICBT plat-
form collects large amounts of mostly self-reported data
for each patient before, during, and after treatment. Both
established self-reporting questionnaires andmore anamnes-
tic and open-ended questions are used. Patients are largely
self-referred and apply for ICBT via a public eHealth plat-
form. A screening is then completed, including standard
symptom scales for depression, social anxiety, and panic dis-
order, which also constitutes the primary outcome for each
respective diagnose-specific ICBT program. Also included
are scales for insomnia, general quality of life and func-
tioning, use of health care, work ability, sick leave, and

domestic functioning, problematic use of alcohol and drugs,
andADHD symptoms.Many of thesemeasurements are then
repeated at treatment start as well as post-treatment. Struc-
tured data from the psychiatric assessment are summarized,
registered, and quantified in the platform together with some
administrative data.During treatment,weekly questionnaires
of primary symptoms, depression, and suicidal ideation are
filled out, and data from interactive worksheets, patients’
reports on their use of therapeutic techniques, and messages
between therapist and patient are collected. Moreover, data
on the patients’ behavior within the platform, for example
number of logins and number of clicks, and accessed treat-
ment modules, are also recorded for possible future use.

Covering relevant parts of the clinic, a conceptual model
in the form of an entity–relationship (ER) diagram [10] was
built to represent the ICBT information flow (Fig. 1). This
abstract model describes all events (e.g., a self-evaluation
questionnaire being submitted) that result in bursts of infor-
mation being added, and it thus constitutes a dynamic model
useful to suggesting types of data susceptible to analytics
[5]. The model has been consolidated with ICBT experts and
serves as an ontological frame for discussing data and pro-
cesses in a structured and unambiguous way. It constitutes
an important step toward a finished knowledge graph for the
clinic.

2.2 Related research

Machine learning has only recently been introduced in
psychiatric research, for example in suicidality prediction,
using fMRI to distinguishing CBT responders from non-
responders, and measuring brain resting-state network con-
nectivity to predict responders in electroconvulsive therapy
[23]. Automated analyses of free speech have been able to
predict later development of psychosis [2] and to estimate
long-term severity of depression [16]. Another study used
mostly patient self-reports to identify those likely to respond
to a specific anti-depressant and validated the results in an
external sample [9]. Machine learning methods can thus suc-
cessfully learn to predict prospective events that are clinically
relevant, and this can enable the identification of patients
who are likely to respond to a particularly well-standardized
intervention. The predictive power depends on the number
of available predictors and their level of independence, data
quality, sophistication of the learning algorithms, and how
well they match the nature of data. In the design of a learn-
ing machine for ICBT, each classifier and each component
of predictive analytics that is deemed relevant to test by the
domain experts is a potentially valuable input signal.

The learning parameter space and the combinatorial space
of processing multiple input signals in order to produce a
maximally useful output signal are both hard to characterize
mathematically, making empirical exploratory work impor-
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Fig. 1 A conceptual model depicting the information flow in treat-
ment management. In this graphical version of the model, events and
rules are not shown, in the name of clarity. They do constitute important
types of information in the organization knowledge graph, the details of
which are still under discussion. Ellipses represent non-lexical objects,

and rectangles represent lexical objects. Non-lexical objects are entity
types or relation types, while lexical objects are data types. Links rep-
resent attributes and have directions and mappings (total or partial, one
or many). Inheritance hierarchies are represented by ISA-links, as in
“Patient is a Person”

tant as a complement to formal arguments. Grounded in a
clinical application, such progress can be slow and costly,
as improving clinical outcome and counting costs produce
uncertain results [7]. Learningmachines that performwell on
a task do so in part because the domain-specific bias obtained
from performing earlier tasks has been coded efficiently. In
the case analyzed here, the relatively large amount of patients
will allow a learning machine to (with some still unknown
rate of success) solve the meta-level learning problem [24].

The learning machine learns features with the help of expert
bias (cf. [1]), and the general idea used to fuse and unify
knowledge here was first proposed by Jacobs and Hinton in
1988 to overcome problems with interference between sub-
tasks when using backpropagation [15, 79]:

If one knows in advance that a set of training cases
may be naturally divided into subsets that correspond to
distinct subtasks, interference can be reduced by using

123



Progress in Artificial Intelligence (2019) 8:475–485 479

a system composed of several different “expert” net-
works plus a gating network that decides which of the
experts should be used for each training case. …The
idea behind such a system is that the gating network
allocates a new case to one or a few experts, and, if the
output is incorrect, the weight changes are localized to
these experts (and the gating network).

2.3 Model

In the perception–reasoning–interaction loop, the machine
will store perceived input signals and recall them as part
of its reasoning. The directly visible actions of the machine
are restricted to its interaction; answering a specified set of
questions, such as Will this patient receive enough symptom
reduction?, sending out private messages to the therapist,
and similar. In the future, an example of a question-driven
activity (pertaining to a future in which the adaptive behavior
platform is in place in full) would be a therapist asking the
machine the equivalent of the human to human questionWill
the patient 2535 complete the planned exposure?Anexample
of autonomous reasoning leading to a message being sent
from the learning machine to a therapist would be Please
check status of Patient 2535 with respect to possible dropout.

Previous research done at the Internet Psychiatry Clinic
showed that simple regression using change scores on
patients’ primary symptom measure 4weeks into treatment
can explain between 34 and 43% of the variance in outcome
at the end of treatment [26]. This indicates that moving away
from baseline only predictions to instead monitor progress
and predict outcomes after treatment has started can yield
large information gains. Inspired by those findings, and by
previous research on continuousmonitoring of psychological
treatment [18], the concept of an adaptive treatment strategy
has been tested in a randomized controlled trial at the clinic
[11]. In this trial, patients undergoing ICBT for insomnia
were classified as at risk of failure (i.e., not benefiting from
treatment) or not 4weeks into treatment. The classifier was
a multi-step algorithm using patient rating as well as clini-
cian ratings in a simple spreadsheet that made calculations
based on coefficients from previous predictor studies and
rules based on clinical experience and hunches put in by the
researchers (i.e., a rather rudimentary procedure from a sta-
tistical and computational point of view). Those classified
as at risk were then randomized either to continue treatment
as normal or to get extra attention and support from their
therapist. Out of those not classified as at risk, 23% ended
treatment with a poor outcome, whereas 64% of those classi-
fied as at risk who did not get extra help ended treatment with
a poor outcome, indicating a clinically meaningful accuracy
of the classifier. Those classified as at risk who did get extra
help only had poor outcomes in 37% of cases, indicating that
the predicted failures can be avoided in many cases. The trial

by Forsell et al. [11] shows that waiting a few weeks into
treatment and then making even a relatively simple predic-
tion can have a large clinical impact if that information is
clearly stated and then acted upon by the therapist. These
studies demonstrate the potential of predictions using data
from both baseline and the early weeks in treatment. How-
ever, apart from less than perfect predictions, Schibbye et al.
[26] leave a lot of available information unused, and Forsell
et al. use an algorithm that is partially manual and often
requires input and effort from the therapist. Therefore, there
is still room for improvement that could potentially be par-
tially covered with a learning machine.

A finite number of different machine learningmethods are
employed for basic tasks of classification and prediction, and
the learning machine is thus using ensemble learning [22]
for efficient fusion and unification of the individual meth-
ods. To classify patients into those that responded well to the
program and those that did not, for instance, a score func-
tion from the data into a set of expert classifications and
assessments is defined. The function is typically parameter-
ized and linear, and its value range is sometimes referred to as
the ground truth since it is against these labels any machine
learning method will be validated initially. A loss function
that measures the discrepancy between this ground truth and
the predictions given the trained parameter set is defined next.
Because the loss function is defined over a high-dimensional
space, even a linear classifier weight matrix will have tens of
thousands of elements. To explore this feature space, it is pos-
sible to fix points (e.g., via a randomweight assignment) and
then travel along lines (dim 1) or planes (dim 2), computing
loss along theway.Thefinal step is to optimize byminimizing
the loss. The overarching representation in the here presented
model will be a distributed probabilistic continuous neural
network with iterative parameter tuning [3]. The methods for
basic tasks are thus not one time only, but classification and
prediction are done repeatedly over time, as new data are
made available to the learning machine. As its score function
is not linear, a model that can handle nonlinearity must be
chosen, e.g., a recurrent convolutional neural network.

Since most of the data can be represented as time series, a
finite mixture model [20] is also employed to detect various
kinds of latent behavior change in the patients over the course
of the ICBT program. In historical data, a hidden patient
behavior pattern is assumed to exist. A finite automaton
describes the different health or intervention states a patient
may be in, observed as well as latent states, and the states
can be identified with the help of machine learning meth-
ods (e.g., an HMM, see [25]). The transition probabilities
between states are in the model computed for each patient.
This individualized approach still allows for reasoning about
classes of patients, formed, e.g., from mapping behaviors
onto class membership. An example class label is Patients
in the depression program under 30 years of age that only
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reply to therapists messages late at night. Another example is
comorbidity: Patients in the depression program that suffer
from irritable bowel syndrome.

The model is naïve in the sense that it is defined to cap-
ture all relevant properties of the data. One way of explaining
why it needs to be systemic in order to learn how to learn is
to say that it codes for a family of models that all have to be
able to grow in complexity and predictive power as the data
grow. Therefore, a prior distribution must be developed that
can encompass this family, producing a nonparametricmodel
[12]. This Bayesian approach to modeling will employ dis-
tributed representations, just like in the networks employed
in the model, since these are suitable for overlapping pop-
ulation clusters like the patient classes just mentioned. The
clusters themselves are inductively inferred from themixture
model representation, and will form a hierarchy (cf., e.g.,
[28]). What becomes known about other patients in the same
classes can then benefit an individual patient. The model is
generative in the sense that each set of individual patient
data is a random mixture over latent patient class descrip-
tions, similar to parameterized topic models based on latent
Dirichlet allocation [4].

3 Experiments

First steps have been taken in the particular tasks relevant
to the learning to learn general problem. To illustrate how
the expert discussions around features tie in with exploratory
machine learning experiments (i.e., running various machine
learning modules), a few simple examples are given in this
section. These examples should not be seen as an exhaus-
tive or perfect set of machine learning modules, but are
included here to illustrate how the knowledge graph (cf.
Fig. 1) can inform which modules to give priority to. Super-
vised machine learning methods can be used, because labels
for success and failure have been appended to the data. A
success label is given for either a remitter (post-treatment
symptom score below the clinical cutoff for the symptom
scale) or a responder (post-treatment score 50% or less of
what the pre-treatment score was).

The first experiment concerns the prediction of treatment
outcomes from communication patterns (the dialog entity
type in Fig. 1, which is detailed in the underlying full knowl-
edge graph still under construction). It is here hypothesized
that patterns of communication between patients and thera-
pists carry information relevant for predicting the outcome
of treatments. By communication pattern is meant the form
of communication rather than its contents. More specifically,
the ordering by which messages are sent between a patient
(denoted p) and therapist (denoted t) is analyzed. For exam-
ple, the sequence ptp corresponds to the therapist sending
the patient a message (this also includes automatic mes-

Fig. 2 Densities (i.e., normalized counts) of patient response times
for successful and unsuccessful treatments, and the difference between
these densities

sages, e.g., concerning homework assignments), the patient
responding, followed by another message from the therapist.
(Hence, a symbol in the sequence represents the message
recipient.) The conjecture is that such a sequence can provide
hints about the engagement in, and later outcome of, a treat-
ment. For instance, one may suspect that a ppppp sequence
(the therapist sends five messages to a patient without he or
she responding) indicates that a treatment will be unsuccess-
ful.

In an initial test, a multilayer perceptron was trained to
predict the outcome of a treatment, given by the labels. Ran-
dom forest and logistic regression were also tested, with very
similar results. The feature inputs to the classifiers were the
n-gram counts for a sequence, where an n-gram is a sub-
sequence with n characters (i.e., the four possible 2-gram
counts are: pp, pt, tp, tt). Using these features, the perceptron
was able to predict outcomes, albeit with a modest accu-
racy of 60% (diminished to 58% if using data only from the
first 3weeks of messaging). This can be compared to a base-
line of 51% when randomly guessing the outcome based on
the frequency of failures. Despite the modest accuracy of
the perceptron, it may be concluded that the communication
sequences at least have a certain predictive power. This can be
pursued further, by combiningwith anotherweak early signal
or by focusing on a subset of messages (e.g., excluding auto-
generatedmessages sent to the patients). An example already
tested concerns time: response time to messages and time of
day when a message was sent. The latter produces a signal
comparable to the n-gram one, while the former is too weak
to be useful (Figs. 2, 3). There could be many explanations
for this. Not every message prompts a reply, for example.

In a second set of experiments, the patients’ texts are ana-
lyzed from a stylometric perspective in order to investigate
the possibility to characterize the various disorders based
on the patients’ textual behavior. The analysis is stylometric
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Fig. 3 Densities of the times of day patients sent messages, separated
by successful and unsuccessful treatments, and the difference between
these densities

because the type of textual features analyzed are primarily
stylistic rather than topical. The underlying assumption is
that the writing style of the patients at least to some extent
reflect their psychological states, and that a stylometric anal-
ysis therefore could provide some initial clues to the progress
made by the patients. Stylometry is predominantly used in
authorship attribution and other forensic linguistic appli-
cations, and includes a range of analyses from very basic
text statistics such as text length and vocabulary size to
more linguistically informed categorization. The latter type
of stylometry is normally implemented as a simple lexical
matching approach in which terms from a set of predefined
lexica are matched in the target texts. Here, the same naïve
approach is used to manually construct a set of seed lexica
for the following categories:

– Stress the patient explicitlywrites that she is feeling stress
(i.e., terms such as “have time” and “stress”).

– Future the patient writes about the future (using terms
such as “will do”).

– Dedication the patient expresses dedication to the treat-
ment (using terms such as “dedicated” and “prioritize”).

– Cognition the patient uses terms referring to cognitive
processes (terms such as “comprehend” and “under-
stand”).

– Clicking the patient explicitly writes about having prob-
lems with the Web-based interface (using terms such as
“click” and “submit”)

– 1st person the patient uses first person singular pronouns
(e.g., “I,” “me,” and “mine”).

Next, the frequency of occurrence of terms in the var-
ious lexica in text from the patients from three different
treatments: social anxiety, panic disorder, and depression is
counted. As can be seen in Fig. 4, there are some (potentially)
interesting differences between these three disorders. As

Fig. 4 Average stance values for the patient messages in three different
treatments

one example, patients suffering from panic disorder express
a much lower degree of dedication, and also less use of
first person pronouns and terms referring to cognitive pro-
cesses compared to patients suffering from social anxiety
and depression. Another interesting difference is the fact that
patients in the depression treatment express more problems
with the Web interface than the other patients.

Figures 5 and 6 show the average message length and
the vocabulary richness (computed as the ratio between the
number of word types and the number of word tokens in the
data) for the three treatments under consideration. Another
interesting difference is the that panic disorder had the low-

Fig. 5 Average message length for patient messages in three different
treatments

Fig. 6 Type–token ratio over the patient messages in three different
treatments
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Fig. 7 Sentiment values (average and standard deviation) for patient
messages in three different treatments

est average message length. However, from these data, it is
unclear as to why (it could be a function of how the treatment
encourages verbalization, e.g., in terms of homework). Like-
wise that individuals in social anxiety have the largest could
indicate the amount of verbalization encouraged in some of
the homework (e.g., cognitive restructuring).

A simple sentiment analysis using the same type of lexical
matching approach as above was also completed. Sentiment
analysis attempts to gauge the general attitudinal polarity of
text by measuring whether the text predominantly expresses
positivity or negativity. Two lexica are used: one consisting of
positive terms and one consisting of negative terms. Figure 7
shows themean and standard deviation for both positivity and
negativity over the three treatments. It is interesting to note
that depression has the highest presence of positive terms,
while panic disorder has the highest occurrence of negative
terms.

The above type of treatment-level characterization may
provide some insights into the differences in textual behav-
ior between patients in the different treatments.As previously
stated, because the treatments are different this is likely to
be a function of the different treatment modules and there
would be confounders. Therefore, it could be more informa-
tive and useful to consider each individual patient, and his or
her development over time.As an example of how this type of
stylometric analysis can be used individually and temporally,
four graphs that show the difference between positivity and
negativity over time for four different patients are included
(Fig. 8). If amessage from the patient contains predominantly
positive terms, the value for that time step will be positive; if
the message contains predominantly negative terms, it will
be negative. Based on this simple analysis, a rough idea of
how patients express themselves throughout the treatment
can be obtained, bearing in mind that the treatment encour-
ages different types of verbal behavior throughout. One may
speculate that if the time series ends with a positive deriva-
tive, as in the third and fourth example, the patient leaves the
treatment with more positive sentiment (probably influenced
by the last module encouraging to look back at progress and

Fig. 8 Positivity/negativity difference for four different patients
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reinforce the improvements made during the treatment) than
if the derivative is negative toward the end, as in examples
one and two.

The type of analysis exemplified above can be used to
characterize the textual behavior of patients suffering from
the various disorders, which may lead to further insights.
Another possible use of this type of stylometric analysis is as
a feature extraction step for further applications of machine
learning (e.g., prediction or clustering), or as input to the
more general learning machine.

4 Discussion

In order to make clear how the experiments briefly described
in the previous section contribute to the long-term goal of a
learning machine over time becoming an ever more useful
tool providing decision support to clinicians, the model in its
canonical formmust be relativized to the experiments. If one
pictures a gating CNN with backpropagation, the purpose of
eachmodule built for experimentation with the data becomes
a bias module that helps the machine adjust its weights. But
with many such modules, it would be foolish to think their
bias would contribute independently of each other. Instead,
one module will often serve as an amplifier of a signal from
a different module. In the example of n-gram message pass-
ing analysis, for instance, the sequences of t’s and p’s have
limited predictive power. In the previous section, there were
related weak signals, such as the time of day, but it is by no
means obvious how to fuse the two signals. For example,
plotting distributions for pre- and post-score ratios per times
of day messages were sent gives a signal too noisy to be of
value (Fig. 9).

But what if n-gram analyses were paired with verbosity
analyses? One such module could investigate the length of
patient messages in the first 3weeks, under the assumption

Fig. 9 Histograms of post/pre-score ratios per different send times of
day

that patients likely to churn will either write very long or
very short messages. Intuitively, the short messages would
indicate too little time devoted to the program, while the long
messages would hold explanations for delays and involved
reasoning around why assignments could not be completed
on time. In this simple example, there would most likely be
no scientific results prompting the investigation. Instead, the
reasoning behind amplifying the first modules signal would
be data driven and could build on a hunch by experts or
come from a project data scientist brainstorming session, for
example. Its viability is easy to test, since the data are there.
The test itself ismulti-step in that the newmodule is validated
first, then its tandem performance with the n-gram message
passing, and finally, the improvement in performance of the
learning machine can be tested. Only after full tests can the
decision of introducing the new module be assessed: is its
introduction worth the cost of overhead, as measured, e.g., in
increased computational complexity and loss of some degree
of transparency? There are alsomethods like feature stacking
that enables analyses like n-gram and verbosity in the same
model, hence creating a new module [33].

A choice has to be made concerning the information pre-
sented to the therapist once the learning machine has made
its prediction and the therapist is supposed to act on the
prediction. The primary outcome measures in this field are
usually continuous symptom scales, and there is a lot to be
gained from using continuous data for predictions. The main
clinical outcomes are still success and failure, or the sub-
categories remitter, responder etc., which in this case are all
dichotomizations of the continuous outcome measure for an
individual. The question then becomes whether to show the
predicted score with, e.g., 95% confidence intervals, or the
dichotomized label that is based on the predicted score to the
therapist. One might assume that showing the score is bet-
ter since it carries more information. However, it also leaves
more room for bias from the therapist.

Previous research [18] shows that therapists are both poor
at making predictions and specifically biased toward opti-
mism (i.e., thinking that their own patients will likely do
well). If presented onlywith a predicted post-treatment score,
they might be prone to underestimate the severity of poor but
not catastrophic outcomes and not fully act on them. This
could be solved by having clear decision rules that apply to
the predicted scores, but thatwould simplymean categorizing
the scores into decision categories (0–5 do this, 5–15 do this,
etc.). That, however, leaves the therapist with the potential of
biased effort if a patient is only just within a decision bracket
or almost in a bracket above, again allowing them to make
up their own minds perhaps more than desired. Lambert also
pointed out that optimism is probably good for therapy, and
that it is not necessarily desirable to make therapists cynical
even if it is more realistic [18]. To counteract therapists’ opti-
mism and biased predictions more fully, it might be desirable
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to simply label a patient as at risk of being unsuccessful and
have a single and clear procedure guiding the subsequent
actions of the therapist. These questions will be addressed in
a collaborative project where clinicians, clinical researchers,
and computer scientists will design the user interface of the
decision support tool, along with clinical routines on how to
act on different information given by the tool.

Another factor to consider in a learning machine is the
learning rate. Since its input signals are heterogeneous and
multimodal, the corresponding modules will have varying
effect on the learning rate. If, for instance, stochastic gradient
descent with momentum is used, then rarely used features
will be updated in accordance with their frequency and not
according to some homogeneous learning rate schedule. As
in the previous example, learning rate should also be subject
to multi-step testing in exploratory studies.

5 Conclusion

A conceptual description of a dynamic albeit narrow domain
learning machine was given, with some indications of
straightforward generalizations to related likewise narrow
domains. Themachine learns to learn how toprovide decision
support to therapists in an Internet-delivered psychotherapy
program. A number of input signals for machine education
were exemplified. The work is ongoing, and the most impor-
tant future step is to finalize it for employment at the clinic
and then critically evaluate its usefulness and general quality
in a randomized clinical trial. The development of a learn-
ing machine for the clinic is an ambitious undertaking, and
the underlying research projects run for 3years. Implementa-
tion and empirical results will be presented in a forthcoming
paper. Mathematical aspects of the model will be covered in
a series of more formal papers on representability, learnabil-
ity, and generalizations to evenwider handling of uncertainty,
such as using intervals for imprecise probabilities and utili-
ties.
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