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Abstract Classification ensemble methods have recently
drawn serious attention due to their ability to appreciably
pull up prediction performance. Since smaller ensembles are
preferred because of storage and efficiency reasons, ensem-
ble pruning is an important step for construction of classifier
ensembles. In this paper, we propose a heuristic method to
obtain an optimal ensemble from a given pool of classifiers.
The proposed accuracy–diversity based pruning algorithm
takes into account the accuracy of individual classifiers as
well as the pairwise diversity amongst these classifiers. The
algorithm performs a systematic bottom-up search and con-
ditionally grows sub-ensembles by adding diverse pairs of
classifiers to the candidates with relatively higher accura-
cies. The ultimate aim is to deliver the smallest ensemble
with highest achievable accuracy in the pool. The perfor-
mance study on UCI datasets demonstrates that the proposed
algorithm rarely misses the optimal ensemble, thus establish-
ing confidence in the quality of heuristics employed by the
algorithm.
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1 Introduction

Classifier ensembles, also known as multiple classifier sys-
tems, have been recognized as better performers than their
individual constituent classifiers [12,22,24,27,38,42]. The
main idea underlying classification ensembles is to com-
bine a set of predictive models (henceforth called classi-
fiers), each of which performs the same prediction task.
The aim is to obtain a composite global model capable of
more accurate and reliable decisions than the best model
in the set. Dietterich has justified the superiority of ensem-
bles over individual classifiers giving computational, sta-
tistical and representational reasons [12]. Several empir-
ical studies have demonstrated the validity of the idea
[2,13,14,17,34]. Recently, ensemble techniques have been
successfully implemented for evolving/streaming datasets as
well [9,43].

An ensemble E is constructed by producing a pool of
classifiers from the given training set using either same or
different induction algorithms, and a pre-specified genera-
tion strategy. When an unseen instance is to be predicted,
each classifier in the ensemble is asked for its prediction,
and finally all predictions are combined using a combiner
function. Variations in the “generation methods” and “com-
biner functions” give rise to a variety of ensemble meth-
ods [6,22,27,38].

Research in the area of ensemble methods has focused
on strategies to generate pools of classifiers [2,3,14] and
design of combiner functions [22,27]. During the last decade,
ensemble pruning has attained importance in the research
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related to multiple classifier systems, since smaller ensem-
bles with comparative performance have lower overheads
with respect to storage and prediction [16,21,29,30,32,33,
35,36,39,41,44,45].

Accuracy and size of an ensemble are two important
issues in ensemble technology. Theoretically, the accuracy
of an ensemble of independent classifiers asymptotically
approaches 1 as its size increases [27]. Practically speaking,
this notion fails when classifiers with predictions identical to
previous classifier members are added to the ensemble [7,32].
Further, Margineantu and Dietterich [30] have shown that the
size of an ensemble can be substantially reduced if a slight
loss of performance is acceptable. Studies have empirically
verified that a systematically selected subset of classifiers in
an ensemble often gives better performance than the com-
plete set [29,32,33].

Ensemble pruning has also been studied as ensemble
selection [3,21,45]/thinning [1]. The goal is to remove
bulk forming classifiers, which have little or no contribu-
tion in improving the performance of the ensemble. This
problem has been shown to be NP complete [39]. Several
heuristic methods have been proposed to solve the problem
[33,35,36] in addition to clustering approach [16], proba-
bilistic approach [8], genetic programming [23,45] and semi-
definite programming [44]. Tsoumakas et al. [41] give an
elaborate account of these approaches in a comprehensive
survey.

Diversity amongst classifiers (both pairwise and non-
pairwise) is a well-studied aspect of multiple classifier sys-
tems [5,24,26]. Kuncheva proved that diverse classifiers lead
to uncorrelated errors, which in turn improve ensemble accu-
racy [25]. Bagging [2], random space method [20] and Boost-
ing [14] induce diversity implicitly as the members of ensem-
bles are produced. Several other algorithms explicitly use
diversity to prune the ensemble [25,30].

Though the concept of diversity in ensembles has been
studied for over a decade, there is no single definition for
it [26,40]. Further, there are evidences that diversity is not
necessarily strongly correlated with ensemble accuracy [23].
Accuracy–diversity trade off has been well studied [26,40]
and it is opined that accuracy need not be sacrificed for
diversity in ensembles. However, recent works that study the
theoretical aspects of diversity, and argue in favor of diver-
sity for ensemble pruning have rekindled interest in diversity
[11,23,28].

Ko et al. [23] have exploited accuracy and diversity
together to prune an ensemble. They propose a compound
function that takes into consideration both accuracies of indi-
vidual classifiers and pairwise diversities among them. Dur-
ing the course of current study, we found that pairwise diver-
sity and ensemble accuracy can be integrated in a simplis-
tic manner to discover minimum-size, maximum-accuracy
ensemble, i.e., an optimal ensemble.

In this paper, we propose a novel and conceptually sim-
ple method for ensemble pruning, which integrates the use
of accuracy and diversity. The proposed accuracy–diversity
pruning (ADP) algorithm takes as input a pool of classi-
fiers (E = {h1 . . . hT }) and aims to find a minimum-size,
maximum-accuracy ensemble. Essentially, all the classifiers
in the pool must have error rate <0.5 for the method to work
well. ADP algorithm is independent of the method of ensem-
ble generation, and uses majority voting with 0–1 loss func-
tion. Simplicity and effectiveness are attractive features of the
algorithm. Other salient features of the proposed algorithm
are:

1. It makes an explicit use of accuracy and diversity while
growing the ensemble bottom-up. The search is purely
data driven and parameterless, which is the main strength
of the algorithm.

2. Instead of greedy hill climb, the method performs multi-
pronged hill climb search while ordering the ensembles
according to their accuracies, thus avoiding getting stuck
in local minima (Sect. 3).

3. The algorithm guarantees that the resulting ensemble has
accuracy greater than or equal to the best classifier in the
pool (Sect. 3.2). To the best of our knowledge, this guar-
antee is not furnished by any existing ensemble selection
method.

4. Unlike the published works on ensemble pruning, ADP
algorithm strives to achieve optimality. Experimental
evaluation in Sect. 4 demonstrates that ADP discov-
ers optimal ensemble most of the times. Results of
none of the previous algorithms have been assessed for
optimality.

2 Related work

Margineantu and Dietterich [30] pointed out the drawbacks
of including all the classifiers in the ensemble. There have
been several research studies that aim to select classifiers
from large pools to train small ensembles with high gener-
alization accuracy [16,21,29,30,32,33,35,36,39,41,44,45].
An elaborate account of various approaches for ensemble
pruning is presented in [41]. We present below the works
that are closely related to the two strategies employed in
the proposed algorithm. Firstly, we describe works that have
used Ordered aggregation approach to prune ensemble, fol-
lowed by those which have demonstrated the effectiveness
of incorporating diversity in ensembles.

2.1 Ordered aggregation approach for ensemble pruning

Ordered aggregation of classifiers in an ensemble has been
found to be an efficient approach for ensemble pruning [33].
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This method ranks the classifiers based on some performance
criteria to select either a pre-specified number of classifiers
[1] or select all classifiers that satisfy a pre-specified thresh-
old [29,32]. This strategy avoids scanning the massive search
space of O(2T ), where T is the number of classifiers under
consideration. Rokach [37] proposed an ensemble pruning
algorithm based on ranking method that takes into account
agreement level among the members in addition to agree-
ment level between each member’s prediction and the real
label. Recently, Guo and Boukir [18] proposed ordering-
based ensemble pruning method which relies on measuring
the margin-based information quantity of each base classi-
fier in the ensemble. The algorithm uses a validation set V
(called the pruning set in the paper) to calculate the margin of
each instance in V . Subsequently, the margin-based criterion
is computed for each classifier to order them and include the
best in ensemble.

2.2 Diversity for ensemble pruning

Tang et al. [40] analyzed various diversity measures and con-
cluded that seeking diversity in an ensemble could be viewed
as an implicit way to maximize the minimum margin of the
ensemble. Heuristic method based on diversity-based ensem-
ble pruning proposed in [30] shows that 60–80 % ensem-
ble members can be pruned out without substantial degrada-
tion in performance. Ensemble pruning methods that perform
state space search using hill climbing based on diversity mea-
sures have been elaborated in [41]. Recently, diversity has
been studied theoretically, and it has been shown that it is
closely related to the hypothesis space complexity. It can be
regarded as regularization factor on ensemble methods [28].

Ko et al. [23] examined correlation between ensemble
accuracy and diversity, and established theoretically and
empirically that the two are indeed correlated. They pro-
posed compound measures based on accuracy of classifiers
and different types of diversities among them, to empirically
substantiate their hypothesis, which is somewhat contrary to
earlier studies [26]. This study asserts that diversity should
be taken into account along with accuracy of individual
classifiers for the improved performance of pruned ensem-
ble. Experimental results demonstrate that genetic algorithm
(GA)-based ensemble selection using the compound mea-
sure as objective function yields more accurate ensembles
than those obtained using the diversity measures alone.

The present proposal takes cue from the conclusion of
work by Ko et al. [23] and integrates accuracy and pairwise
diversity for ensemble pruning. We hypothesize that classi-
fier accuracies and pairwise diversities can be combined in
more simplistic and efficient manner by embodying them in
search process. This approach eliminates expensive compu-
tation of compound measures to be used as objective func-
tion during ensemble selection by GA. The proposed ADP

heuristically prunes the search space while systematically
including accurate and diverse classifiers in the ensemble.
The search is guaranteed to yield an ensemble with accu-
racy not lower than the best classifier in the pool. No such
guarantee is attainable for an ensemble selected using evolu-
tionary algorithms. Thus, ADP algorithm is highly likely to
discover optimal ensemble. In case the optimal is missed, the
discovered sub-optimal ensemble is empirically found to be
close to the optimal ensemble in terms of both accuracy and
size.

3 Accu–div heuristic

As mentioned earlier, ADP algorithm strives towards an opti-
mal ensemble by integrating accuracy and diversity while
pruning a pool of classifiers. Unlike greedy hill-climbing
approach, which is likely to lead to locally maximum accu-
racy ensemble, the proposed algorithm does a multi-pronged
hill climbing and examines multiple candidate solutions
(sub-ensembles) for optimality in breadth-first fashion. We
are hesitant to call it beam search with variable beam width,
because of its purely data-driven nature. Ensembles in the
proposed approach are grown by incrementally adding a pair
of high diversity classifiers. Based on the performance, at
each stage it is ascertained if an ensemble is worth growing
further.

3.1 Search strategy

The brute force search necessitates examining 2T −1 subsets
of E to discover the optimal ensemble E . The search space
can be modeled as a lattice with subset relation (⊂) as the
ordering operator. Figure 1 shows the complete search space
for a pool of five classifiers. The null ensemble is the infi-
mum, and the complete pool is the supremum in the lattice.
The optimal ensemble(s), i.e., minimum-size , maximum-
accuracy ensemble, is (are) hidden in the lattice. Each node
in the lattice is a potential solution (optimal ensemble) that
needs to be examined. Thus in a pool of size T , the brute force
search for optimal ensemble has computational complexity
of O(2T ).

ADP algorithm heuristically reduces the search space
by growing the ensembles incrementally and conditionally.
Since the algorithm uses majority voting as combining func-
tion, ensembles are grown by adding a pair of classifiers at a
time. Thus, the search is limited to examining nodes at odd-
numbered levels in lattice.1 The heuristic discipline of grow-
ing the ensemble based on accuracy and pairwise diversity,
systematically discards the portions of the lattice that are not
likely to contain the optimal ensemble. Though theoretical

1 Please note that this does not reduce the complexity of the problem.
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Fig. 1 Complete search space for a pool of five classifiers

complexity of the search is still O(2T ), empirical evaluation
shows that the search space reduction for the experimented
datasets varies from 70 to 99 %, with minor average loss of
accuracy (Table 2).

Given a pool of T classifiers, the algorithm performs a
systematic bottom-up search starting with top 50 % accu-
rate classifiers. Thus, the better half of the sub-ensembles
of size 1 is retained and the rest are discarded. The most
accurate classifier is the best accuracy sub-ensemble so far.
Pairwise diversity of T classifiers is computed, and top 50 %
diverse pairs are retained for growing sub-ensembles. At
each level of the lattice, these pairs are incrementally added
to each of the retained sub-ensembles and the grown sub-
ensembles are examined for improved performance. If none
of the grown sub-ensembles exhibits better performance than
the best accuracy sub-ensembles so far, the algorithm stops
and reports the latter as the optimal ensemble. Otherwise, on
an optimistic note the algorithm proceeds to the next level
by retaining top 50 % sub-ensembles as potential candidates
for growing.

Apparently, due to 50 % reduction at level 1, portions of
lattice below these classifiers are completely missed. How-
ever, a close examination of the algorithm reveals that the
discarded classifiers get a second chance to get introduced in
the search space when the existing sub-ensembles are grown
by addition of diverse classifier pairs. But this takes place in
a purely data-driven manner.

In order to understand this aspect better, we randomly
selected ten datasets from Table 1. For each of the ten
datasets, we first constructed a library of 101 classifiers using
bagging and J48 algorithm from Weka [19]. Then we drew
random samples of sizes 11, 21 and 31, on which we executed
Steps 5–8 of ADP algorithm. In a pool of size T (=2k+1), let
C1 denote the top 50 % accurate classifiers, and C1 denote
the remaining classifiers in the pool. We computed diver-
sity (Q-statistic) for all

(T
2

)
classifier pairs, and selected top

Table 1 UCI datasets used for experimentation

S. no Dataset #Att #Rec #Cl

1 Anneal (AN) 39 798 5

2 Balance scale (BS) 4 625 3

3 Br Cancer (BC) 11 699 2

4 Car (CR) 6 1,728 4

5 Contraceptive (CM) 9 1,473 3

6 Cr approval (CA) 16 690 2

7 Cyl band (CB) 40 852 2

8 Dermat (DM) 35 366 4

9 Ecoli (EC) 9 336 9

10 Flags (FL) 30 194 4

11 Glass (GL) 10 214 7

12 Heart (HH) 13 270 2

13 Hepatitis (HP) 21 155 2

14 Hyperthyroid (HT) 21 7,200 3

15 Image (IM) 19 2310 7

16 Ionosphere (IN) 34 351 2

17 Kr-vs.-Kp (KR) 36 3196 2

18 M factor (MF) 76 2,000 10

19 Sonar (SR) 61 208 2

20 Soy bean (SB) 35 307 19

21 Teaching assistant (TA) 5 151 3

22 Trans fusion (TF) 5 748 2

23 Vehicle (VH) 18 846 4

24 Wine (WN) 14 178 3

Att attributes, Rec records, Cl classes

50 % in set DP. Next, set DP was partitioned into three mutu-
ally exclusive partitions: pairs consisting of classifiers from
C1(Set A), pairs consisting of classifiers from C1 (Set B) and
pairs consisting of one classifier each from C1 and C1 (Set
C). Sizes of these sets are:

|A| = (k + 1)k

2
, |B| = k(k − 1)

2
, |C | = k(k + 1), (1)

In each experiment, we counted the percentage pairs in
set DP belonging to sets A, B, C . After repeating the exer-
cise 30 times for each dataset, we recorded the results of
900 (30 × 3 × 10) experiments. Figure 2 shows that points
belonging to set C constitute a compact cluster at higher
percentage level. This establishes that the top 50 % diverse
classifier pairs largely belong to set C , and the classifiers
rejected in Step 5 are highly likely to be used in ensemble
growing.

3.2 Algorithmic details

In this subsection, we present a step by step explanation of
the ADP algorithm (Algorithm 1). The algorithm takes an
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odd number of classifiers with their respective accuracies on
validation set as input and sorts the classifiers in decreas-
ing order of their accuracies (Step 1). In Steps 2–5, the top
50 % performing classifiers are retained in set C1 and rest
are discarded. They constitute the set of candidate ensembles
at level 1. In addition, the highest accuracy classifier h_max
is noted which constitutes the highest accuracy ensemble E
discovered so far. In Step 6, 2k+1C2 diversity pairs of 2k + 1
classifiers are generated and their diversities are calculated.
In Steps 7 and 8, the classifier pairs constructed in Step 6 are
sorted in decreasing order of their diversity, and top 50 %
pairs are retained in set DP and rest are discarded. Steps 10–
31 constitute the loop for growing the ensembles from level
2l − 1 to level 2l + 1 (l = 1, 2, . . . k).

In Steps 12–20, each candidate ensemble Ei from set
C2l−1 is combined with all such pairs of classifiers in set
D, which are disjoint to Ei , to form candidate ensembles X
of size 2l + 1 and stored in set S. Accuracy of each ensem-
ble X in set S is also calculated. Step 21 sorts the ensembles
in set S in decreasing order of their accuracies. In Step 23,
the accuracy of best ensemble (e_max) in set S is compared
with the maximum accuracy achieved so far a_max. If its
accuracy is greater than the accuracy of E , then top 50 %
performing ensembles in set S are retained in set C2l+1 for
the next level, and E is updated to e_max. Otherwise, the
loop is terminated, and ensemble E with accuracy a_max is
reported as the output.

Being a heuristic algorithm, it cannot be guaranteed that
the ADP algorithm will always find the optimal ensemble.
However, the algorithm guarantees that on the pessimistic
side the performance of the discovered ensemble will not be
lower than that of the best classifier in the pool. On the opti-
mistic side, the discovered ensemble is same as the optimal
ensemble.

Claim 1 Accuracy (on validation set) of the ensemble deliv-
ered by Algorithm 1 is not lower than the accuracy of the
best classifier in the pool.

Algorithm 1 Accuracy–Diversity Pruning (ADP) Algorithm
Require: E : Set of T (=2k+1) classifiers E = {h1, . . . , hT } with their

accuracies on validation set.
1: Sort the classifiers in E in decreasing order of their accuracies in set

Csorted
2: Let hmax be the maximum accuracy sub-ensemble of size 1.
3: E = hmax {Maximum accuracy ensemble seen so far}
4: a_max = acc(hmax )

5: C1 = set of top 50 % candidates in Csorted {Candidate sub-ensembles
of size 1}

6: Generate all pairs of classifiers in E and compute their diversities.
7: Sort the diversity pairs in decreasing order of their diversity.
8: DP = set of top 50 % diverse pairs.
9: l = 1
10: while C2l−1 �= φ && l ≤ k && a_max �= 1 do
11: S = φ

{Generate all candidate ensembles of size 2l + 1.}
12: for each candidate Ei in C2l−1 do
13: for each pair P in DP do
14: if Ei ∩ P = φ then
15: X = Ei ∪ P
16: Compute accuracy of X
17: S = S ∪ X
18: end if
19: end for
20: end for
21: Sort the ensembles in S in decreasing order of their accuracies
22: e_max = Maximum accuracy ensemble in set S
23: if acc(e_max) > a_max then
24: a_max = acc(e_max)

25: E = e_max
26: C2l+1 = Top 50 % ensembles in S
27: else
28: C2l+1 = φ

29: end if
30: l = l + 1
31: end while
32: return E , a_max

Proof Given the pool E of T classifiers, E = {h1, . . . , hT }.
Let hmax be the best performing classifier on validation set,
and Eadp be the ensemble discovered by ADP algorithm. It
is required to prove that acc(hmax) ≤ acc(Eadp).

In Step 3 of Algorithm 1, Eadp = hmax. As the control
enters the while loop, Step 23 ensures that the best accuracy
ensemble at the current level is better than the previous best.
Thus, acc(hmax) ≤ acc(Eadp). ��

Since the classifiers are ordered on validation set accura-
cies, similar claim of optimality on the test set is unreason-
able. Extensive experimental analysis presented in Table 3
offers evidence that ADP performs competitively on test set
when compared to the optimal ensemble obtained by brute
force search.

4 Experimental analysis

In this section, experimental evaluation of the proposed
approach is presented. The proposed algorithm (ADP) and
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Brute force (BF) search were implemented using C++ and
bash shell scripts, and executed on quad core machine
using OpenMP shared memory model. ADP program is
straight forward parallel implementation with no optimiza-
tions. Twenty-four UCI [15] datasets shown in Table 1
were used for experiments. The experimental studies were
designed to answer the following research questions:

1. How good is the quality of heuristics employed in ADP
algorithm? (Sect. 4.2)

2. How does ADP approach compare with other ensemble
pruning methods? (Sect. 4.3)

3. How do mismatches and execution timings scale with
increasing pool size? (Sect. 4.4)

4. How do the good and bad diversity components [26] vary
while ADP grows the ensemble? (Sect. 4.5)

4.1 Methodology

We employed tenfold cross validation (CV) for experimen-
tal evaluation of ADP algorithm. Conforming to tenfold CV
method, in each of the ten iterations, nine folds constituted
the training set and the tenth fold was used as test set. To
further the confidence in results, CV was carried out three
times for each dataset.

In each iteration, one-third data from the training set were
retained as validation set and remaining two-thirds data were
used to train classifiers. Bagging was used to generate a
library L of 51 classifiers for each iteration. Each classi-
fier was trained using decision tree2 implementation (J48) in
Weka [19], with default parameters (C = 0.25, M = 2).

Each experiment consisted of executing the compared
pruning algorithms on the same set of classifiers. To add
randomization in experimental evaluation, classifiers were
picked up randomly from L to construct pools of sizes 11
and 21 for pruning. Since cross-validation was carried out
three times, 30 experiments were carried out for each dataset
and pool size. All reported results are averaged over 30 exper-
iments.

4.2 Evaluating quality of heuristics

To answer Q.1 above, we (i) observe how often ADP
algorithm discovers the optimal ensemble (obtained by BF
search), (ii) compare ADP ensemble accuracies with optimal
ensemble accuracies on validation set, (iii) inspect the trend
for ADP missing the optimal ensemble with increasing pool
size, (iv) compare ADP ensemble accuracies with optimal
ensemble accuracies on test set.

2 Recall that the choice of base classifier is incidental, since ADP is
independent of the method of ensemble generation.

ADP algorithm and BF search were executed on pool
sizes 11 and 21. Our decision to use BF search as bench-
mark limited the dataset size as well as pool size, because of
its exponential time complexity. For each dataset and pool
size, classifiers were drawn randomly from L . Note that dur-
ing random selection, if a classifier is duplicated in a pool, its
pairwise diversity with the identical classifier will be mini-
mum and the pair will be discarded by ADP algorithm. By
carrying out 30 experiments each on 24 datasets for 2 pool
sizes, we performed 1,440 comparisons of ADP ensemble
and optimal ensemble.

Performance comparison of ADP algorithm with BF
search on validation set is presented in Table 2. Column “DS”
displays the dataset, and “PS” indicates the pool size. Column
“LA” reports the library accuracy. For the columns “Brute
Force” and “ADP”, sub-columns “Acc” and “Size” show,
respectively, the average accuracies and average sizes of dis-
covered ensembles. It is observed from the table that average
accuracy for BF ensembles is always better than the corre-
sponding ADP ensembles, as expected. However, the sizes
of ADP ensembles are generally smaller than BF ensembles
hinting that loss in accuracy is often compensated by smaller-
sized ensembles discovered by ADP algorithm. Further, for
all datasets, average library accuracy values are much smaller
than BF and ADP ensemble accuracies. This corroborates
the well-accepted and understood fact that pruning leads to
smaller-sized high accuracy ensembles.

4.2.1 Cost-benefit analysis

In this subsection, we analyze the difference in quality of
ADP and BF ensembles on validation set. In Table 2, col-
umn “MM” indicates the number of times ADP ensemble
discovers sub-optimal ensemble, “MAL” shows the maxi-
mum loss of accuracy among the sub-optimal ADP ensem-
bles, and “AR” shows average (%) reduction in search space
while discovering an ADP ensemble. Average reduction in
search space is computed as % age ensembles pruned from
lattice.

Column “MM” indicates that ADP algorithm discovers
optimal ensemble 1,310/1,440 (91 %) times. In the remaining
cases, when it discovers sub-optimal ensembles, a close study
of accuracy loss is warranted. We choose to report the “MAL”
among all the sub-optimal ensembles discovered by ADP
algorithm to give an idea of the upper bound on error incurred
by ADP heuristic. Optimal ensemble was missed 13 times for
pool size 21, for MF dataset . However, “MAL” among all
the 13 sub-optimals is only 0.45 %. Close analysis of SR
dataset shows maximum accuracy loss of 6.38 %, when it
misses optimal only 2/30 times. Despite this heavy accuracy
loss, the average performance is marginally lower than that
of BF (optimal) ensembles.
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Table 2 Comparison of performance of BF search and ADP algorithm on validation set

S. no DS LA PS Brute force ADP Cost-benefit analysis ToH

Acc (%) Size Acc (%) Size MM MAL (%) RS (%)

1 AN 91.70 11 94.00 3.73 94.00 3.73 0 0.00 79.71 NA

21 95.35 4.47 95.30 4.13 4 0.55 97.47 NR

2 BS 81.15 11 83.69 4.00 83.66 3.93 1 0.71 75.26 NR

21 86.03 6.73 85.74 5.07 11 1.42 93.63 R (0.0003)

3 BC 96.35 11 97.49 3.33 97.47 3.20 1 0.64 80.00 NR

21 97.97 3.47 97.97 3.47 0 0.00 98.50 NA

4 CR 90.57 11 92.46 4.80 92.45 4.67 1 0.26 74.17 NR

21 93.26 6.07 93.24 5.80 2 0.26 92.52 NR

5 CM 47.28 11 53.59 1.73 53.58 1.60 1 0.30 90.45 NR

21 54.61 4.27 54.35 3.27 10 2.11 96.09 R (0.0061)

6 CA 88.50 11 91.37 3.53 91.30 3.33 4 0.65 78.59 NR

21 92.56 5.60 92.39 4.80 6 1.28 95.12 R (0.0091)

7 CB 65.30 11 68.96 1.93 68.88 1.80 3 0.82 90.12 NR

21 69.89 2.87 69.81 2.67 3 0.82 99.39 NR

8 DM 97.59 11 98.59 2.13 98.59 2.13 0 0.00 87.16 NA

21 98.84 2.00 98.84 2.00 0 0.00 99.72 NA

9 EC 82.89 11 88.07 3.07 88.07 3.07 0 0.00 81.62 NA

21 89.52 3.60 89.43 3.33 2 1.32 98.58 NR

10 FL 66.06 11 74.85 2.53 74.55 2.07 4 2.28 87.60 NR

21 77.50 3.13 77.42 3.07 2 2.28 98.90 NR

11 GL 96.10 11 96.99 1.07 96.99 1.07 0 0.00 96.31 NA

21 97.13 1.13 97.13 1.13 0 0.00 99.96 NA

12 HH 82.18 11 88.03 4.27 87.81 3.93 5 1.64 76.76 NR

21 89.62 4.73 89.40 4.20 5 1.64 96.85 NR

13 HP 82.57 11 90.67 2.40 90.67 2.40 0 0.00 85.81 NA

21 92.57 2.87 92.48 2.73 1 2.86 99.50 NR

14 HT 99.28 11 99.38 1.47 99.38 1.47 0 0.00 90.72 NA

21 99.41 1.40 99.41 1.40 0 0.00 99.85 NA

15 IM 96.48 11 97.21 4.60 97.19 4.67 3 0.19 72.63 NR

21 97.90 6.20 97.88 5.80 3 0.19 91.58 NR

16 IN 91.64 11 94.73 3.07 94.68 2.93 1 1.26 81.42 NR

21 95.57 3.73 95.53 3.60 1 1.27 98.22 NR

17 KR 99.08 11 99.41 2.27 99.41 2.13 1 0.14 88.11 NR

21 99.53 2.87 99.53 2.87 0 0.00 99.18 NA

18 MF 90.74 11 91.34 5.47 91.31 5.20 2 0.45 70.75 NR

21 92.68 8.13 92.56 6.27 13 0.45 89.85 R (0.0001)

19 SR 77.16 11 86.17 4.33 85.89 4.00 2 6.38 74.99 NR

21 90.14 5.93 89.79 5.27 5 2.13 93.30 NR

20 SB 82.53 11 87.88 2.80 87.88 2.80 0 0.00 82.70 NA

21 90.38 4.80 90.04 3.67 7 1.45 97.57 R (0.0030)

21 TA 44.92 11 57.15 2.53 56.94 2.33 2 3.03 85.23 NR

21 62.04 4.13 61.13 3.13 9 6.06 98.30 R (0.0023)

22 TF 78.60 11 81.04 3.40 81.00 3.20 2 0.60 80.22 NR

21 82.61 5.07 82.55 4.73 3 0.60 95.31 NR
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Table 2 continued

S. no DS LA PS Brute force ADP Cost-benefit analysis ToH

Acc (%) Size Acc (%) Size MM MAL (%) RS (%)

23 VH 70.43 11 76.28 4.13 76.14 3.87 3 1.57 77.68 NR

21 78.22 5.73 78.05 5.07 7 1.57 94.10 NR

24 WN 94.52 11 97.93 2.80 97.93 2.80 0 0.00 88.51 NA

21 99.25 3.00 99.25 3.00 0 0.00 99.87 NA

DS dataset, PS pool size, LA library accuracy, MM mismatches in 30 repetitions, MAL maximum loss of accuracy by an ADP ensemble as compared
to the corresponding BF ensemble, RS reduction in search space, ToH test of hypothesis (NA not applicable, NR not rejected, R rejected with
corresponding p-value)

It is further observed that percentage average reduction in
search space varies from 70.75 to 99.87 % over all experi-
ments. This reduction in search space translates to speedier
discovery of near-optimal ensembles compared to BF search.

4.2.2 Comparison of accuracies of ADP ensembles
and BF ensembles

Given a library L of T classifiers, let LP denote the set of TCP

pools, each pool containing P classifiers. When BF search
and ADP algorithm are run on all the pools in LP , two dis-
tinct distributions of accuracies are obtained. Let P O denote
the distribution of accuracies obtained by BF search, and P A

denote the same obtained by ADP algorithm. Paired observa-
tions arise when BF search and ADP algorithm report accu-
racy values on the same pool. We hypothesize that the mean
difference in the paired accuracy values of P O and P A is
zero.

To test the hypothesis, we take a sample S of size 30 from
L P . Each element of S is a pool of P classifiers on which both
algorithms are executed. Let O = {aO

1 , . . . aO
30} and A =

{a A
1 , . . . a A

30}, respectively, denote the sample accuracies of
optimal ensembles and ADP ensembles. We apply paired t
test to show that O and A values do not differ significantly.
The paired t test investigates the differences between paired
values in two samples, to determine how likely it is that the
two samples belong to the same population.

For each dataset and pool size, let μD denote the
mean of differences between the paired values, i.e., μD =
1
n �n

i=1(a
O
i − a A

i ) In consonance with our claim, the null
hypothesis H0: μD = 0 is tested against the alternate hypoth-
esis H1: μD > 0. Since accuracy values reported by BF
search on validation set are never less than accuracy values
reported by ADP algorithm, a right-tailed paired t test is car-
ried out. MATLAB function is used to compute p value for
those cases which have MM > 0.

For 28 out of 34 populations, the null hypothesis is
accepted at 1 % significance level. It can be seen from Table 2
that low p values (<0.01) have been obtained for the datasets

showing large number of mismatches. Thus in 28/34 cases,
there was no statistical evidence for rejecting H0 in favor
of H1.

In 6/34 experiments, the difference between the average
ADP accuracies and BF accuracies is significant, and the
probability of the two samples from same population show-
ing such difference is very small. In other words, for these six
datasets, ADP is not performing as well as BF, which is also
evident from “MM” column in the table for these datasets.

4.2.3 Comparison of test accuracies of BF search
and ADP ensembles

Performance of a classifier on the test set indicates the true
capability to generalize. Accordingly, we compare the per-
formance of BF and ADP ensembles on test set and report the
results in Table 3. For 8/48 cases, all ADP ensembles exactly
match the corresponding BF ensembles. Average ADP test
accuracies for the remaining cases are also comparable with
the corresponding average BF test accuracies.

We hypothesize that BF test accuracies are almost same
as ADP test accuracies for all datasets. Since the possi-
bility of ADP ensemble reporting higher test accuracies
than BF ensemble cannot be ruled out, the null hypothe-
sis H0 : μD = 0 is tested against the alternate hypoth-
esis H1 : μD �= 0. Two-tailed paired t test is applied
for drawing statistical inference. The null hypothesis was
tested at 1 % significance level. The last column in Table 3
shows that null hypothesis is accepted for 39/40 cases, indi-
cating that both the approaches perform equally well. The
hypothesis is rejected for one case (dataset WN pool size
11) where ADP ensembles perform much better than BF
ensembles.

Thus, we conclude that generalization accuracy of ADP
matches that of BF search. On the basis of this result, it
is reasonable to prescribe ADP algorithm for the evalua-
tion of any novel ensemble method with respect to optimal
ensemble.
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Table 3 Comparison of test accuracies for BF search and ADP algo-
rithm

S. no DS PS BF ADP ToH
Acc (%) Acc (%)

1 AN 11 92.65 92.56 NR

21 94.61 94.74 NR

2 BS 11 79.99 80.05 NR

21 81.11 81.00 NR

3 BC 11 96.23 96.32 NR

21 96.66 96.61 NR

4 CR 11 89.87 89.85 NR

21 90.95 90.95 NA

5 CM 11 50.26 50.42 NR

21 48.92 49.69 NR

6 CA 11 86.47 86.52 NR

21 87.20 87.25 NR

7 CB 11 67.41 67.04 NR

21 67.22 67.22 NR

8 DM 11 96.83 96.92 NR

21 96.82 96.91 NR

9 EC 11 83.04 83.04 NA

21 83.02 83.22 NR

10 FL 11 64.22 64.76 NR

21 65.77 65.94 NR

11 GL 11 95.64 95.79 NR

21 97.08 97.38 NR

12 HH 11 80.00 80.12 NR

21 79.38 79.75 NR

13 HP 11 81.17 81.17 NA

21 84.58 84.58 NA

14 HT 11 99.25 99.25 NA

21 99.25 99.25 NA

15 IM 11 96.42 96.45 NR

21 96.81 96.71 NR

16 IN 11 91.44 91.54 NR

21 92.39 92.3 NR

17 KR 11 99.34 99.33 NR

21 99.42 99.42 NA

18 MF 11 88.92 88.72 NR

21 90.00 89.75 NR

19 SR 11 75.70 75.37 NR

21 75.63 74.56 NR

20 SB 11 80.70 80.7 NA

21 81.86 81.54 NR

21 TA 11 47.06 46.84 NR

21 44.59 45.54 NR

22 TF 11 78.78 78.60 NR

21 79.01 79.01 NR

Table 3 continued

S. no DS PS BF ADP ToH
Acc (%) Acc (%)

23 VH 11 71.44 71.60 NR

21 71.44 71.60 NR

24 WN 11 94.39 95.14 NR

21 93.50 96.85 R (0.0006)

DS dataset, PS pool size, ToH test of hypothesis (NA not applicable,
NR not rejected, R rejected with corresponding p-value)

4.3 Comparison of ADP algorithm with other
ensemble techniques

In this subsection, we compare the performance of ADP algo-
rithm with complete (unpruned) ensemble (CE) and three
other ensemble pruning techniques. There are two criteria
on the basis of which it can be compared with other ensem-
ble pruning methods:

(i) Search strategy: ADP has been compared with forward
selection (FS) and backward elimination (BE) meth-
ods, since these two pruning techniques search the lat-
tice to locate the optimal ensemble, just like ADP. In
FS (BE) method, a pair of classifiers is progressively
added to (removed from) the ensemble and monitored for
improvement in accuracy [31]. The selection (elimina-
tion) of classifiers is continued till the accuracy improves.

(ii) Use of accuracy and diversity in heuristics: We also
compare ADP algorithm with the one proposed by Ko
et al. [23] which uses a compound diversity function
(CDF) measure for pruning an ensemble. This measure
takes into account the accuracy of each classifier member
(ai ), as well as pairwise diversity (dij ) between classifier
members Ci & Cj in the ensemble. We use Q-statistic for
diversity calculation in ADP approach and computation
of CDF measure. For an ensemble of size P , the CDF
measure is calculated as follows [23]:

CDF= P

P − 1

(
P∏

i=1

(1 − ai )

) 1
P

⎛

⎝
P∏

i, j=1,i �= j

dij

⎞

⎠

1
P(P−1)

(2)

We computed CDF values for all ensembles in the search
lattice, and the ensemble(s) with minimum CDF value
are selected as optimal ensemble(s). This is unlike the
proposal in [23] which uses GA to select the opti-
mal ensemble. To avoid randomization involved in GA,
we carried out exhaustive search to locate the optimal
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ensemble. The obtained optimal ensemble is then used
to evaluate the test sets for the corresponding datasets.

Results of the experiments are shown in Table 4. For each
dataset and pool size, the highest accuracies reported on the
test set have been displayed in bold. It can be observed
from the table that for 42/48 cases, pruning yields better
results than the complete ensemble. Comparing the sizes of
ensembles obtained by all the methods, FS reports small-
est ensembles and BE the largest, although average accu-
racy values reported by FS ensembles are not better than
ADP algorithm for majority datasets. The CDF ensem-
bles are considerably larger than ADP ensembles with 8/48
wins.

To further strengthen our conclusion, we applied Fried-
man test for multiple comparisons. This non-parametric test
is commonly used to test the null hypothesis (H0) that all
classifier performances are equivalent, against the alternate
(H1) that at least one classifier exhibits performance which
is significantly different from others [10]. The test returns
p value, which is examined to draw an inference about the
hypothesis. If the p value is close to zero, the null hypothe-
sis is rejected indicating that the performance of at least one
classifier is significantly different from others.

Friedman test ranks the methods on the basis of ensemble
accuracy for each dataset, with lower values of ranks indicat-
ing lower performance. Mean rank for a method is obtained
by averaging its ranks over all datasets. It was found that mean
rank for ADP algorithm was the maximum (84.11) followed
by CDF (75.86) and FS (75.13). Lower ranks are reported for
CE (73.47) and BE (68.93). At 95 % confidence level, very
low p value of 8.99886e-19 was obtained. Consequently, the
null hypothesis was not accepted, implying that sample mean
accuracy of at least one method was significantly different
from that of the others.

Next, Nemenyi test is employed for pairwise comparison
of classifiers to detect the classifier(s) significantly different
from the others. Figure 3 shows the outcome of the Nemenyi
test. Mean rank of each classifier is indicated by a circle, and
horizontal bars across each circle denote the intervals about
these mean values. The extent of overlapping of intervals
indicates the difference between two estimates being com-
pared. It is evident from the figure that ADP algorithm is
significantly different from the other methods, since it shows
a smallest interval overlap with other methods. ADP scores
over other algorithms because of highest mean rank (indi-
cated by circle on ADP bar). The intervals for CDF and FS
show substantial overlapping indicating similar performance,
the fact is vindicated by almost equal mean ranks obtained
by Friedman’s test. We attribute improved ranking of CDF to
an exhaustive search for CDF ensemble (against GA-based
search in [23]).

4.4 Scalability of ADP algorithm

We also investigated if there exists a trend in execution
timings and discovery of sub-optimals with increasing pool
sizes. We executed BF search and ADP algorithm for pool
sizes varying from 11 to 25 with increment of 2. The exper-
iments were done for three datasets—one with heavy losses
(BS), one with moderate losses (CA) and the last one with no
losses (DM). For each dataset and pool size, 30 experiments
were carried out (as described in Sect. 4.2).

4.4.1 Discovery of sub-optimals

We observed the number of sub-optimals discovered by ADP
algorithm. The number of mismatches corresponding to each
dataset and pool size is plotted in Fig. 4. Visual inspection of
the graph reveals that there is no monotonic trend for losses
with increasing pool size.

4.4.2 Execution timings

Current ADP implementation is a straight-forward parallel
implementation, with tremendous scope for optimizations.
For each dataset and pool size, we recorded execution timings
and plotted the graph (Fig. 5). It is clear that the execution
time rises exponentially with the pool size. However, this
is deceptive considering that the brute force timing could
not be plotted in the same graph because of massive scale
difference. For DM dataset, one ADP experiment for pool
size 25 on an average took 3 s to complete, while the average
time for brute force search was more than 3 min. The general
improvement in timings is also indicated by column ’AR’ of
Table 2, which shows massive reduction in the search space
by ADP algorithm. As the pool size increases further, the
difference in execution times of BF and ADP also increases
exponentially.

We admit that the current implementation is suitable for
medium pool sizes so much so that for pool sizes >21, it is
slower than FS and BE.

Closer observation of execution timings reveals the two
tasks that slow the algorithm. These are (i) writing of all
intermediate ensembles in file and (ii) their sorting, at each
level. For larger pool sizes, this problem is too acute to be
tolerated. Design of smart indexing is a potential solution for
the problem.

4.5 Good and bad diversity

Kuncheva and Brown established that overall diversity in
majority voting ensembles can be decomposed into Good and
Bad diversities [4]. The good diversity pulls the performance
of the ensemble up, while the bad diversity pulls it down.
Using the notations in [4], these two are related as follows:
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Table 4 Comparison of ADP algorithm with other ensemble techniques on test set

S. no DS PS CE CDF ADP FS BE

Acc Size Acc Size Acc Size Acc Size Acc

1 AN 11 91.36 6.73 92.15 3.73 92.56 3.67 92.57 8.13 91.57

21 92.57 7.40 94.15 4.13 94.74 4.2 94.45 17.87 92.90

2 BS 11 79.30 8.80 79.14 3.93 80.05 3.73 79.83 8.13 78.23

21 79.67 12.73 79.93 5.07 81.00 4.60 80.74 17.33 79.30

3 BC 11 95.52 6.47 95.85 3.20 96.32 3.13 95.51 9.20 95.37

21 95.94 8.27 96.09 3.47 96.61 3.27 95.61 19.07 95.75

4 CR 11 89.27 8.67 89.51 4.67 89.85 4.40 89.62 8.07 88.79

21 89.85 11.20 89.83 5.80 90.95 5.20 90.6 16.20 90.14

5 CM 11 47.25 10.60 47.27 1.60 50.42 1.60 50.42 5.40 43.81

21 46.46 15.67 46.52 3.27 49.69 2.60 49.51 14.53 46.12

6 CA 11 85.85 7.27 85.89 3.33 86.52 3.53 86.52 8.27 85.07

21 86.43 9.67 86.43 4.80 87.25 4.47 86.38 17.93 86.04

7 CB 11 65.68 8.40 66.23 1.80 67.04 1.73 66.91 8.53 65.80

21 65.99 12.27 67.10 2.67 67.22 2.67 66.98 19.53 66.36

8 DM 11 96.55 5.00 96.55 2.13 96.92 2.07 96.28 10.07 96.46

21 96.64 7.60 96.63 2.00 96.91 2.00 96.09 20.27 96.64

9 EC 11 82.42 7.00 82.64 3.07 83.04 3.13 82.64 8.60 81.44

21 81.85 8.47 81.75 3.33 83.22 3.13 82.43 19.00 81.05

10 FL 11 64.05 5.87 64.40 2.07 64.76 2.13 64.24 7.40 62.16

21 63.89 7.13 64.26 3.07 65.94 2.67 62.88 19.00 61.97

11 GL 11 96.93 5.73 97.86 1.07 95.79 1.07 95.03 10.33 97.55

21 97.24 9.87 97.84 1.13 97.38 1.13 96.14 20.60 97.23

12 HH 11 80.25 5.93 79.63 3.93 80.12 3.93 78.77 8.60 78.52

21 79.51 7.47 78.52 4.20 79.75 3.87 78.39 18.2 79.01

13 HP 11 80.87 5.40 82.46 2.40 81.17 2.40 79.21 8.93 79.42

21 81.85 8.13 86.11 2.73 84.58 2.93 82.44 19.47 82.03

14 HT 11 99.16 6.00 99.23 1.47 99.25 1.47 99.12 10.13 99.16

21 99.15 9.87 99.19 1.40 99.25 1.40 99.14 20.53 99.15

15 IM 11 96.33 7.07 96.32 4.67 96.45 4.60 96.29 8.47 96.06

21 96.22 8.73 96.26 5.80 96.71 5.53 96.36 16.67 96.28

16 IN 11 90.30 5.47 90.87 2.93 91.54 2.80 90.3 8.80 89.63

21 92.01 7.33 90.78 3.60 92.30 3.47 90.20 18.60 91.63

17 KR 11 99.17 5.80 99.34 2.13 99.33 2.07 99.25 9.40 99.17

21 99.07 7.80 99.34 2.87 99.42 2.73 99.32 19.60 99.07

18 MF 11 89.17 9.20 89.33 5.20 88.72 4.80 88.88 8.73 88.32

21 90.18 12.40 89.95 6.27 89.75 6.53 90.17 17.00 90.07

19 SR 11 76.64 3.87 74.21 4.00 75.37 3.87 74.89 8.33 73.43

21 77.44 6.73 73.60 5.27 74.56 4.60 71.63 18.13 75.21

20 SB 11 79.16 6.40 80.58 2.80 80.70 2.67 79.17 8.20 77.98

21 79.27 7.33 80.58 3.67 81.54 3.60 80.03 18.93 78.40

21 TA 11 47.89 3.93 45.17 2.33 46.84 2.27 45.03 8.13 43.32

21 47.89 4.93 42.62 3.13 45.54 2.80 43.70 18.53 47.67

22 TF 11 78.24 9.40 78.42 3.20 78.60 3.13 78.47 8.20 77.43

21 78.51 13.33 79.23 4.73 79.01 4.73 78.33 18.07 78.47
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Table 4 continued

S. no DS PS CE CDF ADP FS BE

Acc Size Acc Size Acc Size Acc Size Acc

23 VH 11 70.53 8.73 71.09 3.87 71.60 3.47 71.32 7.47 68.09

21 70.62 11.27 70.10 5.07 71.60 4.47 71.13 14.93 70.38

24 WN 11 94.59 5.55 97.88 2.80 95.14 2.80 93.47 9.07 94.23

21 94.40 10.47 98.07 3.00 96.85 2.93 93.67 19.73 94.41

W/L/T 6/42/0 8/40/0 31/15/2 1/45/2 0/48/0

DS dataset, PS pool size, CE complete ensemble, CDF compound diversity function approach, FS forward search, BE backward elimination, W/L/T
win/loss/ties
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Fig. 3 Comparison of CE, CDF, ADP, FS and BE algorithms using
Nemenyi test

Emaj =
∫

x

eind(x)−
∫

x+

1

T

T∑

t=1

δt (x)

︸ ︷︷ ︸
good diversity (G)

+
∫

x−

1

T

T∑

t=1

δt (x)

︸ ︷︷ ︸
bad diversity (B)

(3)

Here, eind(x) is the average individual loss for classifiers
in the pool. Emaj is majority voting loss, δt (x) is the disagree-
ment between t th classifier and the ensemble, and x− and
x+ denote the data subspaces where the ensemble is correct
and incorrect, respectively.

To strengthen our hypothesis of effectiveness of accuracy–
diversity integration, we examined Good (G) and Bad (B)
diversities at each step of growing the ensembles. In this
experiment, we used pool of size 31 because ADP algorithm
executed reasonably fast on this pool size. We found that
the biggest ensemble of size 7 was obtained five times in
BC dataset. These ensembles are denoted as E1, . . . , E5. We
selected these ensembles for closer investigation and studied
their growth at each step. For each of these five cases, the
algorithm explored up to size 9 ensembles and reported size
7 ensemble as optimal. G and B were computed at each step
as per Eq. 3 and plotted (Fig. 6). It can be observed that
good diversity increases and bad diversity decreases till the
optimal ensemble is located. Extending the ensemble beyond
this point, the good diversity decreases and the bad diversity
increases. Thus, the maximum value of G and minimum value
of B are attained when the “optimal” ensemble is obtained.
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Fig. 4 Number of mismatches with optimal ensemble for three datasets
BS, CA, DM (pool sizes 11–25)

4.6 Discussion

ADP algorithm is a heuristic algorithm and we do not expect
it to always discover an optimal ensemble. Experimental
evaluation, however, demonstrates that the quality of heuris-
tics is reasonably good. Intuition underlying the heuristics in
ADP algorithm is as follows:

1. Low accuracy classifiers are not likely to participate in
optimal ensemble, unless paired with a high accuracy
classifier.
This motivates (a) rejection of 50 % low accuracy classi-
fiers (Step 5 ), (b) rejection of 50 % low diversity classifier
pairs (Step 8) and (c) extending sub-ensemble by adding
relatively high diversity classifier pair (Steps 12–20).

2. If at the current level, the best accuracy sub-ensemble has
accuracy less than or equal to that of previous level best
accuracy sub-ensemble, then this cannot be the optimal
ensemble. Further, it is not likely to be found at higher
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Fig. 5 Execution times for three datasets BS, CA, DM (pool sizes 11–
25)

levels.
This motivates the stopping criteria at Step 28. Close
investigation reveals that this is a frequent cause of failure
when a sub-optimal ensemble is discovered by ADP.

3. Only relatively accurate ensembles are likely to grow into
an optimal ensemble.
This motivates rejection of 50 % low-performing candi-
date sub-ensembles in the while loop (Step 26).

There are certain limitations of the experimentation,
which were beyond our control and which we would like
to present here.

Firstly, despite our best intention to use datasets that have
been commonly used in other studies [29,32], we had to
restrict to relatively smaller datasets so that the BF search on
pool size 21 and above, could be executed in reasonable time.
For instance, a single experiment for pool size 31 on Magic
dataset took almost 2 days to complete. With the available
hardware, it was not possible to complete 30 experiments in
time. Hence, the pool size was restricted.

Secondly, scalability of the algorithm is a serious issue that
needs to be addressed for it to be of practical utility. The main
factor that dampens the scalability is the generation of dupli-
cate ensembles while combining candidate sub-ensembles of
size 2l − 1 with disjoint classifier pairs in set DP to generate
ensembles of size 2l + 1. For example, while classifier {1}
can be combined with classifier pair {2, 3} to generate size
3 ensemble {1, 2, 3}. Similarly, classifiers {2} and {3} can
be combined with pairs {1, 3} and {1, 2}, respectively, to
generate the ensemble {1, 2, 3}. This leads to duplication of
effort as an ensemble generated once need not to be generated
again.

In the current implementation of ADP algorithm, dupli-
cates are removed by sorting. This sorting is responsible for
exponential rise in execution times for higher pool sizes.
Therefore, there is a need to devise an efficient strategy/data
structure to avoid generation of duplicates, which will lead
to a substantial reduction in execution time.

Fig. 6 Variation in good/bad
diversities for five biggest
ensembles in BC dataset
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5 Conclusion and future work

In this paper, we present a heuristic algorithm ADP which
makes use of both accuracy and diversity for ensemble prun-
ing. The algorithm is conceptually simple and operationally
efficient in search space reduction. Using multi-pronged hill
climb, ADP algorithm systematically grows ensembles by
adding a pair of diverse classifiers. An ensemble is grown
further if its performance has improved after addition of the
pair.

Empirical evaluation of ADP algorithm shows that most
of the times it discovers an optimal ensemble from the pool.
In case it discovers sub-optimal ensemble, the loss of accu-
racy is insignificant. The growth strategy indicates that at
each step, good diversity of the ensemble increases and the
bad diversity decreases. Since the algorithm delivers near
optimal ensembles, it can be used as a benchmark for evalu-
ating other ensemble-pruning algorithms. However, the cur-
rent implementation of the algorithm makes it unscalable. In
future, we intend to overcome this limitation so that bigger
pools can be pruned to obtain optimal ensembles.

Acknowledgments Authors gratefully acknowledge the constructive
comments and suggestions forwarded by the anonymous reviewers,
which significantly improved the experimentation.
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