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Abstract The present study is aimed to evaluate levels of
air pollution for the Barcelona Metropolitan Region. For this
purpose, a newly developed approach called conformal pre-
dictors is considered, and, in particular, use is made of the
ridge regression confidence machine (RRCM). The hallmark
of this method is that it gives valid estimates, i.e. for a given
level of significance of prediction, the probability of error
does not exceed this level. Moreover, the chosen specifica-
tion of the RRCM predictor does not place any requirements
on data distribution, apart from being independent and iden-
tically distributed. A linear ridge regression conformal pre-
dictor has been applied to the data. It has allowed to obtain
valid interval estimates of annual nitrogen dioxide concen-
trations with 95 % confidence. The model has provided good
results, but to further increase the efficiency of prediction,
the RBF kernel has been used. The data for this study have
been provided by the XVPCA (Network for Monitoring and
Forecasting of Air Pollution) of the Generalitat of Catalonia.
The pollutant considered in this paper is nitrogen dioxide.
Its values are represented by annual average concentra-
tions within the period from 1998 to 2009. This paper also
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1 Introduction

In our modern environment, air pollution is a very typical
problem. It is covered in numerous research works, and those
focus on both evaluation of pollution concentrations, and
determination of hazardous impact of pollution on people’s
health and wellbeing. It has been established that each year
more than 2 million premature deaths in the world are asso-
ciated with air pollution [11]. The need for evaluation of
contamination levels in particular places has motivated sci-
entists all over the world. They have developed the meth-
ods for air pollution assessment since the 1950s [24]. Those
methods include geostatistical models, like kriging [10] or
inverse distance weighting [23], and land-use regression [9],
dispersion models [4] etc. The developed models give quite
good estimates of pollution levels. However, those are usu-
ally point estimates, and they might lack confidence. Those
techniques can additionally provide the estimation error, but
the validity of prediction cannot be guaranteed.

Use of conformal predictors solves this problem, because
they are always valid [19]. With a given level of confidence,
their prediction is correct. An output of a conformal predic-
tor is a prediction set. This set is not necessarily an interval,
but often it is. In case of air pollution, an interval estimate
given by a conformal predictor can be of greater use com-
pared to a regular point estimate. A valid interval, i.e. an
interval that withholds the actual value of pollution with a
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given probability, can be compared to some critical values of
pollution established in clinical research.

Regarding the fact that air pollution is a problem of
growing concern all over the world, spatial analysis is being
carried out to establish the concentrations of pollutants. How-
ever, ascertaining the valid intervals of predicted pollution
for a given spatial region is a good alternative to point esti-
mates. The World Health Organization has established and
published guideline values for contaminative substances sus-
pended in the air [11], and thus valid prediction intervals can
be compared to those values to conclude whether the region
of interest is “safe” or not pollution wise.

The most frequent contaminant that is being studied now
is nitrogen dioxide. It has been shown that nitrogen dioxide
has an adverse impact on human health, both in long-term
and short-term exposures. Animal toxicological studies also
indicate that long-term exposure to NO: affects animal health
in ahazardous way [11]. In people, nitrogen dioxide is mostly
associated with respiratory diseases, but also with cardiovas-
cular illnesses. It has been established that NO: is associated
with both morbidity and mortality [14]. In high concentra-
tions of over 200 ug/m3, NO: is a toxic gas, and WHO sets
up a guideline value of 200 pg/m?> as a 1-h mean concentra-
tion [11]. The guideline values are based on expert estimates
of air pollution in the world, including both developed and
developing countries, and they are aimed to reduce contam-
ination. Those values are outlined for both long-term and
short-term exposure. As far as long-term concentrations are
concerned, the annual mean guideline value for NO: makes
up 40 pug/m>. The last but not the least of the perilous effects
caused by NO: is that in the presence of hydrocarbons and
ultraviolet light, it is the main contributor to ground level
ozone forming. The major source of nitrogen dioxide is road
traffic, but it also comes from other combustion sources.

Barcelona is a huge and vibrant city with over 1.6 mil-
lion inhabitants and over 2000 years of history. It is the heart
of the Barcelona Metropolitan Region (BMR) that counts
over 5 million of people living there. Furthermore, the area
attracts numerous tourists, commerce etc. All those factors
make the traffic in the zone busy, which cannot but contribute
to traffic-related air pollution. The present study investigates
the levels of nitrogen dioxide in the BMR. Its concentra-
tions have been measured at 49 stations across the BMR (see
Fig. 1) during the period of time from 1998 to 2009, with the
exclusion of 2003. The data have been provided by XVPCA
(Network for Monitoring and Forecasting of Air Pollution)
of the Generalitat of Catalonia [1].

The data set is represented by the concentrations of nitro-
gen dioxide together with the geographical coordinates of the
measurement spots. Those concentrations are annual aver-
ages, although measurements have been taken hourly. The
data set consists of 269 observations in total, due to the fact
that the data were not available for every station and year and
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Fig. 1 The location of the stations over the Barcelona Metropolitan
Region

Table 1 Available observations for each year

1998 1999 2000 2001 2002 2004
24 25 25 25 25 24
2005 2006 2007 2008 2009

22 24 25 25 25

pollutant. The number of valid observations for each year is
shown in Table 1.

Two methods have been applied in this research to model
the concentrations of nitrogen dioxide: ordinary kriging (OK)
[21] and ridge regression confidence machine (RRCM) [19].
To compare both methods, the concentrations have been pre-
dicted for each year at the stations where the observations
were not available, so that for each year the data set would
be completed up to 49 points. Of course, the estimates could
be expanded on a grid to cover up the whole study region.
This is planned to be done in the future when more data will
be available, so that the predictive models, both kriging and
RRCM, can be properly adjusted.

2 Methods
2.1 Conformal prediction and RRCM

Conformal prediction is a relatively new technique. Its main
characteristic feature is that it can be used with any existing
machine learning method. Conformal predictors have two
major hallmarks: they are valid and effective. Validity here
means that in the long run, the frequency of prediction errors
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does not exceed the given level of significance. An output
of a conformal predictor is a prediction set. Efficiency here
means that prediction sets should to be as small as possi-
ble. Validity is guaranteed, while efficiency is a quantitative
value depending on the appropriate selection of an underly-
ing method.

The particular specification of conformal prediction used
in this study is called RRCM [19]. Ridge regression may be
treated as an advance of the classical least squares approach
aimed to deal with “ill-conditioned” situations when the cor-
relations between independent variables in a model lead to
necessity to invert an almost singular matrix. Ridge regres-
sion procedure suggests the introduction of a small ridge
coefficient to the regression equation. The method was pro-
posedin 1960s by Hoerl [6]. RRCM, together with the nearest
neighbors regression (KNN), is the most standard regression
algorithms in machine learning.

Let us briefly describe the method. Suppose there is X =
R called the object space, ¥ = R called the label space,
and Z = X x Y is the example space. In other words, z; =
(xi, yi). Here, the object space would describe the indepen-
dent variables, or regressors, the label space would consist of
the dependent variables, and the example set would be made
up of the observations. Suppose, the observed data sequence
is incomplete, i.e. there is a necessity to predict the missing
data. Ridge regression computes the following minimization
expression:

n
a- o+ (v — - x)* — min, S0

i=1

with the aim to establish the optimal values of the weights .
Here, a > 0is aridge factor. The least squares minimization
algorithm is a special case of the ridge regression when the
parameter a is equal to zero.

So far, there is no analytical procedure that would allow
calculating the optimal value of a ridge factor. Thus, a feasi-
ble way to obtain such a value is simple brute force search.
The nonconformity measure for the RRCM is the absolute
value of the residuals, i.e. ; := |e;| = |y; — yi|. Let X;, be
the n x p matrix of regressors, and Yy, be the vector of labels
(dependent variables), then the minimization expression will
take the form:

all@|* + [|Yn — Xp||* — min,,, )
or
Y,Yn — 20'XYn + @ (X Xy + alp)@ — min,. 3)

Solving the equation, the optimal weights can be obtained:

®* = (X, Xn + alp) "' X} Yp. )

The ridge regression approximation is provided by the
expression:

Yo =G i) = XX Xn +alp) X Ya,  (9)
where the matrix
Hy = X (X[, Xn + alp) ~'X], (6)

is called the hat matrix (because it transforms Y,, into )7,1).
Therefore, the vector of nonconformity scores is represented
as follows: «; = |e;|. Then, considering that an incomplete
data set is given, the label y for x, is unknown. The vector

Y, = (y1,..., yn—1,y) can be split into two:

Yon=01. 0 9-1,0"+(0,...,0, 0" ©)
Then,

An = In —Hp) Y1, -5 Y01, 00, (3)
and

By = I, — Hy(O,...,0,y). &)

For each y, the expression «(y;) — @ (y,) changes sign only
at some points for each i = 1, ..., n. The set of such points
can be calculated instead of testing all possible y. The set:

Spi=1{y 1ai(y) = a,(y)}

= {y:lai +biy|l = lan + bnyl} (10)

is the prediction set foreachi = 1, ..., n. S, can either be a
ray, a union of two rays, an interval, a point, empty, or repre-
sented by the whole real line. With no loss of generality, we
could assume b; > 0. Then, if b; # b,, «; and «,, are equal
at two points:
G4 —an 4 +ay
bi - bn bi + bn
then §,, is an interval, or a union of two rays.
The RRCM setting described above is referred to as the
primary setting. However, ridge regression can only deal with
situations when the number of parameters is relatively small.
This algorithm implies inverting a p X p matrix which can
be computationally difficult. In case of a high-dimensional
problem, the so-called “kernel trick” [19] is used. For using
this technique, it is essential to represent the ridge regres-
sion equation in the dual form. The duality is based on the
following matrix equation:

and

(11

Xn (X, Xy +alp) ™! = (XpX}, + aly) ' X, (12)
The prediction can thus be rewritten as:
J=w x=Y,(XnX, +alp) ' Xyx. (13)

The main aspect of this representation is that the prediction
depends on the objects xp, ..., x,, only through scalar prod-
uct between them. The hat matrix for the dual representation
will take the form:
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H, = XuX, + alp) ' XX, (14)
or
Hy = (Kp + aln) 'K (15)

Here, K, is the matrix with the elements (C,), ). Scalar
product in this equation can be substituted by any suitable
kernel:

Kax® x®) = FxV) . F(x), (16)
where F is a function defined as:
F:R> > H, (17

and H is referred to as feature space. For more information,
please see [15].

In this research, the iid specification of the RRCM model
has been used [20]. This specification implies that the data are
independent and identically distributed. This model is a very
convenient option for air pollution data, as it does not require
any prior knowledge on the data distribution, apart from that
the observations (Xp, y,) should be iid. Both a standard (lin-
ear) model and a model with a non-linear kernel have been
fitted. Here, the number of features is equal to 2, and there
is no need to convert big matrices. However, there might be
a need to try different approaches for an empirical vario-
gram of spatial data. For those purposes, “kernel trick” can
be used. A kernel that has been implemented in this work is
the Gaussian radial basis function (RBF kernel) [15]:

[x@ — x @2
2a?

where a is a scale parameter.

KM, x@) = exp— . (18)

2.2 Kriging

Kriging is a classical interpolation method aimed to assess
geographical data. It serves for conversion of spatial data into
an estimate of a random field together with a measure of error
or uncertainty [17]. The measure of uncertainty here is pro-
vided with the so-called kriging variance. This method was
first introduced by a South African engineer D. G. Krige in
his master thesis devotes to statistical methods to estimation
of a mineral ore body in the 1950s [5]. Since then, kriging
has been studied and broadened, and nowadays it serves as a
generic name for a set of methods: simple kriging, ordinary
and universal kriging, cokriging, etc. as well as a Bayesian
approach to kriging [8]. Bayesian kriging can yield a smaller
error variance than the “traditional” ordinary kriging. How-
ever, this gain in precision depends on whether the Bayesian
specification of the model is actually reasonable. In practice,
there are two major obstacles to implementation of Bayesian
kriging: a correct specification of the prior distribution, and a
computational complexity, although the latter problem can be
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solved by implementation of Monte Carlo methods [5]. The
specification of the prior distribution can be avoided with the
use of parametric bootstrap, like the trans-Gaussian Bayesian
kriging model suggests [16]. This method can help relax the
Gaussian assumption which is common for kriging, though
not always appropriate.

Ordinary kriging is a convenient method that must be used
when dealing with raw data with unknown mean [3]. This
specification has been used in the present research. Suppose
X1, ..., Xy are points of the spatial domain D, and x is an
unobserved location. Z(x) is a realization of a second-order
stationary isotropic stochastic process with a known vario-
gram. The term ‘“‘variogram” is the cornerstone of kriging.
It is defined as one-half the expected value of the squared
difference between random variables Z(x), Z(x + h) at two
different locations x and x + &, where 4 is a distance between
two points [17]:

var[Z(x + h) — Z(x)] =2y (h). (19)

The actual value of Z(x) is unobserved at the point x¢. Then:
n

Zhok(x0) = D i Z(xi), (20)
i=1

where w; are the kriging weights [21]. The estimates
Z} k (xo) are unbiased, which implies that the estimation
error is nil on the average. The unbiasedness of the estimates
is guaranteed by the condition:

o=t @
i=1

The unbiasedness constraint of ordinary kriging allows the
variance (known as kriging variance) to be expressed in
terms of a variogram [17]:

oz = var(Z*(xo) — Z(x0))

=y (xo — x0) — Zzwiwjy(Xi —Xj)

i=1 j=I

+2 Z iy (xi — x0). (22)
i=1

For a more detailed specification, please see [21]. Kriging
variance is an analog of a regression mean squared error,
provided the variogram model is specified correctly [22].

Error variance for an unbiased linear kriging estimator
can be expressed in terms of covariances between different
Z(xi), Z(x + h) at different spatial points x;, (x; +h) [17].
A covariance function is defined on the assumption the field
is second-order stationary [21]:

E[Z(x)- Z(x + h)] —m? = C(h), (23)
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where E[Z(x)] = m. A variogram can be derived from a
covariance function as follows:

y(h) = C(0) = C(h) (24)

Covariance functions can be of different form, and they are
extremely useful for spatial modeling, because they allow to
consider spatial dependence and specific features of data dis-
tribution over a spatial region. Different types of covariance
functions are being used in practical research. Two covari-
ance functions are used here. The first one is the exponential
covariance function:

C(h) =bexp (—g) , (25)

where b is the value at the origin, o is a range parameter, and
h is the distance between two spatial points. Another one is
the Gaussian covariance function:

()
C(h) =bexp —(;) . (26)

Both of these functions belong to the Matérn family [5].

The situation when a variable is discontinuous at the ori-
gin of a varoigram is called “nugget effect”. This means that
the values of the variable change abruptly at a very small
scale [21]. In practice, when sampling design implies one
single measure at each of the locations, the nugget effect is
usually attributed to measurement error or spatial variation
at very small distances: smaller than the smallest separation
between two sampling locations, or to a combination of the
two [5]. The discontinuity at zero separation is usually intro-
duced to parametric covariance models [17].

Error variances at unobserved locations are computed
from chosen covariance models, and model parameters are
obtained from the observed data [17]. Covariance and vari-
ogram estimates are thus random values under the assumed
model, and so the error variance is also an estimate, and its
properties depend on the model.

3 Results

For computational purposes, R [18] has been used. Kriging
has been performed with the use of geoR package [13],
in particular, employing its function krige.conv. As for
conformal prediction models, the PredictiveRegression [20]
package has been availed of. For RRCM modeling in the iid
setting, use has been made of the function iidpred [20] from
this package. For executing RRCM models with RBF ker-
nel, an additional function has been created on the basis of
the iidpred function. The modification implied rewriting the
ridge regression procedure in the “dual form” and applying
the “kernel trick” as introducing a relevant kernel.

At first, ordinary kriging with the exponential covariance
function has been applied to the data. Models have been
derived for each year, with the exception of 2003 for which
the data were not available, so there were 11 models in total.
Then, an RRCM model in the iid basic specification has
been executed for the same data. Confidence level for pre-
diction has been set to 95 %. Ridge factor has been set to
0.01. It is noteworthy that ridge regression suggests scaling
and normalization of the independent variables [6], which is
though not always necessary. However, here the data have
been scaled and normalized. It has been done for purely
computational purposes. For precise comparison of the two
approaches, ordinary kriging and RRCM, scaled and normal-
ized data have been used for both of them.

For each year, RRCM output intervals contained the kri-
ging predicted values. Naturally, it would be desirable to
contrast the predictions to actual observations. However,
observed values were not available for the points at which
the predictions were made. To track validity of predictions,
leave-one-out cross-validation was further performed for the
observed points. A mean predicted concentration was con-
sidered as a measure for evaluation of the kriging estimate.
Also, taking into account the feature of kriging to output
the estimation variance together with the result itself, mean
variance was also tracked. As for RRCM predictions, they
are sets in the form of intervals. These have been evaluated
in terms of efficiency, i.e. their size: the narrower the better.
This comparison aimed to conclude the following: whether
the intervals for a given year withheld the kriging predic-
tions or not. A data set must count just over 20 observa-
tions to assure the confidence of prediction equal to 95 %.
A data set must count 1/€ observations or more, where € is
the level of significance of prediction, to provide than an iid
model would yield informative prediction intervals [20]. As
the chosen confidence level was equal to 95 %, 5 % of errors
was allowed. It is possible that there were no such errors:
all of the RRCM intervals contained the kriging predictions.
The results of the comparison are depicted in Fig. 2. There,
the central curve represents mean ordinary kriging predicted
concentrations for each year. The upper curve shows mean
values of the upper bounds of prediction sets for each year.
The lower curve, on the other hand, represents averages of
the lower bounds of prediction intervals for each year.

Assuming that the Gaussian model could probably be a
good fit for the given data, kriging with a Gaussian covari-
ance function has been performed. Figure 3 represents how
exponential and Gaussian variomodels approach the empiri-
cal variogram for 1998 data. Such plots have been processed
for all the years of study.

An RRCM model with the Gaussian RBF kernel has been
also used, and the results of both methods have been com-
pared. The aim of testing various RRCM approaches was
to find one that would give the most effective intervals.
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Fig. 2 Comparison of mean predictions: OK with exponential covari-
ance and RRCM in default setting

Variogram for NO2 concentrations for 1998
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Fig. 3 Comparison of fit of exponential and Gaussian variomodels for
1998

One factor to vary here is the kernel, while another one is
the ridge factor. The latter is explained in detail below. The
results of prediction with kriging and RRCM with the RBF
kernel are shown in Fig. 4. For each year, the central curve
represents mean kriging predicted concentrations, while the
upper and the lower curves show average upper and lower
bounds of RRCM RBF intervals. Ridge factor and confidence
level were equal to 0.01 and 95 %, respectively. In these
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Fig. 4 Comparison of mean predictions: OK with Gaussian covariance
and RRCM with RBF kernel

Table 2 Mean RRCM interval width

Year Dot product RBF

1998 76.08 65.82
1999 66.31 67.68
2000 51.69 50.91
2001 36.24 35.32
2002 52.12 47.78
2004 53.65 53.89
2005 78.75 79.44
2006 61.78 61.24
2007 47.00 48.15
2008 46.96 47.44
2009 55.59 48.38

models, since the data have been scaled and normalized,
range parameter in the RBF kernel has been set to 1.

Table 2 shows mean widths of RRCM prediction intervals.
The results are shown for both standard linear model and the
one with the RBF kernel. It is seen that the implementation
of the Gaussian RBF kernel provides a slightly better result.

As for kriging variances, they are huge. Those values are
estimates, and due to small number of observations avail-
able, it is hard to come up with an accurate variogram model.
Table 3 depicts the estimated ordinary kriging variances for
both models taking up an exponential covariance function
and a Gaussian one.

Some words should be said on the role of a ridge factor in
RRCM modeling. There is no general rule of choice for it.
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Table 3 Mean kriging variances Table 4 Comparison of models with various ridge factors
Year Exponential Gaussian Ridge 0 0.01 0.1 1 1.5 2

Dot prod. 56.93 56.93 56.94 58.23 59.25 60.31
1998 242.02 239.81

RBF - 55.10 55.46 57.12 58.29 59.39
1999 260.13 249.73
2000 66.73 88.35
2001 26.12 52.12
2002 73.05 97.63 of the prediction sets for each given spatial point. It is evi-
2004 129.87 129.87 dent from the plot that the optimal value of ridge factor for
2005 171.83 173.41 these data is zero, i.e. the best predictor is the least squares
2006 136.64 140.81 predictor. However, optimal values are different for different
2007 86.30 95.87 years. It is a general practice to use the brute force method to
2008 71.18 86.96 choose the optimal value of a ridge factor for each study data
2009 64.28 88.19 set upon which RRCM predictor is planned to be executed.

Dependence of prediction interval width
on ridge parameter value

52 53
|

51
1

prediction set size
50
1

49
1

«©

®
N~

g

T T T T T
0.0 0.5 1.0 1.5 2.0
ridge parameter
data for year 2008

Fig. 5 Mean width of prediction set for a given ridge factor

In both of the models demonstrated here, ridge factor has
been set to 0.01. In fact, the value of ridge factor influences
the efficiency of RRCM prediction. For some values, predic-
tion sets are smaller than for the other ones. Plotting ridge
regression parameter estimates against ridge factor values is
called ridge trace [6]. Figure 5 demonstrates an example of
how an output of a RRCM predictor varies for different val-
ues of ridge factor. Mean annual concentrations of nitrogen
dioxide have been modeled for 2008, for a sequence of ridge
factors from O to 2 with a step equal to 0.01. It is notewor-
thy that here it is not the parameter estimates that have been
plotted against the ridge factor values, but the actual output
given by mean size of prediction intervals. The latter one
is the average difference between upper and lower bounds

For all the years in the data set, Table 4 depicts the results
of modeling for the following ridge factors: 0, 0.01, 0.1, 1.5,
1, 2. The results are provided for both of the RRCM settings
used in this research: iid and Gaussian RBF. For every model,
each cell in the Table 4 stands for mean width of prediction
intervals for all the years for a given value of ridge factor. In
other words, for every chosen ridge factor, mean prediction
interval width for each of the years has been evaluated, and
then those values have been further averaged for all of the
years. This has been done to come up with the mean predic-
tion interval width for each ridge factor for the whole data
set. It is noteworthy that the computation of a least squares
estimate (i.e., with a ridge factor equal to 0) is not possible
for RRCM with the RBF kernel, as it implies inversion of a
singular matrix. Taking into consideration the last notion, it
is seen from Table 4 that an almost least squares estimate
(i.e., the one with a ridge factor almost equal to 0) is on the
average the best one for both models.

This research compares two techniques aimed to predict
the data at unobserved locations. As the actual values are
unavailable for the locations, goodness of fit of the models
cannot be fully explored. To test the models on the observed
data, leave-one-out (LOO) cross-validation [2] has been per-
formed for each year. Table 5 shows an example of appli-
cation of LOO cross-validation for a kriging model (with
an exponential covariance function) for the data referring to
1999.

Table 6 shows the results of LOO cross-validation for a
standard RRCM iid linear model for the same 1999 data.
Ridge factor has been taken equal to 2. Cross-validation of
RRCM procedure for this particular data set has revealed
one error: for one observation (object), the actual value of
the variable of interest (mean annual concentration of NO2)
does not fall within the prediction interval. Out of 25 obser-
vations, 1 incorrect prediction makes up 4 % of errors, which
is acceptable, since the chosen confidence level is 95 %.

Cross-validation for ordinary kriging models with a
Gaussian covariance function and RRCM models with the
RBF kernel were performed as well for each year.
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Table 5 OK leave-one-out cross-validation

Table 6 RRCM leave-one-out cross-validation

Observed Predicted Absolute Observed Lower Upper Interval
error value bound bound width
17.00 47.42 30.42 17.00 12.96 71.47 58.51
20.00 45.42 25.42 20.00 —1.74 75.54 77.28
22.00 44.38 22.38 22.00 8.95 69.69 60.74
25.00 48.10 23.10 25.00 10.22 69.93 59.71
28.00 47.25 19.25 28.00 11.26 70.94 59.68
30.00 47.44 17.44 30.00 11.41 71.68 60.27
32.00 45.29 13.29 32.00 11.09 71.29 60.20
33.00 44.46 11.46 33.00 10.20 70.18 59.98
37.00 43.92 6.92 37.00 9.16 69.96 60.80
38.00 42.19 4.19 38.00 6.52 69.51 62.99
38.00 47.02 9.02 38.00 12.21 75.82 63.61
44.00 44.95 0.95 44.00 7.72 69.55 61.82
45.00 44.86 0.14 45.00 10.13 71.36 61.23
48.00 4425 3.75 48.00 10.62 75.86 65.23
50.00 44.09 591 50.00 9.23 71.58 62.35
51.00 43.00 8.00 51.00 7.47 70.56 63.09
52.00 43.75 8.25 52.00 5.13 69.12 63.99
53.00 44.42 8.58 53.00 9.98 72.07 62.09
57.00 43.68 13.32 57.00 9.02 71.02 62.00
61.00 44.14 16.86 61.00 7.03 70.20 63.17
61.00 44.10 16.90 61.00 8.26 71.84 63.58
64.00 43.58 20.42 64.00 9.03 72.25 63.22
65.00 41.37 23.63 65.00 4.74 68.18 63.44
68.00 43.70 24.30 68.00 5.80 70.12 64.32
71.00 43.77 27.23 71.00 8.62 68.87 60.25

4 Conclusion

Nowadays, a growing traffic burden together with other
related factors imposes the problem of air pollution assess-
ment. Since geographical data are involved, using geosta-
tistical methods is a regular practice, and kriging is among
the most widely used geostatistical techniques. It is a well-
developed algorithm. However, some limitations of kriging
are known and described elsewhere. One of them is that kri-
ging predictions lack confidence. The method is known for
providing a measure of uncertainty, i.e., kriging variance,
together with the estimates at unobserved locations. How-
ever, kriging variance is an estimate itself. A new approach
of conformal predictors, and, in particular, the RRCM, can
be treated as a good alternative to kriging. Having a simi-
lar regression underlying algorithm, it yields valid prediction
intervals. Also, RRCM implies confidence prediction with no
prior assumption on data distribution, apart from being iid.
This research has taken up both kriging and conformal
predictors. Kriging’s main adjustment tool is the covariance
function. It allows to take into account covariances between
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observations at different spatial points. Choosing the right
shape of covariance function for the data is important, as
model parameters are obtained from it. In RRCM, a kernel
can be seen as an instrument similar to covariance function.
In this research, a Gaussian kernel approach has been used.
It has been guessed, since the data are geographical that the
character of spatial dependence is probably not linear. Also,
the given data set represents annual concentrations of a sub-
stance suspended in the air and carried with the wind. It is
very hard to derive a fitting distribution for such a data set. It
is important to mention that the data set is small, so the task
of an effective prediction gets very complex. However, the
implementation of the described methods gives good results
with these data, so they would most probably work well with
wider data sets.

RRCM intervals could be narrowed, so an increase in the
efficiency of prediction is the aim. Regarding that the data set
is small and not so easy to process, the RBF kernel has been
used without particular justification. There should be better
kernels available which can be established with more trials,
and/or more data.
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The results of kriging and RRCM coincide in terms of
RRCM intervals withholding kriging predictions. Generally,
for each specification of kriging the results should match,
provided that the kriging covariance function is taken up as
a kernel in RRCM and vice versa, and provided the ridge
factor is the same.

5 Discussion

This research has two major points. First is that machine
learning methods, and, in particular, RRCM can be used for
air pollution assessment, and, as a consequence, for rele-
vant clinical research. As confidence of the prediction means
a lot in epidemiological studies, because those are dealing
with health and well-being of people, the use of those newly
developed methods can yield valid and effective estimates.
Second is that in geostatistics, RRCM can be seen as a com-
plementary method to the classical kriging. Kriging methods
are known to be largely based on the assumption that the
underlying stochastic process is Gaussian [12]. If a relaxa-
tion of the Gaussianity assumption is the aim, an RRCM iid
predictor might come in handy as it only assumes that the
data are iid.

This study marks some directions for future research. First
of all, models should be tested on larger data sets, which it
is planned to do. Second, implementing of other covariance
functions and kernels can be tested. Third, a Bayesian con-
formal predictor can be considered and compared to
Bayesian kriging. Finally, as said before, a conformal predic-
tor can be built upon almost any underlying algorithm. Using
the underlying algorithm to obtain a non-conformity measure
(or strangeness measure), a conformal predictor delivers con-
fidence to the prediction. This means that not only kriging
can be used as an underlying algorithm for this particular
research, but any suitable regression technique, such as land-
use regression [7,9], can serve this purpose.
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