
Prog Artif Intell (2012) 1:103–117
DOI 10.1007/s13748-011-0005-3

REVIEW

A review on estimation of distribution algorithms
in permutation-based combinatorial optimization problems

Josu Ceberio · Ekhine Irurozki ·
Alexander Mendiburu · Jose A. Lozano

Received: 3 March 2011 / Accepted: 8 July 2011 / Published online: 13 January 2012
© Springer-Verlag 2011

Abstract Estimation of distribution algorithms (EDAs) are
a set of algorithms that belong to the field of Evolutionary
Computation. Characterized by the use of probabilistic mod-
els to represent the solutions and the dependencies between
the variables of the problem, these algorithms have been
applied to a wide set of academic and real-world optimi-
zation problems, achieving competitive results in most sce-
narios. Nevertheless, there are some optimization problems,
whose solutions can be naturally represented as permuta-
tions, for which EDAs have not been extensively developed.
Although some work has been carried out in this direction,
most of the approaches are adaptations of EDAs designed
for problems based on integer or real domains, and only a
few algorithms have been specifically designed to deal with
permutation-based problems. In order to set the basis for a
development of EDAs in permutation-based problems simi-
lar to that which occurred in other optimization fields (inte-
ger and real-value problems), in this paper we carry out a
thorough review of state-of-the-art EDAs applied to permu-
tation-based problems. Furthermore, we provide some ideas
on probabilistic modeling over permutation spaces that could
inspire the researchers of EDAs to design new approaches for
these kinds of problems.

J. Ceberio (B) · E. Irurozki · A. Mendiburu · J. A. Lozano
Intelligent Systems Group, Computer Science and Artificial
Intelligence Department, The University of the Basque Country
(UPV/EHU), Donostia-San Sebastián, Spain
e-mail: jceberio001@ikasle.ehu.es

E. Irurozki
e-mail: ekhine.irurozqui@ehu.es

A. Mendiburu
e-mail: alexander.mendiburu@ehu.es

J. A. Lozano
e-mail: ja.lozano@ehu.es

Keywords Evolutionary computation · Estimation of
distribution algorithms · Permutation-based optimization
problems · Probabilistic permutation modelling

1 Introduction

The research work carried out in the field of metaheuris-
tics has provided the community with a large number of
tools for solving optimization problems. In this work, we
focus on a set of metaheuristics called estimation of distri-
bution algorithms (EDAs) [26,29,39,37] that belong to the
field of evolutionary algorithms (EAs). The main character-
istic of EAs is the use of techniques inspired by the natu-
ral evolution of the species. In nature, species change across
time; individuals evolve, adapting to the characteristics of the
environment. This evolution leads to individuals with bet-
ter characteristics. The same idea is translated to the world
of computation, where an individual represents a particular
solution for the problem to be solved, a population comprises
several individuals, and different operators such as crossover,
mutation and selection techniques are used to make the indi-
viduals (solutions) evolve (improve). The most popular ref-
erence of these types of algorithms is the Genetic Algorithms
(GAs) [14].

As an improvement of GAs, EDAs were introduced in the
field of EAs in [36], although previous similar approaches
can be found in [56]. Unlike GAs, EDAs learn a joint prob-
ability distribution associated with the set of most prom-
ising individuals at each generation, trying to explicitly
express the interrelations between the different variables
(characteristics) of the problem. Sampling the probabilistic
model generated in the previous generation, a new popu-
lation of solutions for the problem is created. The algo-
rithm stops iterating and returns the best solution found

123

104 Prog Artif Intell (2012) 1:103–117

Fig. 1 General outline of
estimation of distribution
algorithms (EDAs)

across the generations when a certain stopping criterion is
met, such as a maximum number of generations/evalua-
tions, homogeneous population, or lack of improvement in
the solutions. Figure 1 introduces a detailed pseudo-code of
EDAs.

Based on this general framework, several EDA approaches
have been developed in the last years [26,29,38,39], where
each approach learns a specific probabilistic model that con-
ditions the behavior of the EDA from the point of view of
complexity and performance. Many works in the literature
confirm the good performance of EDAs in the solution of
problems from diverse fields. Protein folding [45], capaci-
tated vehicle routing problems [52], calibration of chemical
applications [35], finding the optimal path in 3D Spaces [53],
software testing [44], chemotherapy treatment optimization
for cancer [6] or nuclear reactor fuel management parame-
ter optimization [21] are some examples of many real-world
problems where EDA-based approaches were applied to find
optimal solutions.

In this work, we are interested in the solution of a spe-
cific subset of NP-hard optimization problems. Particularly,
we refer to those problems whose solutions can be natu-
rally represented as a permutation. Even though the litera-
ture provides several EDA approaches for permutation-based
problems, most of these approaches are adaptations of EDAs
designed initially for the solution of integer or real-value
domain problems. We understand integer domain problems
as those problems where the search space is defined as

� = {0, . . . , r1} × · · · × {0, . . . , rn}, where

ri ∈ N i = 1, . . . , n

and by real-value-based problems we understand those prob-
lems where the search space is an infinite non-numerable
subset of R

n .
The EDAs designed for the previous two kinds of prob-

lems show several drawbacks when applied to permutation-
based problems. The main drawback is that those EDAs do
not learn a probability distribution over a permutation space,
but a distribution over an integer or real-values space. There-
fore, these models are not summarizing the regularities con-
tained in the permutations.

In order to set the basis for a development of EDAs in
permutation-based problems similar to that given for inte-
ger and real-value optimization problems, we carry out a

thorough review of state-of-the-art EDAs applied to permu-
tation-based problems. Furthermore, we provide some ideas
on probabilistic modeling over permutation spaces that could
inspire the researchers of EDAs to design new approaches for
this kind of problems.

The remainder of this paper is organized as follows. In
Sect. 2, we give a background on permutation-based prob-
lems that will be used in Sect. 3 to base the review of EDA
approaches designed for solving permutation-based optimi-
zation problems. In Sect. 4, we carry out a thorough experi-
mental analysis of the existing EDA proposals when applied
to classical permutation-based problems. In Sect. 5, we pres-
ent several models for the estimation of probability distribu-
tions over permutation search spaces giving some advice on
their use in EDAs. Finally, Sect. 6 sums up the main conclu-
sions and raises some ideas for future work.

2 Permutation-based problems

As mentioned previously, many optimization problems find
a natural representation of the solution as permutations.
In combinatorics, a permutation is understood as a vector
σ = (σ1, . . . , σn) of the indexes {1, . . . , n} such that σi �= σ j

for all i �= j . We say that index j is in position i in σ when
σi = j .

While there exist many combinatorial optimization
problems whose solutions are based on permutations, the
meaning of these permutations can be different in different
problems. This fact is important when solving these prob-
lems with EDAs, as the probabilistic model should take into
account the semantic information of the permutation. For
that reason, in the following paragraphs we introduce some
examples of permutation-based problems, where although
the codification of the solution is given by permutations, the
meaning in each case is different.

2.1 Traveling salesman problem (TSP)

The TSP [15] consists of looking for the shortest path, in
terms of time, distance, or any similar criterion, to go over
n different cities visiting each city only once and return-
ing to the city of departure. A solution is usually given by
a sequence of cities which is represented as a permutation.

123

Prog Artif Intell (2012) 1:103–117 105

The search space is denoted as

� = {(σ1, σ2, . . . , σn)|σi ∈ {1, 2, . . . , n},
σi �= σ j , ∀i �= j}.

In a TSP of four cities, σ = (3, 2, 4, 1) would be a possi-
ble solution, indicating that the initial city is 3, then 2, 4, 1,
finally coming back to 3. As we assume that the first city of
the path is not fixed, the TSP is a problem with cyclic solu-
tions, and each solution can be represented by 2n different
permutations for symmetric instances and n for asymmetric
instances. For instance, solution σ ′ = (1, 3, 2, 4) represents
the same city-tour that σ does, while the permutations are
different.

The objective function F, is defined as the sum of the dis-
tances of going from city i − 1 to i, denoted as di j , through
all cities in the order specified by the permutation:

F(σ1, σ2, . . . , σn) =
n∑

i=2

dσi−1σi + dσn ,σ1 .

In TSP we note that the relevant information for the calcula-
tion of the fitness function of a solution is given by the relative
ordering of the indexes in the permutation. The information
drawn from the absolute positions of each index is useless, as
stated with σ and σ ′. Furthermore, no matter which position
indexes i and j are in the permutation, if they are adjacent,
the contribution to the objective function is the same.

2.2 Flow shop scheduling problem (FSSP)

The FSSP [17] consists of scheduling n jobs (i = 1, . . . , n)
on m machines (j = 1, . . . ,m). A job consists of m oper-
ations and the j th operation of each job must be processed
on machine j for a specific time. A job can start on the j th
machine when its (j−1)th operation has finished on machine
(j − 1), and if machine j is free. The goal of the optimiza-
tion is to minimize the processing time of all the jobs, or
in other words, to minimize the processing time of the last
job. The solution is codified as a permutation of length n
that represents the ordering in which the jobs are going to
be processed. This means that for each machine the order
of the jobs is the same and it is given as a permutation. For
instance, in a problem of 4 jobs and 3 machines, the solution
(1, 2, 3, 4), represents that job 1 is processed first, next job
2 and so on.

Let pi, j denote the processing time for job i on machine
j, and ci, j denote the completion time of job i on machine
j . Then cσi , j is the completion time of the job scheduled in
the i th position in the sequence on machine j . cσi , j is com-
puted as cσi , j = pσi , j +max{cσi , j−1, cσi−1, j }. Therefore, the
objective function F is defined as follows:

F(σ1, σ2, . . . , σn) = cσn ,m .

As can be seen, the solution of the problem is given by the
processing time of the last job σn in the permutation, since
this job finishes the last. Even though the objective function
is given by the time of this last job, the completion time of this
last job depends on the ordering of the previous σ1, . . . , σn−1

jobs. Furthermore, in this problem, the value of the objective
function cannot be decomposed and depends on the position
of each index in the permutation as well as on the whole order
of the jobs.

2.3 Linear ordering problem (LOP)

In the LOP, we are given an n × n matrix C = [ci j] and the
goal is to determine a simultaneous permutation of the rows
and columns of C such that the sum of the superdiagonal
entries is as large as possible (or equivalently, the sum of the
subdiagonal entries is as small as possible). The solution of
the LOP is codified as permutation of length n where each
index σi (i = 1, . . . , n)means that the values of the σi th row
and column of the matrix are reallocated to the i th position.
The objective function is defined as follows:

F(σ1, . . . , σn) =
n∑

i=1

n∑

j=i

cσiσ j .

In this problem, we can see that the contribution of an index
σi to the objective function depends on the previous and pos-
terior indexes to it. However, it does not depend on the order
of these previous and posterior indexes.

2.4 Quadratic assignment problem (QAP)

The QAP [23] is the problem of allocating a set of facilities
to a set of locations, with a cost function associated with the
distance and flow between the facilities. The objective is to
assign each facility to a location such that the total cost is
minimized. Specifically, we are given two n ×n input matri-
ces with real elements H = [hi j] and D = [dkl], where hi j

is the flow between facility i and facility j and dkl is the
distance between location k and location l. Given n facil-
ities, the solution of the QAP is codified as a permutation
σ = (σ1, . . . , σn), where each σi (i = 1, . . . , n) represents
the facility that is allocated to the i th location. The fitness of
the permutation is given by the following objective function:

F(σ1, σ2, . . . , σn) =
n∑

i=1

n∑

j=1

hi j × dσiσ j .

The quality of the solution is determined by the absolute
position of each index (facility) in the permutation as regards
the absolute position of the remaining indexes.

As stated in the previous problems, the semantic meaning
of the permutation may change completely depending on the
problem being dealt with. In order to efficiently solve these

123

106 Prog Artif Intell (2012) 1:103–117

problems, it is essential to choose the permutation that allows
probabilistic models to discover and preserve relative order-
ing constraints, absolute ordering constraints or adjacency
relations of the indexes in the permutation.

3 EDAs for permutation-based optimization problems

This section is devoted for carrying out a review of the dif-
ferent EDA approaches in literature for permutation-based
problems. We classify the existing EDAs for solving per-
mutation-based problems into three groups. A first group
is composed of those EDAs designed originally for solving
integer domain problems and adapted to simulate permuta-
tion individuals at the sampling step. In a second group, we
place those approaches designed for solving real-value opti-
mization problems that have been modified to handle per-
mutations. Beyond adaptations of existing approaches, the
literature includes a few works where the authors introduce
specific designs of EDAs for permutation-based problems, or
general designs that are applied to permutation-based prob-
lems to illustrate their usefulness for the first time. We place
these EDA approaches in the third group.

In the following sections, we explain each group in detail
and we elaborate on the weak and strong points of each pro-
posal.

3.1 Adaptations of integer encoding EDA approaches

One leads that EDA researchers have followed to deal
with permutations is the use of EDAs designed for inte-
ger-based problems [8,10,24,25]. These algorithms learn,
departing from a dataset of permutations, a probability dis-
tribution over a set � = �1 × �2 × · · · × �n, where
�i = {1, 2, . . . , ri }, ri ∈ N i = 1, . . . , n, instead of learn-
ing a distribution over a permutation space. Therefore, the
sampling of these models may not provide permutation indi-
viduals but an individual in �.

In order to overcome this deficiency, the authors simu-
late permutation individuals by modifying the sampling step.
The most common method to sample a probabilistic model in
EDAs is the Probabilistic Logic Sampling algorithm [18]. In
this sampling strategy, variables are instantiated following an
ancestral order. To sample the i th ordered variable, the pre-
vious (i − 1)th variables have to be instantiated. In order to
obtain a permutation, the following changes have to be made
to the sampling strategy. A permutation can be obtained if
the i th variable is not allowed to take the values instantiated
by the previous variables. To do that, when i th variable has to
be sampled, the probability of the previous sampled values
is set to 0 and the local probabilities of the rest of the val-
ues are normalized to sum 1. Although this procedure leads
to permutations, we note that every time that we modify the

probabilities to enable sampling permutation individuals, the
information kept by the probabilistic model is denaturalized
somehow in the sampled solutions.

Without taking into account the complexity of the prob-
abilistic model learnt by the EDA used (univariate, bivar-
iate or multivariate), many integer-based approaches such
as univariate marginal distribution algorithm (UMDA) in
[25], mutual information maximization for input cluster-
ing (MIMIC) in [3], dependency-trees [40] or estimation of
Bayesian network algorithm (EBNA) [3] have been adapted
to deal with permutation-based problems.

3.2 Adaptations of real encoding EDA approaches

Another way that the research community of EDAs has found
to approach permutation-based problems is by means of
EDAs designed for solving real-value-based problems. These
algorithms are based on a method that allows to decodify
a real-valued vector as a permutation. Given a real vector
(x1, x2, . . . , xn) of length n, a permutation individual can be
obtained from it by ranking the positions using the values
xi , (i = 1, . . . , n). Supposing we have the real vector:

(2.35, 3.42, 9.35, 0.32, 11.54, 10.42, 5.23, 4.2, 7.8),

the permutation obtained when decoding the vector is (2, 3,
7, 1, 9, 8, 5, 4, 6). Introduced first by Bean [2], this strategy is
called the Random Keys algorithm. The main advantage of
random keys is that they always provide feasible solutions,
since each real-valued vector represents a permutation. How-
ever, as stated by Bosman and Thierens [5], random keys
strategy is not effective and introduces large overheads since
every time that an individual must be evaluated, an ordering
algorithm has to be applied to get the corresponding permu-
tation. The ineffectiveness of the approach is related with
the redundancy that the codification involves. One can easily
notice that real-valued vectors with different values can lead
to the same permutation. The real vector

(1.78, 3.90, 7.03, 1.24, 12.56, 9.87, 4.27, 4.10, 0.60)

would represent the permutation (2, 3, 7, 1, 9, 8, 5, 4, 6). In
both cases, the permutation that codifies the real vector is the
same, although the vector is different, therefore the same fit-
ness value is assigned by the objective function. This creates
many plateaus in the corresponding real-value optimization
problems that the EDA is solving.

This random key strategy has been jointly used with dif-
ferent EDAs for real-valued problems [5,42]. In [30], the
Job Shop Scheduling Problem is approached with UMDA
for the continuous domain, MIMIC approach for the continu-
ous domain (MIMICc) and Estimation of Gaussian Networks
Algorithms (EGNAs).

123

Prog Artif Intell (2012) 1:103–117 107

3.3 Permutation-oriented EDA approaches

In addition to the previously introduced EDA approaches,
the EDAs research community has tried to go a step forward
designing new algorithms that consider the real nature of per-
mutations. In the following sections the outcome of that work
is introduced and explained in detail. Although some of these
algorithms could be considered in the previous two groups,
we have introduced them in this group as they have specific
designs for permutations or they have been applied to illus-
trate their usefulness for the first time over permutation-based
problems.

3.3.1 IDEA-induced chromosome elements exchanger (ICE)

Bosman and Thierens [5] introduced a new algorithm called
IDEA induced chromosome elements exchanger (ICE) to
deal with permutation-based problems. They proposed a
modification of the IDEA approach introduced previously
by the same authors in [4].

IDEA follows the general framework defined for real-
valued-based EDAs considering that the selected population
follows a Gaussian distribution. A specific characteristic of
IDEA is to factorize the Gaussian density function (pdf) as a
product of marginal distributions. Particularly, the variables
are partitioned into several subsets and a marginal pdf is
estimated for each group. IDEA can be directly applied to
permutation-based problems using the random keys repre-
sentation. However, Bosman and Thierens [5] rejected this
strategy since the joint use of random keys and real-value
based EDAs, as previously reported by the authors, does not
lead to very effective optimization algorithms. To overcome
this problem, the ICE algorithm was proposed in which prob-
abilistic sampling of new solutions is replaced by a special-
ized crossover operator that takes into account the partition
of the variables in the probabilistic model learnt. Given two
parents, the new individual is constructed by randomly pick-
ing the values of the variables of a block from a parent. For
each block, one of the parents is chosen uniformly at random.
Note that in ICE the probabilistic model is not explicitly used
to sample new individuals, but only the information related
with the partition of the variables is used.

3.3.2 Edge histogram models

In [46,50], a new type of EDA for permutation-based prob-
lems called Edge Histogram-Based Sampling Algorithm
(EHBSA) is introduced. The algorithm estimates a proba-
bilistic model that learns the adjacency of the indexes in the
selected individuals at each generation. For an n-dimensional
problem, the model is given by a matrix E = [ei j], where
ei j = P(σk+1 = j |σk = i) and i, j ∈ {1, 2, . . . , n} and

Fig. 2 General outline of the edge histogram-based sampling
algorithm

k ∈ {1, 2, . . . , n − 1}. Each ei j is added a ε value in order to
control the pressure in sampling and avoid individuals with
probability 0 or 1. ε is denoted as

ε = 2N

n − 1
Bratio,

where N is the size of the set of the selected individuals and
Bratio(Bratio > 0) is a constant defined by the authors.

In order to sample the probabilistic model, the authors
use an algorithm that samples the positions of the permuta-
tion ordered, starting with position 1. Once position i th has
been sampled, position (i + 1)th is sampled using the row
of matrix E corresponding to the index sampled at position
i th. This row is modified by setting to 0 those values which
previously appeared and normalizing the rest of the values.
A pseudocode for the sampling algorithm can be seen in
Fig. 2.

In addition to this sampling, the authors propose another
sampling strategy that extends the one introduced using an
individual of the previous generation to sample a new indi-
vidual. The new sampling strategy consists of the following
steps. A parent individual is selected from the previous gen-
eration at random and c > 2 crossover points in the indi-
vidual are selected uniformly at random, dividing the parent
into c segments of variable length. Randomly selected c − 1
segments of the parent are copied to the new individual and
the remaining non-sampled segment in the individual is sim-
ulated by sampling the probabilistic model with the previ-
ously introduced strategy. This sampling procedure leads to
new individuals that differ from their parents on average on
the positions of n/c indexes.

According to the authors, the introduced sampling strate-
gies are called sampling without template (EHBSAWO) and
sampling with template (EHBSAWT), respectively.

In [49], the author extends EHBSA to solve the FSSP,
designing an asymmetrical edge histogram model. In [48], a
revised EHBSA is proposed, referred to as enhanced EHBSA
(eEHBSA). This approach presents a more flexible sampling
procedure (cut-point selection) and modifies the way the new
generation is created.

123

108 Prog Artif Intell (2012) 1:103–117

Fig. 3 General outline of the
node histogram-based sampling
algorithm

3.3.3 Node histogram models

In [51], the node histogram-based sampling algorithm
(NHBSA) is introduced. The NHBSA builds a first order
marginal matrix that represents the distribution of the indexes
across the (absolute) positions of the individuals in the set of
the selected individuals. The model of a n-dimensional prob-
lem is given by a matrix H = [hi j], where hi j = P(σi = j)
and i, j ∈ {1, 2, . . . , n}. Hence, hi j represents the probability
of the index j to be in the i th position in the selected
individuals.

As in EHBSA, a ε is added to each hi j in order to control
the pressure in sampling, where N represents the size of the
set of the selected individuals and Bratio is a positive constant
ratio set by the authors. ε is denoted as

ε = N

n
Bratio.

The design of the NHBSA focuses particularly on those
problems where the main contribution to the objective func-
tion is given by the absolute position of the indexes in the
permutation.

As regards the sampling method, two strategies are pro-
posed to simulate new individuals. A first proposal intro-
duced by the authors uses a sampling strategy that sam-
ples the positions of the permutation randomly. Similar to
EHBSAWO, at each step, the sampling algorithm sets to 0 the
probabilities in H of the variables sampled in the individual
and normalizes the probabilities of the remaining variables
to sum 1. A pseudocode for the sampling algorithm can be
seen in Fig. 3.

The second sampling algorithm uses a parent individual
from the previous generation to create the new individual. A
random individual is picked-up from the previous generation
and c random single positions are copied to the new individ-
ual. The remaining empty positions are filled by sampling
the probabilistic model.

The authors denote as NHBSAWT and NHBSAWO, the
NHBSA that use the sampling with template and sampling
without template, respectively.

In [47], several variations of sampling methods for
NHBSA are proposed, such as replacing the random sampling
sequence used in the algorithm with the sequential sam-
pling sequence like EHBSA. Another approach changes
the number of sampling nodes randomly instead of using
a fixed number. Using probability density functions to deter-
mine the number c crossover points is also introduced in [48].

3.3.4 Recursive EDA

Romero et al. [43] proposed a new class of EDAs called
Recursive EDA (REDA). The REDA is an optimization strat-
egy based on EDAs that consists of k optimization stages (see
Fig. 4). In an initial stage an EDA is applied to the problem
and a solution is obtained. In a second stage, the variables of
the problem are divided into two groups of similar size (when
possible). Next, an EDA is executed over the variables that
belong to the first group, while the variables of the second
group remain fixed to the values given by the optimal solu-
tion in the previous stage. This process is repeated, fixing
the variables in the second group and optimizing over the
first group. This completes the second stage. The remaining
stages follow the same procedure recursively. For instance, in
the third stage, each group of the second stage is divided into
two groups, and each group of variables is optimized sepa-
rately. The algorithm stops when the number of variables in
a group reaches a minimum threshold.

The motivation behind this proposal is to reduce the com-
putational cost of learning the model (which in [34] is identi-
fied as the most expensive step of an EDA) by solving smaller
problems at each stage.

Although every EDA approach could be used for optimi-
zation at each stage, due to the recursive nature of the strategy,
the authors suggest using EDAs such as UMDA or MIMIC

123

Prog Artif Intell (2012) 1:103–117 109

Fig. 4 Recursive EDA strategy

that permit keeping the computational cost feasible, since the
EDA is executed repeatedly.

Even though this strategy is a general scheme and could be
applied to any optimization problem, the authors proposed
this algorithm for the optimization of the triangulation of
Bayesian networks, and therefore we classify it as a specific
EDA for permutation-based problems.

Regarding the codification scheme, REDAs use the pre-
viously introduced random keys encoding in the continuous
approaches. However, for discrete domain, they refuse to use
straightforward individual codification as do the approaches
introduced in Sect. 3.1. Instead of that, they propose a new
codification that allows to learn probability distributions over
permutations. In order to do that, they set a bijection between

Table 1 Example of the function from individual to permutation

Step Individual List l Perm Updated list l

1 (2, 2, 1) (1, 2, 3, 4) () –

For, i = 1 (2, 2, 1) (1, 2, 3, 4) (2) (1, 3, 4)

For, i = 2 (2, 2, 1) (1, 3, 4) (2 3) (1, 4)

For, i = 3 (2, 2, 1) (1, 4) (2 3 1) (4)

6 (2, 2, 1) (4) (2 3 1 4) ()

Bold values indicate the current step of the algorithm

the numbers {1, . . . , n!} to the set of permutations of order n.
This bijection is based on the decomposition in prime factors
of n! that is given such that n! = pn1

1 · . . . · pnr
r . An individual

is then represented as a vector of length r, corresponding to
the number of prime factors. Position i th in the individual
can take ni + 1 values {0, 1, . . . , ni }, representing the pos-
sible exponent of the i th prime factor. Therefore, given an
individual we obtain an integer, and from it the permutation
is obtained. Given a particular individual, the corresponding
permutation is obtained by the procedure defined in Fig. 5.
Table 1 shows an example for this procedure, supposing a
problem of size 4, and given individual (2, 2, 1).

Although this codification allows to learn a probability dis-
tribution over permutation spaces, the decodification process
denaturalizes the relation between the variables and permu-
tations.

3.4 Hybrid EDAs

In addition to the previous algorithms, several hybrid
EDAs have also been proposed for permutation-based prob-
lems. These algorithms generally combine standard EDA
approaches with other techniques such as local search
[20,54,55] or particle swarm optimization (PSO) [28]. In
[54,55], an operator called Guided Mutation is introduced
which combines a conventional mutation operator with a
probabilistic model learnt at each step. Chen et al. [7]
propose a hybrid EDA for solving single machine sched-
uling problems that combines classic univariate and bivari-
ate probabilistic models with crossover and mutation genetic
operators.

Fig. 5 Function to obtain the
permutation perm codified by
the individual ord

123

110 Prog Artif Intell (2012) 1:103–117

Due to the complexity of studying hybrid approaches, we
decided not to include these approaches in the experiments.

4 Experiments

In the following sections, we introduce the setup of the exper-
iments and the analysis of the results.

4.1 Experimental setup

We carried out an empirical evaluation of the most repre-
sentative EDA approaches reviewed in this paper. In order to
do that, we considered it interesting to analyze their behavior
using a benchmark of classical test problems. Particularly, we
selected the following sets of 24 instances for each problem
type:

– TSP: bays29, berlin52, burma14, ch130, dantzig42,
eil51, eil76, eil101, fri26, gr17, gr24, gr48, gr96, gr137,
hk48, pr76, pr107, pr124, pr136, rat99, st70, swiss42,
ulysses16 and ulysses22.1

– QAP: bur26a, bur26b, bur26c, bur26d, nug17, nug18,
nug20, nug21, tai10a, tai10b, tai12a, tai12b, tai15a,
tai15b, tai20a, tai20b, tai25a, tai25b, tai30a, tai30b,
tai35a, tai35b, tai40a and tai40b.2

– LOP: t75i11xx, t65f11xx, t65b11xx, t65d11xx, t65i11xx,
t65l11xx, t65n11xx, t65w11xx, t69r11xx, t70b11xx,
t70d11xx, t70d11xxb, be75eec, be75np, be75oi, be75tot,
tiw56n54, tiw56n58, tiw56n62, tiw56n66, tiw56n67,
stabu70, stabu74, stabu75 and usa70.3

– FSSP: tai20×5, tai20×10, tai50×10 and tai100×204

(The first six instances from each file).

Regarding the set of selected algorithms, the choice has
been made according to the classification of EDAs presented
in Sect. 3. From the set of integer-based EDA approaches, we
have chosen UMDA, MIMIC, EBNABIC and TREE. From
the group of EDAs belonging to the continuous domain, we
have chosen UMDAc and EGNAee. In addition, all the EDAs
specifically designed for solving permutation optimization
problems have been selected for the comparison: IDEA-
ICE, EHBSAWT, EHBSAWO, NHBSAWO, NHBSAWT and
REDA. For comparison purposes we have included a very

1 TSPLIB. http://www2.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/tsp.
2 Éric Taillard’s web page. http://mistic.heig-vd.ch/taillard/problemes.
dir/qap.dir/qap.html.
3 Optsicom Project. http://heur.uv.es/optsicom/LOLIB/#instances.
4 Éric Taillard’s web page. http://mistic.heig-vd.ch/taillard/problemes.
dir/ordonnancement.dir/ordonnancement.html.

Table 2 Execution parameters set of the algorithms

Parameter Value

Population size 10n

Selection size 10n/2

Offspring size 10n − 1

Selection type Ranking selection method

Elitism selection method The best individual of the previous
generation is guaranteed to survive

Stopping criterion A maximum number of generations: 100n

well known GA, the Ordering Messy Genetic Algorithm
(OmeGA) [22].

As previously mentioned, there are hybrid EDAs that have
been applied to several permutation-based problems. In these
algorithms, it is quite complex to measure what the contri-
bution of the probabilistic model to the optimization process
is. Due to this fact, we have limited the experiments to ‘pure’
EDAs since we aim to analyze the capacity of the different
probabilistic models used for solving permutation codifica-
tion problems.

For each algorithm and problem instance 10 runs have
been completed. Table 2 shows the values for the execution
parameters of all EDAs, being n the size (number of vari-
ables) of the instance. Regarding specific EDA parameters,
the values suggested by their respective authors have been
used. Romero et al. [43] suggest executing REDA with fast
execution EDAs since they will be run repeatedly, thus we
use UMDA and MIMIC, as the authors do in their experi-
ments. On the other hand, Tsutsui [51] suggests setting the
Bratio constant to 0.0002 for EHBSA and NHBSA.

4.2 Results

Table 3 shows the average error and standard deviation for
each type of problem.5 This average error is calculated as
the normalized difference between the best objective value
obtained by the algorithm and the best known solution. Note
that each entry in the table is the average of 240 values (24
instances × 10 runs). The lower the values are, the better
the performance. Looking at these results, it can be seen that
Tsutsui’s EHBSAWT and NHBSAWT are by far the algo-
rithms that provide the best results on average for every
problem type. These results show the high influence of the
templates (WT approaches) when sampling new individuals.
At the opposite end, the results show that continuous codi-
fication EDAs, REDA approaches and OmeGA are, without
doubt, the algorithms that perform the worst.

5 Average and standard deviation of the fitness value results obtained
for all the instances tested (4 problem types × 24 instances) by the 14
algorithms can be found in http://www.sc.ehu.es/ccwbayes/members/
jceberio/home/index.html.

123

http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
http://heur.uv.es/optsicom/LOLIB/#instances
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://www.sc.ehu.es/ccwbayes/members/jceberio/home/index.html
http://www.sc.ehu.es/ccwbayes/members/jceberio/home/index.html

Prog Artif Intell (2012) 1:103–117 111

The results confirm the classification of the problem types
given in Sect. 2 in relation with the contribution to the objec-
tive function of the indexes in the permutation. For instance,
in TSP the relevant information for the calculation of the fit-
ness function is given by the relative ordering of the indexes.
The results in Table 3 show that, for the TSP, the algorithm
that learns the adjacency of the indexes is that which better
results obtains. On the other hand, NHBSAWT performs the
best for the QAP as the probabilistic model is focused on
estimating the probability distribution of the indexes in the
absolute positions of the permutation. In problems for which
the contribution of the index is mixed, such as LOP and FSSP,
NHBSAWT and EHBSAWT have similar behavior.

In order to carry out a statistical analysis of the results
obtained in the experiments, and following the suggestions
given in [13], we decided to use non-parametric tests. The
authors state that, for multiple-problem analysis—as is our
case—due to the dissimilarities in the results and the small
size of the sample to be analyzed, a parametric test may
result in erroneous conclusions. The descriptions given in
Sect. 2 state that the semantic meaning of the permutations
may change depending on the problem type we deal with, and
thus we presume different performances of the EDAs for the
TSP, QAP, LOP and FSSP. Due to this fact, we carried out
individual statistical tests of the EDAs for each problem type.

The statistical analysis will be conducted in two steps.
First, we will check if significant differences exist among
the results obtained. For this purpose, Friedman’s test will be
used. This test ranks the algorithms for each problem, pro-
viding also an average rank value for each algorithm. These
ranks can be consulted in Table 4.

The p values resulting from applying Friedman’s test are
lower than 0.0001, which is below the level of significance
considered (α = 0.05). This means that there exist significant
differences among the observed results. Once the rejection
of the null hypothesis has been proved, a post hoc method
will be used to carry out all pairwise comparisons. Partic-
ularly, Shaffer’s static procedure will be used, as suggested
for such cases in [12]. Again, the significance level has been
fixed to α = 0.05. Results obtained from this procedure are
represented in Figs. 6, 7, 8 and 9 by means of critical dif-
ference diagrams. These diagrams draw the ranking of the
algorithms and link with a horizontal line those groups of
algorithms for which no significant differences were found
(p values higher than α = 0.05).

The statistical analysis confirms the good performance
of NHBSA and EHBSA, and particularly those algorithms
that use the template strategy. Even if UMDA, MIMIC
and EBNABIC are not designed specifically to deal with
permutation-based problems, being the closest to Tsutsui’s
algorithms, they show an acceptable performance.

Surprisingly, the results achieved by EBNABIC and TREE
do not outperform those achieved by UMDA. As stated in the

Table 3 Average error and standard deviation for each type of problem

EDA TSP QAP LOP FSSP

UMDA

Avg. 0.5077 0.0298 0.1511 0.0538

Dev. 0.3315 0.0153 0.0354 0.0308

MIMIC

Avg. 0.6762 0.0390 0.1495 0.0351

Dev. 0.4371 0.0211 0.0351 0.0117

EBNABIC

Avg. 0.5051 0.0310 0.1508 0.0545

Dev. 0.3438 0.0153 0.0358 0.0326

TREE

Avg. 1.2554 0.0526 0.1761 0.0601

Dev. 0.8637 0.0318 0.0369 0.0223

UMDAc

Avg. 1.2792 0.2118 0.3303 0.1535

Dev. 0.9408 0.1420 0.0384 0.0322

EGNAee

Avg. 1.1830 0.1655 0.3118 0.1424

Dev. 0.8886 0.1006 0.0481 0.0335

IDEA-ICE

Avg. 1.2090 0.0801 0.1743 0.0734

Dev. 0.7610 0.0320 0.0322 0.0253

EHBSAWT

Avg. 0.0037 0.0256 0.1371 0.0276

Dev. 0.0059 0.0189 0.0328 0.0232

EHBSAWO

Avg. 0.1251 0.0653 0.2239 0.0626

Dev. 0.1544 0.0395 0.0400 0.0453

NHBSAWT

Avg. 1.0680 0.0112 0.1366 0.0277

Dev. 0.8659 0.0130 0.0328 0.0215

NHBSAWO

Avg. 0.3385 0.0222 0.1375 0.0326

Dev. 0.2443 0.0144 0.0326 0.0226

REDAUMDA

Avg. 2.0550 0.1426 0.2131 0.0986

Dev. 1.1909 0.0811 0.0467 0.0541

REDAMIMIC

Avg. 1.7410 0.1727 0.2794 0.1242

Dev. 1.3057 0.0963 0.0750 0.0443

OmeGA

Avg. 1.2860 0.1347 0.3336 0.1281

Dev. 0.8513 0.0684 0.0750 0.0734

Results in bold indicate the best average result found

literature, EBNABIC and TREE algorithms are supposed to
be more powerful than univariate algorithms, such as UMDA,
since the first two learn (in)dependencies between vari-
ables and UMDA, instead, assumes independence between

123

112 Prog Artif Intell (2012) 1:103–117

Table 4 Average rankings of the algorithms

EDA TSP QAP LOP FSSP

UMDA 5.87 4.16 5.12 6.04

MIMIC 7.70 5.41 4.91 4.37

EBNABIC 5.83 4.41 5.04 5.89

TREE 9.87 7.25 7.91 7.12

UMDAc 9.97 13.66 12.95 13.12

EGNAee 8.64 11.41 12.12 12.08

IDEA-ICE 9.70 8.66 7.79 8.49

EHBSAWT 1.27 3.79 1.68 1.91

EHBSAWO 2.12 7.83 10.16 6.54

NHBSAWT 7.52 1.5 1.56 2.04

NHBSAWO 3.79 2.45 2.75 3.20

REDAUMDA 11.91 10.54 8.87 10.52

REDAMIMIC 10.37 12.62 11.08 11.58

OmeGA 10.37 11.25 13.00 12.04

The lower the rank is, the better the performance

variables. In order to understand this behavior, we studied
the probabilistic models learnt by EBNABIC at each step. We
realized that the learnt structure was an empty structure at all
the times. And thus, the behavior of EBNABIC results simi-
lar to that of UMDA. The reason why the learning algorithm
does not learn any structure is as follows:

When we analyze the performance of these algorithms, it
is important to note that they work in the probability space
of size nn (being n the size of the problem). This means
that when we introduce an arc Xi → X j in the probabilis-
tic model, the number of parameters for codifying the local
probability distribution of Xi is multiplied by n. EBNABIC

includes the arcs that improve the BIC score the most. This
score is based on the maximum likelihood between nodes
and a penalty term related to the complexity of structure.
Taking into account the population size used in the experi-
ments, when we try to add an arc, the increase in the likeli-
hood is always smaller than the increase in the complexity,
and therefore no arc is added. In the case of TREE, due to its
design, the structure learning algorithm is forced to add those
arcs that have the highest mutual information. However, as
the population size does not provide enough information, the
learnt tree turns out to be an over-fitted model.

IDEA-ICE shows a moderate efficiency, while REDA,
OmeGA and the classical approaches for continuous domains,
EGNAee and UMDAc have obtained the worst results (this
last performance may be due to the highly redundant encod-
ing domain, as stated in several works).

In addition to these results, we consider it interesting
to provide supplementary information about the number of
times that the algorithms are able to get the best known solu-
tions, and average number of iterations (generations) needed

Fig. 6 Critical difference
ranking diagram of TSP results

Fig. 7 Critical difference
ranking diagram of QAP results

Fig. 8 Critical difference
ranking diagram of LOP results

Fig. 9 Critical difference
ranking diagram of FSSP results

123

Prog Artif Intell (2012) 1:103–117 113

Table 5 Success rate of the algorithms achieving optimal results

% TSP QAP LOP FSSP

UMDA 1.6 0.8 0.0 0.0

MIMIC 0.4 2.1 0.0 0.0

EBNABIC 2.1 0.8 0.0 0.8

TREE 0.4 1.2 0.0 0.0

UMDAc 4.2 0.0 0.0 0.0

EGNAee 3.7 0.0 0.0 0.0

IDEA-ICE 0.0 0.0 0.0 0.0

EHBSAWT 74.2 9.6 0.0 11.2

EHBSAWO 40.0 5.8 0.0 0.0

NHBSAWT 10.4 31.7 0.0 5.4

NHBSAWO 2.9 7.9 0.0 2.5

REDAUMDA 0.4 0.0 0.0 0.0

REDAMIMIC 1.2 0.0 0.0 0.0

OmeGA 0.0 0.0 0.0 0.0

by them. Results in Table 5 show again that the highest suc-
cess rates belong to the EHBSA and NHBSA approaches,
taking note of the high influence of employing the tem-
plate strategy. Surprisingly, there is not any EDA able to
achieve optimal solutions for the LOP instances. In general,
such low rates demonstrate the weakness of the compared
EDAs to achieve optimum solutions in permutation-based
problems.

In order to analyze the behavior of EDAs in relation to the
iterations needed by each algorithm to obtain its best solu-
tion, Table 6 introduces the average and standard deviation
of the number of generations needed to find those best solu-
tions. Note that the number of iterations in crossover-based
algorithms such as ICE and OmeGA is dramatically low com-
paring to the rest of EDAs. Another remarkable fact is the
high deviation of the number of iterations.

As a general conclusion, it must be highlighted that those
approaches designed to handle the space of permutations are
those that obtain the best results. Moreover, NHBSA and
EHBSA use only 1-order and index adjacency probabilistic
models, which theoretically are too simple to efficiently com-
prise the underlying probability distribution. These results
should encourage the research community to follow this
direction, trying to design more effective probability mod-
els over the space of permutations. In the next section, we
discuss some ideas that could be useful for this purpose.

5 Discussion

As commented in the previous sections, in order to deal with
permutation-based problems the proposed EDA approaches
are (a) adaptations of algorithms designed for integer-based
problems, (b) transforming a permutation problem into a con-

Table 6 Average and standard deviation of the iterations required to
find the best solution

EDA TSP QAP LOP FSSP

UMDA

Avg. 5,362.78 698.85 4,472.73 2,973.22

Dev. 3,965.94 506.18 884.72 2,536.14

MIMIC

Avg. 1,993.53 531.11 2,430.76 775.17

Dev. 1,328.35 365.32 521.73 689.54

EBNABIC

Avg. 5,386.81 717.50 4,509.50 3,105.74

Dev. 4,123.52 529.23 827.77 2,626.11

TREE

Avg. 5,896.24 1,487.35 4,613.75 2,959.04

Dev. 3,522.10 840.35 703.43 2,246.44

UMDAc

Avg. 2,440.82 591.67 563.35 447.93

Dev. 2,077.21 485.06 722.65 675.64

EGNAee

Avg. 3,353.38 1,123.40 1,036.17 1,848.13

Dev. 2,163.48 499.00 1,036.17 1,523.86

IDEA-ICE

Avg. 258.35 39.32 144.25 289.24

Dev. 224.63 21.21 37.86 341.13

EHBSAWT

Avg. 3,526.13 1,702.01 4,426.07 3,972.13

Dev. 3,501.54 817.43 1,040.97 2,772.07

EHBSAWO

Avg. 4,298.46 1,571.58 3,724.33 3,432.13

Dev. 3,719.40 588.09 486.51 2,146.82

NHBSAWT

Avg. 6,266.87 1,645.08 4,254.60 3,882.62

Dev. 3,592.48 903.79 1,099.40 2,719.95

NHBSAWO

Avg. 3,979.47 536.72 2,571.42 2,938.68

Dev. 3,610.47 390.46 1,020.63 2,767.95

OmeGA

Avg. 31.70 21.66 32.38 29.58

Dev. 5.17 12.68 1.92 10.26

REDA algorithms are not included in this analysis due to the recursive
strategy that follows the EDA

tinuous optimization problem and then using EDAs designed
for continuous domains or (c) ad hoc approaches using first-
order statistics. In contrary to integer problems, where the
community has used most of the mechanisms provided for
the researchers working in machine learning, and statistics
such as graphical models, kernels, etc., this has not been the
case for permutations. In this section we give a brief review
of the most common probabilistic models to deal with per-
mutation spaces. We also point out some ideas on the use of

123

114 Prog Artif Intell (2012) 1:103–117

those models in EDAs, particularly we briefly analyze the
learning and sampling algorithms of the models.

Since the most common application of permutations is
that of ranking, we will use these two words, permutations
and ranking, interchangeably throughout this section.

5.1 Models based on marginals

When working with samples of permutations, the trivial
approach consists of maintaining the information relative to
the first order marginals, which express the probability of
item i being at position j . This information can be stored in
O(n2) space using an nxn matrix. A natural extension con-
sists of storing higher order marginals. Such marginals corre-
spond to the probability of a specific set of items (i1, . . . , ik)
being at specific positions (j1, . . . , jk). One may also be
interested in maintaining the probability of an item being
at the position right after another item without specifying a
particular position. In fact, this is the kind of information
used in the edge histogram model [46,50], while the node
histogram model [51] maintains the first order marginals.

This representation is not only compact but is also easy
to learn. Using the first order marginals, statistics such as
the mode can be computed. However, when it comes to sam-
pling—a necessary step in EDAs—further information about
the distribution is required. In [51], a distribution with the
given marginals is sampled. However, the actual distribution
is unknown. There does not seem to be a closed form for
it and it is not clear which are the properties of such a dis-
tribution. Actually, there can be infinitely many probability
distributions that have a given first order marginal probability
matrix. Therefore, among all those distributions how can one
select the ‘correct’ one? A common approach in statistics and
machine learning is to consider the maximum entropy dis-
tribution, i.e., the distribution that, by having those marginal
probabilities, has the highest uncertainty. This is the proce-
dure followed by [1] which showed that such a distribution
happens to have the simple expression given by

P(σ) = exp

(
n∑

i=1

Yi,σ (i) − 1

)
,

where Y ∈ R
n×n . Unfortunately, it is also shown in [1] that

obtaining the Y matrix is #P-hard. Nevertheless, they also
give an approximation algorithm which runs in polynomial
time for computing the Y parameter.

5.2 Plackett–Luce model

The Plackett–Luce distribution takes its name from the com-
bination of the independent work carried out by Plackett [41]
and Luce [31]. Luce’s model describes a sequential rank-
ing generator method in which the items are sampled from

the first to the last position (i.e., from the most to the least
preferred item). The parameter space consists of n positive
weights (w1, . . . , wn) that sum 1. These probabilities are
used to sample the first position of the rank, with P(σ (1) =
j) = w j . The following positions, {2, . . . , n}, are sampled
without replacement until a complete ranking is obtained.
Note that, in order to sample position i of a permutation
using Luce’s model, the probability of selecting item j1 over
j2 does not depend on the weights of the rest of the items in
the set.

The above model induces a distribution over all possible
rankings. It was first used by Plackett and can be written as
follows:

P(σ) =
n−1∏

i=1

wσ(i)∑n
j=i wσ(j)

.

Due to the Markovian nature of the model, it is not easy
to make inference over sets of items such as P(σ (n) = i).
Regarding the learning process of the n parameters of a Plack-
ett–Luce distribution, one can find in the literature methods
based on maximum likelihood estimation [19] and Power EP
(expectation propagation) [16]. Once the distribution param-
eters are known, the sampling procedure consists of follow-
ing Luce’s model.

5.3 Mallows model

The Mallows model [32] is a distance-based exponential
model. The most commonly used metric is the Kendall tau
distance, which, given two permutations σ1 and σ2, counts
the total number of pairwise disagreements between both of
them, i.e., the minimum number of adjacent swaps to convert
σ1 into σ2. Formally, it can be written as

τ(σ1, σ2) = |{(i, j) : i< j, (σ1(i)<σ1(j) ∧ σ2(i)>σ2(j))

∨(σ2(i) < σ2(j) ∧ σ1(i) > σ1(j))}|.
The above metric can be equivalently written as

τ(σ1, σ2) =
n−1∑

j=1

Vj (σ1, σ2),

where Vj (σ1, σ2) is the minimum number of adjacent swaps
to set in the j-th position of σ1, σ1(j), the value σ2(j).

The Mallows model makes use of this metric to define an
exponential probability model for permutations which can
be defined by two parameters: the central permutation, σ0,

and the spread parameter, θ . It can be written as

P(σ) ∝ exp(−θτ(σ, σ0)).

When the spread parameter is θ > 0, the central permu-
tation, σ0, is the one with the highest probability value and
the probability of the other n! − 1 permutations is inversely

123

Prog Artif Intell (2012) 1:103–117 115

proportional to their distance to the central permutation and
the spread parameter θ . Because of these two properties, the
Mallows distribution is considered analogous to the Gaussian
distribution on the space of permutations.

Among its many extensions, the generalized Mallows
(GM) model [11] is that which has received a special attention
by the community. This extension makes use of n parame-
ters: the central permutation,σ0, and n−1 spread parameters,
θ1, . . . , θn−1. The probability distribution over each distinct
ranking is as follows:

P(σ) ∝ exp

⎛

⎝−
n−1∑

j=1

θ j V j (σ, σ0)

⎞

⎠ .

Note that when the n − 1 parameters θ j are constrained
to be equal, the generalized Mallows reduces to the Mallows
model.

The typical way to learn the parameters of the distribution
of a given sample of permutations is to maximize the like-
lihood of these parameters. Let {σ1, . . . , σN } be the given
sample. Then, its log-likelihood is given by

log l(σ1, . . . , σN |σ0, θ) = −N
n−1∑

j=1

(θ j V̄ j + logψ j (θ j)),

where V̄ j = ∑N
i=1 Vj (σi , σ0)/N , i.e., V̄ j denotes the obs-

erved mean for Vj and ψ j (θ j) refers to the normalization
constant. Note that by setting equal values for the spread
parameters θi for every i = {1, . . . , n − 1}, we obtain the
expression of the maximum likelihood estimator for the Mal-
lows model. For both Mallows and Generalized Mallows
models the problem of finding the MLE for σ0 and θ is
NP-hard. Particularly, the problem of finding the central per-
mutation or consensus ranking is called rank aggregation and
is equivalent to finding the MLE estimator of σ0. One can find
several methods for solving this problem, both exact [9] and
heuristic [33]. Therefore, if any of these models is applied
to EDAs, at each step a NP-hard problem must be solved.
However, this is also the case for integer-based problems,
where at each step a Bayesian network is learned. Although
a NP-complete problem is solved at each generation, EDAs
have been successfully applied to integer-based problems.
Note that EDAs do not need to solve the Bayesian network
learning problem to optimality. On the contrary, the sampling
process can be easier for the Mallows model than for the Gen-
eralized Mallows model. Note that while the former assigns
equal probability values for permutations at equal distance to
the central permutation, the latter does not. An obvious way
to sample a Mallows model is using a Markov Chain Monte
Carlo method such us a Gibbs sampler.

However, the main drawback of these two models is that
their unimodal nature makes the representation of distribu-
tions of multimodal optimization problems impossible.

5.4 Non-parametric models

As we have already stated, the unimodality Mallows and
Generalized Mallows can be a drawback to deal with multi-
modal optimization problems. However, they can be used to
build a multimodal distribution. In [27], a multimodal non-
parametric estimator is built by placing Mallows kernels on
the top of the elements of a given sample of permutations.
The non-parametric estimator of such a distribution is given
by the following equation

p̂(σ) ∝
m∑

i=1

exp(−c d(σ, σi)),

where c is a spread parameter.
The proposed estimator is consistent. Moreover, by

exploiting the underlying combinatorial properties of per-
mutations the estimator can be efficiently computed. It has
been successfully applied to partial ranking problems. On
the other hand, the use of a single spread parameter c,which
has to be manually set, can limit the quality of the resulting
estimator.

6 Conclusions and future work

In this paper, we have reviewed the existing EDA approaches
for solving permutation-based optimization problems. We
have stated by means of examples of permutation-based prob-
lems that, although all solutions are encoded as permuta-
tions, their meanings change from one problem to another.
We classified the existing EDA approaches for solving per-
mutation-based problems in three groups: (a) adaptations of
algorithms designed for integer-based problems, (b) trans-
forming a permutation-based problem into a continuous
optimization problem and then using EDAs designed for
continuous domains and (c) ad hoc approaches using differ-
ent strategies. The experimental analysis carried out showed
that the best results are given by those EDA approaches that
implement ad hoc designs. On the contrary, continuous and
REDA approaches are those which perform the worst. The
experimental analysis also stated that the integer-based EDAs
yield good solutions. In fact, those algorithms that find best
solutions, EHBSA and NHBSA, are the only EDAs that learn
probabilistic models taking into account the characteristics of
permutations. This fact suggests that the future work that the
research community of EDAs should follow is the use of the
probabilistic model over permutation spaces. Following this
idea we have introduced several models that could be used
with EDAs in order to solve permutation-based problems.

Acknowledgments We gratefully acknowledge the generous assis-
tance and support of Prof. S. Tsutsui and Dr. P. Bosman in this work. This
work has been partially supported by the Saiotek and Research Groups

123

116 Prog Artif Intell (2012) 1:103–117

2007-2012 (IT-242-07) programs (Basque Government), TIN2008-
06815-C02-01, TIN2010-14931 and Consolider Ingenio 2010—CSD
2007—00018 projects (Spanish Ministry of Science and Innovation)
and COMBIOMED network in computational biomedicine (Carlos III
Health Institute). Josu Ceberio holds a grant from Basque Government.

References

1. Agrawal, S., Wang, Z., Ye, Y.: Parimutuel betting on permutations.
In: Internet and Network Economics. Lecture Notes in Computer
Science, vol. 5385, pp. 126–137. Springer, Berlin (2008)

2. Bean, C.J.: Genetic algorithms and random keys for sequencing
and optimization. INFORMS J. Comput. 6(2), 154–160 (1994)

3. Bengoetxea, E., Larrañaga, P., Bloch, I., Perchant, A., Boeres, C.:
Inexact graph matching by means of estimation of distribution algo-
rithms. Pattern Recognit. 35(12), 2867–2880 (2002)

4. Bosman, P.A.N., Thierens, D.: Expanding from discrete to con-
tinuous estimation of distribution algorithms: the IDEA. In: Scho-
enauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervós,
J.J.M., Schwefel, H.P. (eds.) PPSN. Lecture Notes in Computer
Science, vol. 1917, pp. 767–776. Springer, Berlin (2000)

5. Bosman, P.A.N., Thierens, D.: Crossing the road to effi-
cient IDEAs for permutation problems. In: Spector, L., et al.
(eds.) Genetic and Evolutionary Computation Conference, GE-
CCO 2001, Proceedings, San Francisco, California, USA, 2001,
pp. 219–226. Morgan Kaufmann, Massachusetts (2001)

6. Brownlee, A.E.I., Pelikan, M., McCall, J.A.W., Petrovski, A.: An
application of a multivariate estimation of distribution algorithm
to cancer chemotherapy. In: Ryan, C., Keijzer, M. (eds.) GECCO,
pp. 463–464. ACM, New York (2008)

7. Chen, S., Chen, M.: Bi-variate artificial chromosomes with genetic
algorithm for single machine scheduling problems with sequence-
dependent setup times. In: Proceedings of the Congress on Evolu-
tionary Computation (2011)

8. Chow, C., Liu, C.: Approximating discrete probability distribu-
tions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–
467 (1968)

9. Cohen, W.W., Schapire, R. E., Singer, Y.: Learning to order things.
In: Proceedings of the 1997 Conference on Advances in Neural
Information Processing Systems 10, NIPS ’97, pp. 451–457. MIT
Press, Cambridge (1998)

10. De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by
estimating probability densities. In: Mozer, M., Jordan, M., Pet-
sche, Th. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 9. MIT Press, Cambridge (1997)

11. Fligner, A.M., Verducci, S.J.: Distance based ranking Models.
J. Royal Stat. Soc. 48(3), 359–369 (1986)

12. Garcia, S., Herrera, F.: An extension on “Statistical Comparisons
of Classifiers over Multiple Data Set” for all pairwise comparisons.
J. Mach. Learn. Res. 9, 2677–2694 (2008)

13. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use
of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 Special Session on Real
Parameter Optimization. J. Heuristics 15(6), 617–644 (2009)

14. Goldberg, D.E.: Genetic algorithms in search, optimization, and
machine learning. Addison/Wesley, Reading (1989)

15. Goldberg, D.E., Lingle Jr., R.: Alleles Loci and the traveling sales-
man problem. In: ICGA, pp. 154–159 (1985)

16. Guiver, J., Snelson, E.: Bayesian inference for Plackett-Luce rank-
ing models. In: International Conference on Machine Learning
(ICML 2009), ICML’09, pp. 377–384. ACM, New York (2009)

17. Gupta, J., Stafford, E.J.: Flow shop scheduling research after five
decades. Eur. J. Oper. Res. 169, 699–711 (2006)

18. Henrion, M.: Propagating uncertainty in Bayesian networks by
probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.)
UAI, pp. 149–164. Elsevier, Amsterdam (1986)

19. Hunter, R.D.: MM Algorithms for generalized Bradley–Terry mod-
els. Ann. Stat. 32(1), 384–406 (2004)

20. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribu-
tion algorithm for minimizing the total flowtime in permutation
flowshop scheduling problems. Comput. OR 36(9), 2638–2646
(2009)

21. Jiang, S., Ziver, A., Carter, J., Pain, C., Goddard, A., Franklin, S.,
Phillips, H.: Estimation of distribution algorithms for nuclear reac-
tor fuel management optimisation. Ann. Nuclear Energy 33(11–
12), 1039–1057 (2006)

22. Knjazew, D., Goldberg, D.E.: Omega—ordering messy ga: solving
permutation problems with the fast genetic algorithm and random
keys. In: GECCO, pp. 181–188 (2000)

23. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the
location of economic activities. Cowles Foundation Discussion
Papers 4, Cowles Foundation for Research in Economics, Yale Uni-
versity. http://ideas.repec.org/p/cwl/cwldpp/4.html (1955)

24. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinato-
rial optimization by learning and simulation of Bayesian networks.
In: Proceedings of the Conference on Uncertainty in Artificial Intel-
ligence, UAI 2000, pp. 343–352, Stanford (2000)

25. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña J.M.: Optimiza-
tion in continuous domains by learning and simulation of Gauss-
ian networks. In: Proceedings of the Workshop in Optimization by
Building and using Probabilistic Models. A Workshop within the
2000 Genetic and Evolutionary Computation Conference, GECCO
2000, pp. 201–204, Las Vegas (2000)

26. Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms:
a new tool for evolutionary computation. Kluwer, Dordrecht (2002)

27. Lebanon, G., Mao, Y.: Non-Parametric modeling of partially
ranked data. J. Mach. Learn. Res. (JMLR) 9, 2401–2429 (2008)

28. Liu, H., Gao, L., Pan, Q.: A hybrid particle swarm optimization with
estimation of distribution algorithm for solving permutation flow-
shop scheduling problem. Expert Syst. Appl. 38, 4348–4360 (2011)

29. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a new
evolutionary computation: advances on estimation of distribution
algorithms (Studies in Fuzziness and Soft Computing). Springer,
New York (2006)

30. Lozano, J.A., Mendiburu, A.: Estimation of Distribution Algo-
rithms applied to the job schedulling problem. In: Larrañaga, P.,
Lozano, J.A. (eds.) Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer, Dordrecht (2002)

31. Luce, R.D.: Individual Choice Behavior. Wiley, New York (1959)
32. Mallows, L.C.: Non-null ranking models. Biometrika 44(1–2),

114–130 (1957)
33. Mandhani, B., Meila, M.: Tractable search for learning exponen-

tial models of rankings. In: Artificial Intelligence and Statistics
(AISTATS), April (2009)

34. Mendiburu, A., Lozano, J.A., Miguel-Alonso, J.: Parallel imple-
mentation of EDAs based on probabilistic graphical models. IEEE
Trans. Evol. Comput. 9(4), 406–423 (2005)

35. Mendiburu, A., Miguel-Alonso, J., Lozano, J.A., Ostra, M.,
Ubide, C.: Parallel EDAs to create multivariate calibration models
for quantitative chemical applications. J. Parallel Distrib. Com-
put. 66(8), 1002–1013 (2006)

36. Mühlenbein, H., Paaß, G.: From recombination of genes to the esti-
mation of distributions I. Binary parameters. In: Lecture Notes in
Computer Science 1411: Parallel Problem Solving from Nature—
PPSN IV, pp. 178–187 (1996)

37. Pelikan, M., Goldberg, D.E.: Hierarchical problem solving and the
Bayesian optimization algorithm. In: Whitley, D., Goldberg, D.E.,
Cantú-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceed-
ings of the Genetic and Evolutionary Computation Conference,

123

http://ideas.repec.org/p/cwl/cwldpp/4.html

Prog Artif Intell (2012) 1:103–117 117

San Francisco, vol. 1, pp. 267–274. Morgan Kaufmann Publishers,
Menlo Park (2000)

38. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimiza-
tion by building and using probabilistic models. Comput. Optim.
Appl. 21(1), 5–20 (2002)

39. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable optimization via
probabilistic modeling: from algorithms to applications (Studies in
Computational Intelligence). Springer, New York (2006)

40. Pelikan, M., Tsutsui, S., Kalapala, R.: Dependency trees, permuta-
tions, and quadratic assignment problem. Technical report, Medal
Report No. 2007003 (2007)

41. Plackett, R.L.: The analysis of permutations. J. Royal Stat.
Soc. 24(10), 193–202 (1975)

42. Robles, V., de Miguel, P., Larrañaga, P.: Solving the traveling sales-
man problem with EDAs. In: Larrañaga, P., Lozano, J.A. (eds.)
Estimation of distribution algorithms: a new tool for evolutionary
computation. Kluwer, Dordrecht (2002)

43. Romero, T., Larrañaga, P.: Triangulation of Bayesian networks with
recursive estimation of distribution algorithms. Int. J. Approx. Rea-
son. 50(3), 472–484 (2009)

44. Sagarna, R., Lozano, J.A.: Scatter Search in software testing, com-
parison and collaboration with estimation of distribution algo-
rithms. Eur. J. Oper. Res. 169(2), 392–412 (2006)

45. Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in simpli-
fied models with estimation of distribution algorithms. IEEE Trans.
Evol. Comput. 12(4), 418–438 (2008)

46. Tsutsui, S.: Probabilistic model-building genetic algorithms in per-
mutation representation domain using edge histogram. In: PPSN,
pp. 224–233 (2002)

47. Tsutsui, S.: A comparative study of sampling methods in node
histogram models with probabilistic model-building genetic algo-
rithms. In: IEEE International Conference on Systems, Man, and
Cybernetics. 8–11 October 2006, Taipei, vol. 4, pp. 3132–3137
(2006)

48. Tsutsui, S.: Effect of using partial solutions in edge histogram
sampling algorithms with different local searches. In: SMC,
pp. 2137–2142 (2009)

49. Tsutsui, S., Miki, M.: Solving flow shop scheduling problems with
probabilistic model-building genetic algorithms using edge histo-
grams. In: 4th Asia-Pacific Conference on Simulated Evolution
And Learning (SEAL 02), pp. 776–780 (2002)

50. Tsutsui, S., Pelikan, M., Goldberg, D.E.: Using edge histogram
models to solve permutation problems with probabilistic model-
building genetic algorithms. Technical report, IlliGAL Report No.
2003022 (2003)

51. Tsutsui, S., Pelikan, M., Goldberg, D.E.: Node histogram vs. edge
histogram: a comparison of PMBGAs in permutation domains.
Technical report, Medal (2006)

52. Tsutsui, S., Wilson, G.: Solving capacitated vehicle routing prob-
lems using edge histogram based sampling algorithms. In: Pro-
ceedings of the IEEE Conference on Evolutionary Computation,
Portland, Oregon (USA), pp. 1150–1157 (2004)

53. Yuan, B., Orlowska, M.E., Sadiq, S.W.: Finding the optimal path
in 3d spaces using EDAs—the wireless sensor networks scenario.
In: ICANNGA (1), pp. 536–545 (2007)

54. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Combination of guided
local search and estimation of distribution algorithm for solving
quadratic assignment problem. In: Proceedings of the Bird of a
Feather Workshops, Genetic and Evolutionary Computation Con-
ference, pp. 42–48 (2004)

55. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Estimation of distribu-
tion algorithm with 2-opt local search for the quadratic assignment
problem. Stud. Fuzziness Soft Comput. 192/2006:281–292 (2006)

56. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer,
Dordrecht (1991)

123

	A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems
	Abstract
	1 Introduction
	2 Permutation-based problems
	2.1 Traveling salesman problem (TSP)
	2.2 Flow shop scheduling problem (FSSP)
	2.3 Linear ordering problem (LOP)
	2.4 Quadratic assignment problem (QAP)

	3 EDAs for permutation-based optimization problems
	3.1 Adaptations of integer encoding EDA approaches
	3.2 Adaptations of real encoding EDA approaches
	3.3 Permutation-oriented EDA approaches
	3.3.1 IDEA-induced chromosome elements exchanger (ICE)
	3.3.2 Edge histogram models
	3.3.3 Node histogram models
	3.3.4 Recursive EDA

	3.4 Hybrid EDAs

	4 Experiments
	4.1 Experimental setup
	4.2 Results

	5 Discussion
	5.1 Models based on marginals
	5.2 Plackett--Luce model
	5.3 Mallows model
	5.4 Non-parametric models

	6 Conclusions and future work
	Acknowledgments
	References

