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Abstract Nowadays, there are applications in which the
data are modeled best not as persistent tables, but rather as
transient data streams. In this article, we discuss the limi-
tations of current machine learning and data mining algo-
rithms. We discuss the fundamental issues in learning in
dynamic environments like continuously maintain learning
models that evolve over time, learning and forgetting, con-
cept drift and change detection. Data streams produce a huge
amount of data that introduce new constraints in the design
of learning algorithms: limited computational resources in
terms of memory, cpu power, and communication bandwidth.
We present some illustrative algorithms, designed to taking
these constrains into account, for decision-tree learning, hier-
archical clustering and frequent pattern mining. We identify
the main issues and current challenges that emerge in learn-
ing from data streams that open research lines for further
developments.

Keywords Data mining ·Machine learning ·
Learning from data streams

1 Introduction

Informally speaking, the goal of machine learning is to build
a computational model from the past experience of what has
been observed. Machine learning studies automatic methods
for acquisition of domain knowledge with the goal of improv-
ing system’s performance as the result of experience. In the
past two decades, machine learning research and practice
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has focused on batch learning usually with small data sets.
In batch learning, the whole training data are available to
the algorithm that outputs a decision model after process-
ing the data eventually (or most of the times) multiple times.
The rationale behind this practice is that examples are gen-
erated at random accordingly to some stationary probability
distribution. Most learners use a greedy, hill-climbing search
in the space of models. They are prone to overfitting, local
maxima’s, etc. Data are scarce and statistic estimates have
high variance. A paradigmatic example is the TDIT algo-
rithm to learn decision trees [48]. As the tree grows, less and
fewer examples are available to compute the sufficient statis-
tics, variance increase leading to model instability. Moreover,
the growing process re-uses the same data, exacerbating the
overfitting problem. Regularization and pruning mechanisms
are mandatory.

The developments of information and communication
technologies dramatically change the data collection and pro-
cessing methods. What distinguish current data sets from
earlier ones are automatic data feeds. We do not just have
people entering information into a computer. We have com-
puters entering data into each other [46]. Moreover, advances
in miniaturization and sensor technology lead to sensor net-
works, collecting high-detailed spatio-temporal data about
the environment.

An illustrative application is the problem of mining data
produced by sensors distributed all around electrical-power
distribution networks. These sensors produce streams of data
at high-speed. From a data mining perspective, this problem
is characterized by a large number of variables (sensors),
producing a continuous flow of data, in a dynamic non-sta-
tionary environment. Companies analyze these data streams
and make decisions for several problems. They are inter-
ested in identifying critical points in load evolution, e.g.,
peaks on the demand. These aspects are related to anomaly
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detection, extreme values, failures prediction, outliers and
abnormal activities detection. Other problems are related to
change detection in the behavior (correlation) of sensors.
Cluster analysis can be used for the identification of groups of
high-correlated sensors, corresponding to common behav-
iors or profiles (e.g., urban, rural, industrial, etc.). Decisions
to buy or sell energy are based on the predictions on the
value measured by each sensor for different time horizons.
Data mining, in this context, require continuous processing of
the incoming data monitoring trends, and detecting changes.
Traditional one-shot systems, memory based, trained from
fixed training sets and generating static models are not
prepared to process the high-detailed data available, are
neither able to continuously maintain a predictive model con-
sistent with the actual state of the nature, nor react quickly
to changes.

In this article, we discuss the issues and challenges on
learning from data streams discussing limitations of the cur-
rent learning systems and pointing out possible research lines
for next generation data mining systems. The paper is orga-
nized as follows. The next section identifies the main char-
acteristics of streaming algorithms and present illustrative
sublinear algorithms to obtain approximate answer in query-
ing high-speed streams. The Sect. 3 presents the illustrative
streaming algorithms for three learning tasks: decision trees,
clustering and frequent pattern mining. Section 4 identifies
challenges and open issues in the current research in stream
mining. Last section concludes the paper identifying the les-
sons learned.

2 Machine learning and data streams

Machine learning extracts knowledge (models, patterns) from
data and the nature of data is changing. Nowadays, we have
technology to continuously capture digital data. Data are gen-
erated and collected at high speed, meaning that the data
arrival rate is high relative to the computational power. In
these applications, data are modeled best not as persistent
tables, but rather as transient data streams [6] (Table 1).

Table 1 Summary of the main differences between the standard data-
base processing and data stream processing

Databases Data streams

Data access Random Sequential

Number of passes Multiple Single

Processing time Unlimited Restricted

Available memory Unlimited Fixed

Result Accurate Approximate

Distributed No Yes

2.1 Streaming algorithms

In the streaming model, the input elements a1, a2, . . . , a j , . . .

arrive sequentially, item by item [46]. We can distinguish
between two different models:

1. Insert only model: once an element ai is seen, it cannot
be changed;

2. Insert-delete model: elements ai can be deleted or
updated.

From the view point of a Data Streams Management Systems
(DSMS) [18], several research issues emerge that require
approximate query processing techniques to evaluate contin-
uous queries that require unbounded amount of memory [8].
A relevant issue is the definition of the semantics (and imple-
mentation) of blocking operators (operators that only return
an output tuple after processing all input tuples, like join,
aggregation and sorting) in the presence of unending streams.

Algorithms that process data streams deliver approximate
solutions, providing a fast answer using a few memory
resources; they relax the requirement of an exact answer to
an approximate answer within a small error range with high
probability. In general, as the range of the error decreases,
the space of computational resources goes up.

Illustrative example. Suppose the problem of counting the
number of distinct pairs of IP addresses from the network
traffic that crosses a server which is a trivial problem, if we
do not consider restrictions in space. The number of distinct
pairs of IP’s can be very large, and an exact answer is not
mandatory.

Hash functions are a powerful tool in stream process-
ing. They are used to project huge domains into lower space
dimensions. One of the earlier results is the Hash (aka FM)
sketches for distinct-value counting in one pass while using
only a small amount of space [26]. Suppose the existence
of a hash function h(x) that maps incoming values x ∈
[0, . . . , N − 1] uniformly across [0, . . . , L − 1], where L =
O(logN ). Let lsb(y) denote the position of the least-signif-
icant 1 bit in the binary representation of y. A value x is
mapped to lsb(h(x)). The algorithm maintains a bitmap vec-
tor of L bits, initialized to zero. For each incoming value x,

set the lsb(h(x)) bit of L to 1. At each time-stamp t, let R
denote the position of rightmost zero in the bitmap. Flajolet
and Martin [26] prove that R is an indicator of log(d), where
d denotes the number of distinct values in the stream.

In some applications, mostly database oriented, an approx-
imate answer should be within an admissible error margin.
DSMS developed a set of techniques that store compact
stream summaries enough to approximately solve queries.
All these approaches require a trade-off between accuracy
and the amount of memory used to store the summaries, with
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an additional constrain of small time to process data items
[2,46]. The most common problems end up to compute quan-
tiles, frequent itemsets, and to store frequent counts along
with error bounds on their true frequency. The techniques
developed are used in very high dimensions both in the num-
ber of examples and in the cardinality of the variables.

2.2 Approximation and randomization

Many fundamental questions, like counting, require space
linear in the input to obtain exact answers. Within data stream
framework, approximation techniques, that is, answers that
are correct within some small fraction ε of error; and ran-
domization [45], that allow a small probability δ of the fail-
ure, are used to obtain answers with that of the probability
1− δ are in an interval of radius ε. Algorithms that use both
approximation and randomization are referred to as (ε, δ)

approximations. The base idea consists of mapping a very
large input space to a small synopsis of size O( 1

ε2 log( 1
δ
)).

Approximation and randomization techniques has been
used to solve problems like measuring the entropy of a
stream [17], association rule mining [4], frequent items [44],
k-means clustering for distributed data streams using only
local information [21], etc.

2.3 Time windows

Most of the time, we are not interested in computing sta-
tistics over all the past, but only over the recent past. The
assumption behind all these models is that the most recent
information is more relevant than the historical data. The
simplest situation uses sliding windows of fixed size. These
types of windows are similar to first in, first out data struc-
tures. Whenever an element j is observed and inserted into
the window, another element j −w, where w represents the
window size, is forgotten.

Several window models have been presented in the liter-
ature. Babcock et al. [7] define two basic types of sliding
windows:

– Sequence based. The size of the window is defined in
terms of the number of observations. Two different mod-
els are sliding windows of fixed size w and landmark win-
dows, where the window grows from a specific point in
time (the landmark);

– Time-stamp based. The size of the window is defined in
terms of duration. A time-stamp window of size t consists
of all elements whose time-stamp is within a time interval
t of the current time period.

Monitoring, analyzing and extracting knowledge from
high-speed streams might explore multiple levels of gran-
ularity, where the recent history is analyzed at fine levels of

granularity and the need of precision decreases with the age of
the data. As a consequence, the most recent data can be stored
at the finest granularity, while more distant data at coarser
granularity. This is called the tilted time window model. It
might be implemented using exponential histograms [24].

Sequence-based windows is a general technique to deal
with changes in the process that generates data. A reference
algorithm is the AdWin-ADaptive sliding WINdow presented
by Bifet and Gavaldà [10]. AdWin keeps a variable-length
window of recently seen items, with the property that the
window has the maximal length statistically consistent with
the hypothesis there has been no change in the average value
inside the window. More precisely, an older fragment of the
window is dropped if and only if there is enough evidence
that its average value differs from that of the rest of the win-
dow. This has two consequences: first, that change is reliably
declared whenever the window shrinks; and second, that at
any time the average over the existing window can be reli-
ably taken as an estimate of the current average in the stream
(barring a very small or very recent change that is still not
statistically visible). AdWin is parameter- and assumption-
free in the sense that it automatically detects and adapts to
the current rate of change. Its only parameter is a confidence
bound δ, indicating how confident we want to be in the algo-
rithm’s output, a property inherent to all algorithms deal-
ing with random processes. AdWin does not maintain the
window explicitly, but compresses it using a variant of the
exponential histogram technique. This means that it keeps
a window of length W using only O(logW ) memory and
O(logW ) processing time per item.

2.4 Sampling

Sampling is a common practice for selecting a subset of data
to be analyzed. Instead of dealing with an entire data stream,
we select instances at periodic intervals. Sampling is used
to compute statistics (expected values) of the stream. While
sampling methods reduce the amount of data to process, and,
by consequence, the computational costs, they can also be
a source of errors, namely in monitoring applications that
require to detect anomalies or extreme values.

The main problem is to obtain a representative sample,
i.e., a subset of data that has approximately the same proper-
ties of the original data. In statistics, most techniques require
to know the length of the stream. For data streams, we need
to modify these techniques. The simplest form of sampling
is random sampling, where each element has equal prob-
ability of being selected [1]. The reservoir sampling
technique [53] is the classic algorithm to maintain an online
random sample. The base idea consists of maintaining a sam-
ple of size k, called the reservoir. As the stream flows, every
new element has a probability k/n, where n is the number
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of elements seen so far, of replacing an old element in the
reservoir.

A similar technique, load shedding, drops sequences in
the stream, when bursts cause bottlenecks in the processing
capabilities. Tatbul et al. [51] discuss load shedding tech-
niques in querying high-speed data streams.

2.5 Synopsis, sketches and summaries

Synopsis is compact data structures that summarize data for
further querying. Several methods have been used, includ-
ing: wavelets [35], exponential histograms [24], frequency
moments [5], etc. Data sketching via random projections is
a tool for dimensionality reduction. Sketching uses random
projections of data points with dimension d to a space of a
subset of dimensions. It has been used for moment estima-
tion [5], computing L-norms [46] and dot product of streams
[1].

Cormode and Muthukrishnan [20] presents a data stream
summary, the so-called count-min sketch, used for (ε, δ)

approximations to solve point queries, range queries, and
inner product queries. Consider an implicit vector a of dimen-
sion n that is incrementally updated over time. At each
moment, the element ai represents the counter associated
with element i . A point-query is to estimate the value of an
entry in the vector a. The count-min sketch data structure,
with parameters (ε, δ), is an array of w × d in size, where
d = log(1/δ), and w = 2/ε. For each incoming value of
the stream, the algorithm use d hash functions to map entries
to [1, . . . , w]. The counters in each row are incremented to
reflect the update. From this data structure, we can estimate at
any time, the number of occurrences of any item j by taking
mindCM[d, hd( j)]. Since the space used by the sketch CM
is typically much smaller than that required to represent the
vector a exactly, there is necessarily some approximation in
the estimate. The estimate â j , has the following guarantees:
a j ≤ â j , and, with probability at least 1−δ, âi ≤ ai+ε||a||1.
The error of the estimate is at most ε with probability at least
1− δ in space O( 1

ε
log( 1

δ
)).

3 Algorithms for learning from data streams

The ultimate goal of data mining is to develop systems and
algorithms with high level of autonomy. For such, data min-
ing studies the automated acquisition of domain knowledge
with the goal of improving system’s performance by learning
from experience. These systems address the problems of data
processing, modeling, prediction, clustering, and control in
changing and evolving environments. They self-evolve their
structure and knowledge on the environment. In this section,
we review streaming algorithms for learning decision trees,
clustering examples and frequent pattern mining.

3.1 Predictive learning from data streams

Hulten and Domingos [37] presents a general method to
learn from arbitrarily large databases. The method consists of
deriving an upper bound for the learner’s loss as a function
of the number of examples used in each step of the algo-
rithm. Then use this to minimize the number of examples
required at each step, while guaranteeing that the model pro-
duced does not differ significantly from the one that would
be obtained with infinite data. This general methodology has
been successfully applied in k-means clustering [37], Hier-
archical clustering of variables [49], decision trees [25,38],
etc.

Learning from large data sets may be more effective when
using algorithms that place greater emphasis on bias man-
agement [29]. One such algorithms is the Very Fast Decision
Tree system [25]. VFDT is a decision-tree learning algorithm
that dynamically adjusts its bias whenever new examples are
available. In decision-tree induction, the main issue is the
decision of when to expand the tree, installing a splitting-test
and generating new leaves. The basic idea consists of using
a small set of examples to select the splitting-test to incorpo-
rate in a decision-tree node. If after seeing a set of examples,
the difference of the merit between the two best splitting-
tests does not satisfy a statistical test (the Hoeffding bound),
VFDT proceeds by examining more examples. It only makes
a decision (i.e., adds a splitting-test in that node), when there
is enough statistical evidence in favor of a particular test.
This strategy guarantees model stability (low variance), con-
trols overfitting, while it may achieve an increased number
of degrees of freedom (low bias) with increasing number of
examples.

In VFDT a decision tree is learned by recursively
replacing leaves with decision nodes. Each leaf stores the
sufficient statistics about attribute-values. The sufficient sta-
tistics are those needed by a heuristic evaluation function
that computes the merit of split-tests based on attribute-val-
ues. When an example is available, it traverses the tree from
the root to a leaf, evaluating the appropriate attribute at each
node, and following the branch corresponding to the attri-
bute’s value in the example. When the example reaches a
leaf, the sufficient statistics are updated. Then, each possi-
ble condition based on attribute-values is evaluated. If there
is enough statistical support in favor of one test over the
others, the leaf is changed to a decision node. The new deci-
sion node will have as many descendant leaves as the num-
ber of possible values for the chosen attribute (therefore
this tree is not necessarily binary). The decision nodes only
maintain the information about the split-test installed within
them.

The main innovation of the VFDT system is the use of
Hoeffding bounds to decide how many examples must be
observed before installing a split-test at a leaf. Suppose we
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have made n independent observations of a random variable
r whose range is R. The Hoeffding bound states that the true

average of r, r̄ , is at least r̄ − ε where ε =
√

R2 ln( 1
δ
)

2n , with
probability 1− δ.

Let H be the evaluation function of an attribute. For the
information gain, the range R, of H is log2(k) where k
denotes the number of classes. Let xa be the attribute with
the highest H, xb the attribute with second highest H and
�H = H(xa)− H(xb), the difference between the two best
attributes. Then if �H > ε with n examples observed in
the leaf, the Hoeffding bound states that, with probability
1 − δ, xa is really the attribute with the highest value in the
evaluation function. In this case, the leaf must be transformed
into a decision node that splits on xa .
VFTD has been extended to deal with continuous attri-

butes [31], functional leaves [32] and non-stationary data
streams in [38,30]. The CVFDT algorithm [38], an extension
to VFDT designed for time-changing data streams. CVFDT
generates alternative decision trees at nodes where there is
evidence that the splitting test is no longer appropriate. The
system replaces the old tree with the new one when the lat-
ter becomes more accurate. An interesting characteristic of
VFDT is the ability to freeze less promising leaves, when
working in memory-restricted environments. A VFDT like
algorithm for learning regression and model trees appear in
[39]. Bagging and boosting ensemble models, using VFDT
like algorithms, appear in [14,13].

3.2 Clustering data streams

Clustering is the process of grouping objects into different
groups, such that the common properties of data in each sub-
set are high, and between different subsets are low. The data
stream clustering problem is defined as to maintain a continu-
ously consistent good clustering of the sequence observed so
far, using a small amount of memory and time. The issues are
imposed by the continuous arriving data points, and the need
to analyze them in real time. These characteristics requires
incremental clustering, maintaining cluster structures that
evolve over time. Moreover, the data stream may evolve over
time, and new clusters might appear, other disappears, reflect-
ing the dynamics of the stream.

A powerful idea in clustering from data streams is the
concept of cluster feature (CF). A cluster feature, or micro-
cluster, is a compact representation of a set of points. A CF
structure is a triple (N , L S, SS), used to store the sufficient
statistics of a set of points: where N is the number of data
points; L S is a vector, of the same dimension of data points,
that store the linear sum of the N points; SS is a vector, of
the same dimension of data points, that store the square sum
of the N points.

The properties of cluster features are:

– Incrementality
If a point x is added to the cluster A, the sufficient statistics
are updated as follows:

L SA ← L SA + x; SSA ← SSA + x2; NA ← NA + 1

– Additivity
if A and B are disjoint sets, merging them is equal to the
sum of their parts. The additive property allows us to merge

sub-clusters incrementally.

L SC ← L SA + L SB; SSC ← SSA + SSB;
NC ← NA + NB .

A CF entry has sufficient information to calculate the
norms L1 and L2 (See Eq. 1), and basic measures to charac-
terize a cluster.

L1 =
n∑

i=1

|xai − xbi |; L2 =
√√√√

n∑

i=1

(xai − xbi )
2 (1)

The idea of dividing the clustering process into two layers,
where the first layer generate local models (micro-clusters)
and the second layer generates global models from the local
ones, is a powerful idea that has been used elsewhere.

The BIRCH system [55] builds a hierarchical structure of
data, the CF-tree, where each node contains a set of cluster
features. These CF’s contain the sufficient statistics describ-
ing a set of points in the data set, and all information of the
cluster features below in the tree. The system requires two
user defined parameters: B the branch factor or the maximum
number of entries in each non-leaf node; and T the maximum
diameter (or radius) of any CF in a leaf node. The maximum
diameter T defines the examples that can be absorbed by
a CF. Increasing T, more examples can be absorbed by a
micro-cluster and smaller CF-Trees are generated.

When an example is available, it traverses down the cur-
rent tree from the root, till finding the appropriate leaf. At
each non-leaf node, the example follow the closest-CF path,
with respect to norms L1 or L2. If the closest-CF in the leaf
cannot absorb the example, make a new CF entry. If there
is no room for new leaf, split the parent node. A leaf node
might be expanded due to constrains imposed by B, and T .
The process consists of taking the two farthest CFs and cre-
ates two new leaf nodes. When traversing backup the CFs
are updated.

The CluStream Algorithm [3] is an extension of the
BIRCH system designed for data streams. Here, the CFs
includes temporal information: the time-stamp of an exam-
ple is treated as a feature. CFs are initialized offline, using a

123



50 Prog Artif Intell (2012) 1:45–55

standard k-means, with a large value for k. For each incoming
data point, the distance to the centroids of existing CFs, are
computed. The data point is absorbed by an existing CF if the
distance to the centroid falls within the maximum boundary
of the CF. The maximum boundary is defined as a factor t
of the radius deviation of the CF; Otherwise, the data point
starts a new micro-cluster.
CluStream can generate approximate clusters for any

user defined time granularity. This is achieved by storing the
CFT at regular time intervals, referred to as snapshots. Sup-
pose the user wants to find clusters in the stream based on
a history of length h. The offline component can analyze
the snapshots stored at the snapshots t, the current time, and
(t − h) using the addictive property of CFT. An important
problem is when to store the snapshots of the current set
of micro-clusters. For example, the natural time frame stores
snapshots each quarter, four quarters are aggregated in hours,
24 h are aggregated in days, etc. The aggregation level is
domain-dependent and explores the addictive property of
CFT.

3.3 Frequent pattern mining

Since their introduction in [4], the frequent itemset (and asso-
ciation rule) mining problems have received a great deal
of attention. Within the past decade, hundreds of research
papers have been published presenting new algorithms or
improvements on existing algorithms to solve these min-
ing problems more efficiently. The Apriori [4] level wise
approach implies several scans over the database to compute
the support of candidate frequent itemsets. As an alterna-
tive, several algorithms significantly reduce this by generat-
ing collections of candidate itemsets in a depth-first strategy.
The reference algorithm in this line is the FP-growth algo-
rithm by [36]. It uses a prefix-tree (a trie) to store itemsets.
To generate all possible extensions of an itemset by a single
item, it simply appends the item to the suffix-tree. It avoids
the self-joins required inApriori for candidate generation.
This search scheme generates each candidate itemset at most
once. It has been used as a building block in frequent itemsets
and sequence mining from data streams.

Mining frequent itemsets from data streams poses many
new challenges. In addition to the one-scan constraint, the
limited memory requirement, the combinatorial explosion of
itemsets exacerbates the difficulties. The most difficult prob-
lem in mining frequent itemsets from data streams is that
infrequent itemsets in the past might become frequent, and
frequent itemsets in the past might become infrequent.

The FP-tree algorithm was used as a building block
for mining frequent patterns in data streams at multiple time
granularities in [34]. The FP-Stream Algorithm was
designed to maintain frequent patterns under a tilted-time
window framework to answer time-sensitive queries. The

frequent patterns are compressed and stored using a tree
structure similar to FP-tree and updated incrementally with
incoming transactions. Quoting [34]:

Using this scenario, we can answer the following que-
ries: (1) what is the frequent pattern set over the period
t2 and t3? (2) what are the periods when {a, b} is fre-
quent? (3) does the support of {a} change dramatically
in the period from t3 to t0? and so on. That is, one cans
(1) mine frequent patterns in the current window, (2)
mine frequent patterns over time ranges with granu-
larity confined by the specification of window size and
boundary, (3) put different weights on different win-
dows to mine various kinds of weighted frequent pat-
terns, and (4) mine evolution of frequent patterns based
on the changes of their occurrences in a sequence of
windows.

Time windows are a standard approach to deal with evolv-
ing data. The frequency of a pattern in different time windows
also evolves, that is a pattern that was not frequent in the
past might become frequent and vice-versa. To ensure the
completeness of frequent patterns, [34] consider three cat-
egories of patterns: frequent patterns, subfrequent patterns,
and infrequent patterns. The frequency of an itemset I over a
period of time T is the number of transactions in T in which I
occurs. The support of I is the frequency divided by the total
number of transactions observed in T . Let the min_support
be σ and consider a relaxation ratio ρ = ε/σ, where ε is the
maximum support error. I is frequent if its support is no less
than σ ; it is sub-frequent if its support is less than σ but not
less than ρ; otherwise, it is infrequent.

TheFP-stream structure consists of two parts. A global
FP-tree held in main memory, and tilted-time windows
embedded in this pattern-tree. Incremental updates can be
performed on both parts of the FP-stream. Incremental
updates occur when some infrequent patterns become (sub)
frequent, or vice versa. At any moment, the set of frequent
patterns over a period can be obtained from FP-stream.
FP-stream stores the frequencies for itemset I in a

tilted-time window1. Assume that the stream of transactions
is broken up into batches B1, B2, . . . , Bn, . . . of fixed sized,
where Bn is the most current batch and B1 the oldest.

As the transactions of the first batch B1 arrived, the fre-
quencies for all the items are computed, and an ordering
f _list is created, as in the FP-tree Algorithm. This order
remains fixed for the subsequent batches. The transactions
of B1 are processed again creating an FP-tree pruning all
items with frequency less than ε × |B1|.

The maintenance of the tilted-time windows is straightfor-
ward. When four quarters are accumulated, they are merged

1 Giannella et al. [34] discusses also a more compact structure using
logarithmic tilted-time windows.
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together in 1 h bin. After 24 h, 1 day is built, and so on.
This model allows to compute the frequent itemsets in the
last hour with the precision of a quarter of an hour, the last
day frequent itemsets with a precision of an hour, the last
month with a precision of a day, etc. For a period of 1 month
we need 4 + 24 + 31 = 59 units of time. Let t1, . . . , tn be
the tilted-time windows which group the batches seen so far.
Denote the number of transactions in ti by wi . The goal is
to mine all frequent itemsets with support larger than σ over
period T = tk ∪ tk+1 ∪ . . . ∪ tk′ , where 1 ≤ k ≤ k′ ≤ n.
The size of T, denoted by W, is the sum of the sizes of
all time-windows considered in T . It is not possible to store
all possible itemsets in all periods. FP-stream drops the
tail sequences when ∀i , n ≤ i ≤ 1, f I (ti ) < σ × wi and∑i

j=n f I (t j ) < ε ×∑i
j=n w j . We no longer have the exact

frequencies over T . By delivering all frequent itemsets larger
than (σ − ε) × W any frequent itemset in T will not miss,
although we might get itemsets whose frequency is between
(σ − ε)×W and σ ×W .

Itemsets and their tilted-time window tables are main-
tained in the FP-stream data structure. When a new batch
B arrives, mine the itemsets from B and update the
FP-stream structure. For each itemset I mined in B, if
I does not appear in the structure, add I if f I (B) ≥ ε|B|.
Otherwise, add f I (B) to I ’s table and then do tail prun-
ing. If all the windows were dropped, then drop I from the
FP-stream data structure. Moreover, any superset of I will
also be dropped.

4 Algorithm issues in learning from data streams

The challenge problem for data mining is the ability to per-
manently maintain an accurate decision model. This issue
requires learning algorithms that can modify the current
model whenever new data are available at the rate of data
arrival. Moreover, they should forget older information when
data are outdated. In this context, the assumption that exam-
ples are generated at random according to a stationary prob-
ability distribution does not hold, at least in complex systems
and for large periods of time. In the presence of a non-station-
ary distribution, the learning system must incorporate some
form of forgetting past and outdated information. Learning
from data streams require incremental learning algorithms
that take into account concept drift. Solutions to these prob-
lems require new sampling and randomization techniques,
and new approximate, incremental and decremental algo-
rithms. Hulten and Domingos [37] identifies desirable prop-
erties of learning systems that are able to mine continuous,
high-volume, open-ended data streams as they arrive. Learn-
ing systems should be able to process examples and answer-
ing queries at the rate they arrive. Some desirable properties
for learning in data streams include: incrementality, online

learning, constant time to process each example, single scan
over the training set and taking drift into account.

4.1 Cost-performance management

Incremental learning is one fundamental aspect for the pro-
cess of continuous adaptation of the decision model. The
ability to update the decision model, whenever new infor-
mation is available, is an important property, but it is not
enough as it also requires operators with the ability to forget
past information [43]. Some data stream models allow delete
and update operators. Sliding window models require forget-
ting old information. In all these situations, the incremental
property is not enough. Learning algorithms need forgetting
operators that reverse learning: decremental unlearning [16].

The incremental and decremental issues require a per-
manent maintenance and updating of the decision model
as new data are available. Of course, there is a trade-off
between the cost of update and the gain in performance
that we may obtain. Learning algorithms exhibit different
profiles. Algorithms with strong variance management are
quite efficient for small training sets. Very simple models,
using a few free-parameters, can be quite efficient in variance
management, and effective in incremental and decremental
operations being a natural choice in the sliding windows
framework. The main problem with simple representation
languages is the boundary in generalization performance they
can achieve, since they are limited by high bias while large
volumes of data require efficient bias management. Complex
tasks requiring more complex models increase the search
space and the cost for structural updating. These models,
require efficient control strategies for the trade-off between
the gain in performance and the cost of updating. A step
in this direction is the so-called algorithm output granular-
ity presented by [27]. Algorithm output granularity monitors
the amount of mining results that fits in main memory before
any incremental integration. Gaber et al. [28] illustrates the
application of the algorithm output granularity strategy to
build efficient clustering, frequent items and classification
techniques.

In most applications, we are interested in maintaining
a decision model consistent with the current status of the
nature. This lead us to the sliding window models where data
are continuously inserted and deleted from a window. Learn-
ing algorithms must have operators for incremental learning
and forgetting. Incremental learning and forgetting are well
defined in the context of predictive learning. The meaning or
the semantics in other learning paradigms (like clustering) are
not so well understood, very few works address this issue.

4.2 Monitoring learning

When data flow over time, and at least for large periods of
time, it is highly unprovable the assumption that the examples
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are generated at random according to a stationary probabil-
ity distribution. At least in complex systems and for large
time periods, we should expect changes in the distribution
of the examples. A natural approach for these incremental
tasks are adaptive learning algorithms, incremental learning
algorithms that take into account concept drift.

Concept drift means that the concept related to the data
being collected may shift from time to time, each time after
some minimum permanence. Changes occur over time. The
evidence for changes in a concept are reflected in some way
in the training examples. Old observations, that reflect the
past behavior of the nature, become irrelevant to the current
state of the phenomena under observation and the learning
agent must forget that information.

The nature of change is diverse. It might occur, in the
context of learning, due to changes in hidden variables, or
changes in the characteristic properties of the observed vari-
ables.

Most learning algorithms use blind methods that adapt
the decision model at regular intervals without considering
whether changes have really occurred. Much more interesting
is explicit change detection mechanisms. The advantage is
that they can provide meaningful description (indicating
change-points or small time-windows where the change
occurs) and quantification of the changes. They may follow
two different approaches:

1. Monitoring the evolution of performance indicators
adapting techniques used in statistical process control.

2. Monitoring distributions on two different time windows.

The main research issue is how to incorporate change
detection mechanisms in the learning algorithm, embedding
change detection methods in the learning algorithm is a
requirement in the context of continuous flow of data. The
level of granularity of decision models is a relevant property,
because if can allow partial, fast and efficient updates in the
decision model instead of rebuilding a complete new model
whenever a change is detected. The ability to recognize sea-
sonal and re-occurring patterns is an open issue.

Concept drift in the predictive classification setting is a
well-studied topic. In other learning scenarios, like cluster-
ing, very few works address the problem. The main research
issue is how to incorporate change detection mechanisms in
the learning algorithm for different paradigms.

4.3 Novelty detection

Novelty detection refers to learning algorithms being able
to identify and learn new concepts. Intelligent agents that
act in dynamic environments must be able to learn concep-
tual representations of such environments. Those conceptual
descriptions of the world are always incomplete, they cor-

respond to what it is known about the world. This is the
open world assumption as opposed to the traditional closed
world assumption, where what is to be learnt is defined in
advance. In open worlds, learning systems should be able to
extend their representation by learning new concepts from
the observations that do not match the current representation
of the world. This is a difficult task. It requires to identify the
unknown, i.e., the limits of the current model. In that sense,
the unknown corresponds to an emerging pattern that is dif-
ferent from noise, or drift in previously known concepts.

4.4 Distributed streams

Data streams are distributed in nature. Learning from dis-
tributed data, we need efficient methods in minimizing the
communication overheads between nodes [50].

The strong limitations of centralized solutions is discussed
in depth in [40,41]. The authors point out a mismatch between
the architecture of most off-the-shelf data mining algorithms
and the needs of mining systems for distributed applications.
Such mismatch may cause a bottleneck in many emerging
applications, namely hardware limitations related to the lim-
ited bandwidth channels. Most importantly, in applications
like monitoring, centralized solutions introduce delays in
event detection and reaction, that can make mining systems
useless.

Another direction, for distributed processing, explore mul-
tiple models [19,42]. Kargupta et al. [42] proposes a method
that offers an effective way to construct a redundancy-free,
accurate, and meaningful representation of large decision-
tree ensembles often created by popular techniques such as
bagging, boosting, random Forests and many distributed and
data stream mining algorithms.

4.5 Structured data

In some challenging applications of data mining, data are
better described by sequences (for example DNA data), trees
(XML documents), and graphs (chemical components). Tree
mining in particular is an important field of research [11,12].
XML patterns are tree patterns, and XML is becoming a
standard for information representation and exchange over
the Internet; the amount of XML data is growing, and it will
soon constitute one of the largest collections of human knowl-
edge.

4.6 Evolving feature spaces

In the static case, similar data can be described with differ-
ent schemata. In the case of dynamic streams, the schema of
the stream can also change. We need algorithms that can deal
with evolving feature spaces over streams. There is very little
work in this area, mainly pertaining to document streams. For
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example, in sensor networks, the number of sensors is vari-
able (usually increasing) over time.

4.7 Evaluation methods and metrics

An important aspect of any learning algorithm is the
hypothesis evaluation criteria. Most of evaluation methods
and metrics were designed for the static case and provide
a single measurement about the quality of the hypothesis.
In the streaming context, we are much more interested in
how the evaluation metric evolves over time. Results from
the sequential statistics [54] may be much more appropriate.
Gama et al. [33] proposes a general framework for assessing
predictive stream learning algorithms using sequential sta-
tistics. They show that the prequential error converges to an
holdout estimator when computed over sliding windows or
using fading factors.

5 Emerging challenges and future issues

In a recent paper, Muthukrishnan [47] identifies the main
challenges in data stream management systems: computa-
tional models for massive distributed data, continual
computation theory and stochastic data algorithms. Current
developments in these directions include algorithms and com-
putational models for monitoring TCP/IP networks [22]; to
compute evolving profiles from telecommunications traffic
[23]; storing, querying and mining scientific data in the vir-
tual telescope project [52]; indexing and mining web data for
improving search engines [9], etc. From a data mining per-
spective, there is a fundamental difference between learning
from small data sets and large data sets. As pointed-out by
some researchers [15], current learning algorithms empha-
size variance reduction. However, learning from large data
sets may be more effective when using algorithms that place
greater emphasis on bias management.

In another dimension, simple objects that surround us are
changing from static, inanimate objects into adaptive, reac-
tive systems with the potential to become more and more
useful and efficient. Smart things associated with all sort
of networks offers new unknown possibilities for the devel-
opment and self-organization of communities of intelligent
communicating appliances. The dynamic characteristics of
data flowing over time requires adaptive algorithms. While
the languages used to represent generalizations from exam-
ples are well understood, next generation data mining
algorithms should care, at least, about the cost-performance
management, and the limitations in all aspects of computa-
tional resources. Learning algorithms must be able to adapt
continuously to changing environmental conditions (includ-
ing their own condition) and evolving user needs. Learning

must consider the real-time constrains of limited computer,
battery power and communication resources.

Intelligent agents that adapt over time in a dynamic and
sometimes in adversary conditions, should be capable of
self-diagnosis. A significant and useful intelligence charac-
teristic is diagnostics—not only after failure has occurred,
but also predictive (before failure) and advisory (providing
maintenance instructions). The development of such self-
configuring, self-optimizing, and self-repairing systems is a
major scientific and engineering challenge. All these aspects
requires monitoring the evolution of learning process itself,
and the ability of reasoning and learning about it.
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