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Abstract
Over the last decade, essential oils (EOs) have become potential ingredients for insecticide formulations due to their wide-
spread availability and perceived safety. Therefore, this study aimed to evaluate the toxicity and biochemical efficacy of 
basil (Ocimum basilicum) (Lamiaceae) against two destructive pests Noctuidae, Agrotis ipsilon (Hufnagel) and Spodoptera 
littoralis (Boisduval) (Lepidoptera: Noctuidae). In addition, a molecular docking study was performed to gain insight into 
the binding pattern between glutathione S-transferase (GST) and linalool, the main component of EO. GC–MS analysis of 
O. basilicum EO revealed that linalool is the most abundant compound (29.34%). However, the toxicity tests showed no 
significant difference between the values of LC50 of O. basilicum EO to A. ipsilon and S. littoralis. On the other hand, the sub-
lethal experiments indicated that treating the second instar larvae with LC15 or LC50 values of O. basilicum EO significantly 
prolonged the larval duration in both insects, compared to the control. Regarding the biochemical effect of O. basilicum EO, 
the treatments significantly impacted the activity of detoxification enzymes. A notable elevation in glutathione S-transferase 
(GST) activity was recorded in A. ipsilon larvae compared with a reduction in S. littoralis larvae. The molecular docking 
analysis revealed that linalool bonded with the amino acid serine (SER 9) of GST, indicating its binding affinity with the 
enzyme. The obtained results could offer valuable insights into the mode of action of O. basilicum and can encourage the 
adoption of sustainable pest control practices that incorporate essential oils.
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Introduction

Insects are critical in causing global crop losses due to their 
herbivorous nature and/or being disease vectors (Lucena-
Leandro et al. 2022). These arthropods are accountable for 

decreasing worldwide food production by 20% as well as 
reducing household food security at the post-harvest level 
(Sharma et al. 2017). Therefore, adaptive interventions are 
required, particularly in the context of the impact of Hawk-
ins climate change (IPPC 2021). Conventional pesticides 
have been used frequently to control agricultural insect pests, 
and this presents such drawbacks as short time of effective-
ness in the field, selection of resistant pest populations, and 
high toxicity to non-target organisms (Desneux et al. 2007; 
Khan et al. 2010; Roush and Tabashnik 2012; Lamberth 
et al. 2013; Gill and Garg 2014; Hawkins et al. 2019). These 
drawbacks have spurred demand for long-lasting and more 
eco-friendly alternatives to traditional pesticides.

The development of biologically derived pesticides is 
a promising approach to discovering novel pesticides or 
formulation technologies (Abdollahdokht et  al. 2022). 
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Considering this, the last decade has seen tremendous efforts 
to develop environmentally friendly and effective alterna-
tives, with a particular focus on plant extracts (Isman 2020; 
Palermo et al. 2021; Li et al. 2022; Chatterjee et al. 2023). 
Botanicals have been recognized as efficient pest control 
agents, with plant essential oils (EOs) being their most 
emphasized category (Rathore 2017; Passos et al. 2022). 
EOs are volatile compounds extracted from species of aro-
matic plants mainly belonging to the Myrtaceae, Lami-
aceae, Lauraceae, and Asteraceae families (Regnault-Roger 
1997; Cagá et al. 2022). The extracted essential oils contain 
aroma-producing compounds such as monoterpenes, phe-
nols, sesquiterpenes, oxides, aldehydes, esters, and ketones 
(Yong-Lak and Jun-Hyung 2016). The impetus for the use 
of EOs is associated with the constitutive advantages of their 
properties, low toxicity to mammals, and little persistence 
in the environment. Therefore, EOs have been proposed for 
organic and integrated pest management programs (Campolo 
et al. 2017; Pavela et al. 2020). The Lamiacea family has 
been validated for its insecticidal potential (Prasannakumar 
et al. 2023). The Ocimum basilicum is widely distributed 
in Egypt (Kandil et al. 2009) and is known for their sig-
nificant medicinal values (Vasudevan et al. 1999). Several 
studies reported that chemical components of O. basilicum 
showed insecticidal properties against insect pests such as 
Spodoptera litura (Fabricius) and Rhyzopertha dominica 
(Fabricius) (Hummelbrunner and Isman 2001; Ebadollahi 
et al. 2022).

The family Noctuidae has received great attention 
because it contains serious pests on a wide range of agricul-
tural plants (Zuo et al. 2022a and b; Henaish 2023). They 
are believed to be the most destructive pests of vegetables, 
destroying gardens, orchards, and crops every year (Cap-
inera 2008; Zahiri et al. 2012). One of the most harmful 
and destructive Noctuid pests is Spodoptera littoralis (Bois-
duval) the Egyptian cotton leafworm. It exists throughout 
the year and infests about 90 plant species belonging to 40 
plant families including cotton, the main economic crop in 
Egypt (Shaurub et al. 2020). Recently, populations of S. lit-
toralis with high levels of resistance to several groups of 
insecticides were selected and this pest is ranked among the 
top 30 highly resistant species worldwide, as listed by the 
Arthropod Pesticide Resistance Database (http://​www.​pesti​
cider​esist​ance.​org, accessed on 18 May 2021). On the other 
hand, black cutworm Agrotis ipsilon (Hufnagel) is a major 
subterranean pest. The larvae hide in the soil and feed on the 
stems of seedlings, resulting in damaged growth and plant 
death (Xiang et al. 2010). It is difficult to manage this pest 
using traditional insecticides because of its resistance and 
its nocturnal activity (Li et al. 2007).

Conversely, insects develop multiple strategies to over-
come the potential toxicity of these xenobiotics (Després 
et al. 2007; Hu et al. 2019; El-Sayed et al. 2023). The insect 

detoxification enzyme system includes three phases: bio-
transformation, metabolism, and secretion of insecticides 
before reaching the target sites and producing their toxic 
effects (Li et al. 2007; Xu et al. 2020; You et al. 2023). Phase 
I detoxifying enzymes include cytochrome P450 monooxy-
genases, esterases, and flavin monooxygenases, which cata-
lyze the responsible oxidation, reduction, and hydrolytic 
reactions, as well as incorporate polar groups to enhance the 
water solubility of toxic molecules (Liao et al. 2016). Phase 
II enzymes, including glutathione S‐transferases (GSTs), 
UDP‐glucuronosyltransferases (UGTs), and sulfotransferase, 
conjugate the molecules to improve the water solubility of 
phase I products (Aioub et al. 2023). Phase III transporters, 
such as adenosine triphosphate–binding cassette (ABC), 
export the conjugated toxins from the cell (Tijet et al. 2001; 
Liu et al. 2015).

In general, the insecticidal activity of EOs has been fre-
quently assessed against insect pest species (Benelli et al. 
2018). However, as rare studies explored the biochemical 
targets and intermediate changes, the mode of action of EO 
is still in need of deep understanding (Hashem et al. 2020).

To mitigate some of the drawbacks associated with the 
use of EOs in pest management programs, the current study 
aimed to evaluate the toxicity and biochemical efficacy of 
basil (Ocimum basilicum) against A. ipsilon and S. littoralis. 
In addition, to gain insights into the binding pattern between 
linalool, the major EO constituent, and GST, we conducted 
a molecular docking study.

Materials and Methods

Insect Colony

Agrotis ipsilon and S. littoralis cultures were provided by the 
Entomology Department, Faculty of Agriculture, Cairo Uni-
versity, Giza, Egypt (30.0131°N, 31.2089°E). Both insects 
were raised in sterile plastic containers (17 × 25 × 8 cm) 
under suitable conditions (8 h darkness: 16 h light at 25 °C 
and 60% relative humidity) (Moustafa et al. 2021a, 2023a; 
Awad et al. 2022). Agrotis ipsilon larvae were raised sepa-
rately (Moustafa et al. 2021a) in small plastic cups and fed 
on fresh castor leaves until pupation. The pupae were main-
tained in glass jars with paper tissues until adult emergence. 
Bioassays were carried out on the 2nd instar larvae under 
suitable laboratory conditions (Moustafa et al. 2021a, 2022).

Basil, Ocimum basilicum, Oil

Basil oil samples were obtained from the Medicinal 
and Aromatic Plants Research Department, El-Qanater 
El-Khairiya, Qalubeia Governorate, Egypt (30°19′N, 
31°13′E, 16.9 m above sea level). Extraction was carried 
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out according to Moustafa et al. (2023a) and the obtained 
EO was dried and stored in sealed Eppendorf tubes until 
use.

Gas Chromatography–Mass Spectrometry (GC–MS) 
Analysis

Identification of the chemical composition of O. basilicum 
EO was done as described by Moustafa et al. (2021a). 
Shimadzu single quadrupole gas chromatograph-mass 
spectrometer (GC–MS-QP) 2015 plus (Kyoto, Japan) was 
used via 0.5 µL injections of the EO on a Hewlett Packard 
chromatograph model 597 equipped with a flame ioniza-
tion detector (FID) and a 50-cm HP capillary column. For 
identification, the retention time (RT) of each obtained 
peak was compared with the data in the WILEY/NIST 
and Tutor Libraries (Beckley et al. 2014; Abd El-Kareem 
et al. 2016).

Toxicity

The lethal and sublethal concentrations of O. basilicum EO 
were estimated. Second instar larvae of S. littoralis and A. 
ipsilon were treated with five concentrations, viz 8000, 4000, 
2000, 1000, and 500 mg/L). For each concentration, five 
replicates were used (10 larvae/replicate). Castor bean leaves 
were dipped in each concentration for 20 s then left to air-
dry (Hamada et al. 2018), while other leaves were dipped 
in water for control group. The larvae fed on the treated 
leaves for 24 h and the survivors were kept in a clean jar 
supplied with fresh untreated leaves. The larval mortality 
was recorded daily (Moustafa et al. 2021a) after the cor-
rection with the natural death rate in the experiment using 
Abbott’s formula (Abbott 1925). The toxicity experiment 
was repeated twice.

Lethal and Sublethal Effects

The sublethal effect of basil EO on the development of both 
insects was evaluated using the estimated LC15 and LC50. 
Three replicates, each containing fifty larvae, were used 
for each concentration. The surviving larvae were kept in a 
tiny, dry cups containing fresh, untreated castor bean leaves 
(Moustafa et al. 2021b and 2023b) and the developmental 
changes were recorded daily. The developmental changes 
were evaluated based on the following variables: larval and 
pupal duration (days), pupation percentage, pupal weight 
(g), sex ratio, and adult emergence rate.

To calculate percentages of fecundity and hatchability, 
three replicates were used (five females and seven males/
replicate) (Moustafa et al. 2016 and 2023b).

Biochemical Assay

Sample Preparation

The 2nd instar larvae were treated with the LC15 and LC50 
estimated values of O. basilicum EO. The detoxifying 
enzymes’ activity was assessed after 24, 48, 72, and 96 h 
of treatment using 50 mg of the fresh body weight of the 
surviving larvae (Moustafa et al. 2023a). Five replicates 
were used for each concentration. The larvae were homog-
enized in 0.1 M phosphate buffer with pH 7.0 for carboxy-
lesterase (CarE), pH 7.4 for cytochrome P450 (P450), and 
pH 6.5 for glutathione S-transferase (GST). The superna-
tants from the homogenates were transferred into clean 
sterile tubes (each of 1.5 mL) after a 15-min centrifugation 
at 7000 rpm.

Carboxylesterase Assay

CarE activity (α- and β-esterase) was assessed accord-
ing to the methods outlined by van Asperen (1962) and 
Moustafa et al. (2023a). Alpha- or beta-naphthyl acetate 
(30 mM) was added to the homogenate sample and the 
mixture was left for 15 min at 25 °C. Fast Blue b (2%) 
and sodium dodecyl sulfate (5%) were added to stop the 
reaction. For α- and β- esterase, the optical density was 
measured at 550 and 600 nm, respectively, using a Jenway-
7205UV/Vis Spectrophotometer.

Cytochrome P‑450 Monooxygenase Assay

As described by Hansen and Hodgson (1971) and 
Moustafa et al. (2023a), P-nitro anisole (PN) was used for 
measuring cytochrome P-450 activity. A mixture of 100 
µL of 2 mM p-nitro anisole and 90 µL of homogenate sam-
ple was incubated at 27 °C for 2 min then 10 µL of 9.6 mM 
NADPH was added. The optical density was determined 
at 405 nm using a microplate reader (Clindiag-MR-96, 
ISO09001:2008, Belgium).

Glutathione S‑Transferase Assay

GST activity was determined in accordance with Habig 
et al. (1974) and Moustafa et al. (2023a) using 1-chloro-
2,4-dinitrobenzene (CDNB). The sample solution con-
sisted of the sample homogenate, 30 mM CDNB, and 
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50 mM GSH. The GST activity was measured at 340 nm 
for 5 min at 1-min intervals using a Jenway-7205 UV/V 
spectrophotometer,

Protein Determination

Coomassie brilliant blue assay was used to calculate the 
protein concentration according to Bradford (1976).

Molecular Docking Analysis

The interaction and binding between linalool (the most 
abundant constituent of basil EO) and GST were exam-
ined utilizing the molecular docking tests using the MOE 
2015 software. The structure of the compounds was created 
from the output of the Gaussian 09 software in the PDB 
file format. GST crystal structures (PDB ID: 1PN9) were 
downloaded from the protein data bank (http://​www.​rcsb.​
org.​pdb). The most potent complexes, the ligands, were 
built into 3D structures using Chem Draws 18.0 and saved 
as MDL molfiles. The compound that had the lowest binding 
affinity received the highest rating.

Data Analysis

SPSS (V.22) was used to enter, code, and analyze the data. 
The data were examined for meeting the criteria for para-
metric testing. The Shapiro–Wilk and Kolmogorov–Smirnov 
tests were used to determine the normality of the continuous 
variables. The probability and percentile data were standard-
ized using the Arcsine Square Root transformation. The data 
were presented as (mean ± SD). ANOVA was performed for 
both the control and treatments and the Tukey pairwise post 
hoc analysis was carried out. P-value was considered signifi-
cant at < 0.05. Chi-square (χ2) method was used (MiniTab 
V. 14) to record the observed and expected frequencies of 
the toxicity. The analysis became available using SigmaPlot 
(V.12.0) while R studio (V.2022.02.4.) was used for data 
visualization.

Results

Chemical Composition of Ocimum basilicum 
Essential Oil

The chemical compounds of basil EO were identi-
fied using GC–MS as shown in Table  1 and Fig.  1. 
The main bioactive compounds included linalool 
(29.34%), 3,7-dimethyl-2,6-octadienal (13.16%), 
2,6-octadienal, 3,7-dimethyl-, (Z)- (8.82%), and 
3-cyclohexen-1-ol,4-methyl-1-(1-methylethyl)- (7.20%).

Toxicity of O. basilicum EO to A. ipsilon and S. 
littoralis Larvae

LC15 and LC50 values of O. basilicum EO to the second 
instar larvae of both insects are shown in Table 2. The LC15 
values were 706.29 and 784.93 mg/L while the LC50 values 
were 2748.04 and 2665.70 mg/L to A. ipsilon and S. littora-
lis, respectively (Table 2).

Effect of O. basilicum EO on the Development of A. 
ipsilon and S. littoralis

As shown in Table 3, when the 2nd instar larvae of both 
insects were treated with the LC15 and LC50 of O. basilicum, a 
highly significant elongation in the larval duration (F = 25.63; 
df = 3, 378; P < 0.0001) was recorded. Nevertheless, no sig-
nificant difference (P > 0.05) was observed in the pupal dura-
tion except for the case of LC50 with A. ipsilon. In addition, no 
significant difference was found in pupation (F = 0.39; df = 2, 
17; P = 0.682), emergence (F = 0.14; df = 2, 17; P = 0.874), or 
female pupal weight (F = 6.12; df = 2,169; P = 0.003). Instead, 
the male pupal weight (F = 0.33; df = 2, 173; P = 0.721) of S. 
littoralis decreased after treating the larvae with LC15 and 
LC50 values. The proportion of emerged females of A. ipsilon 
slightly decreased (by 0.58-fold) after the treatment of the sec-
ond instar larvae with LC15 (LC15: χ2 = 4.26; P = 0.039) while 
it slightly increased (by 1.22-fold) after the treatment with 
LC50 (χ2 = 4.17; P = 0.041). As shown in Fig. 2, the same pat-
tern was recorded for S. littoralis (LC15: χ2 = 0.22; P = 0.642 
and LC50: χ2 = 0.06; P = 0.814).

Effect of O. basilicum EO on Detoxifying Enzymes

CarE (a-esterase and β-esterase), cytochrome P-450, and 
GST activities were assessed after 24, 48, 72, and 96 h of 
treating the 2nd instar larvae of A. ipsilon and S. littoralis 
with O. basilicum EO. As shown in Table 4, the CarE activi-
ties increased with all treatments in A. ipsilon, while were 
decreased in S. littoralis (Table 5). In contrast, O. basilicum 
EO significantly induced the MFO activity in both insects 
(Table 4 and 5) after 24, 48, and 72 h from treatments. Inter-
estingly, GST activity significantly increased in A. ipsilon 
(Table 4) and decreased in S. littoralis (Table 5).

Docking Investigation

Docking on the receptor of GST (PDB ID: 1PN9)  The dock-
ing procedure (Fig. 3) was initially validated by re-docking 
with the co-crystallized s-Hexylglutathione ligand (GTX) 
in the enzyme binding pocket with an energy score  (S) 
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of − 4.558 kcal/mol. As shown in Table 6, the docking 
energy score of the docked compound (linalool) with the 
enzyme receptor (PDB ID: 1PN9) was − 4.7748 kcal/mol, 
which is higher than that of the co-crystallized ligand. 

In addition, linalool bonded with serine (SER 9) residue 
(Table 6). The overall bonding connections by OH-bonds of 
the relevant amino acid residue against the docked molecule 
are depicted in Fig. 3.

Table 1   The chemical compounds identified in the essential oil from basil, Ocimum. basilicum 

RT Area % Compound name Match 
factor 
(MF)

2.02 0.49 2-Ethyl-oxetane 885
3.54 0.30 Bicyclo[3.1.0]hex-2-ene,4-methyl-1-(1-methylethyl)- 925
3.67 0.97 (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene 920
4.41 0.27 Bicyclo[3.1.1]heptane,6,6-dimethyl-2-methylene- 929
4.48 0.47 5-Hepten-2-one, 6-methyl- 873
5.32 1.64 o-Cymene 930
5.46 3.82 Eucalyptol 939
6.34 1.11 Cyclohexanol,1-methyl-4-(1-methylethenyl)-, cis- 846
6.70 0.77 2-Furanmethanol,5-ethenylterahydro-à, à,5-trimethyl-,trans 917
7.08 29.34 Linalool 927
8.16 1.01 Bicyclo [2.2.1]heptan-2-one,1,7,7-trimethyl-, (1S)- 905
9.05 7.20 3-Cyclohexen-1-ol,4-methyl-1-(1-methylethyl)- 936
9.49 1.39 Benzene,1-methoxy-4-(1-propenyl)-, (Z)- 896
9.75 0.37 2-Decenal, (E)- 828
10.20 5.51 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- 929
10.50 8.82 2,6-Octadienal, 3,7-dimethyl-, (Z)- 942
10.87 3.12 Geraniol 936
11.28 13.16 3,7-Dimethyl-2,6-octadienal 943
11.46 0.25 2,6-Octadien-1-ol, 3,7-dimethyl-,formate, (Z)- 903
11.64 0.32 Bicyclo[2.2.1]heptan-2-ol,1,3,3-trimethyl-, acetate,endo- 900
12.02 0.31 2,6-Octadien-1-ol, 3,7-dimethyl-,formate, (Z)- 895
13.48 0.87 Phenol,2-methoxy-4-(2-propenyl)- 932
13.56 1.18 2,6-Octadien-1-ol, 3,7-dimethyl-,acetate, (Z)- 871
13.98 0.27 Tricyclo[4.4.0.0(2,7)]dec-3-ene, 926
14.06 0.48 2,6-Octadien-1-ol, 3,7-dimethyl-,acetate 918
14.19 0.32 (-)-á-Bourbonene 757
14.34 0.49 Cyclohexane,1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1à,2á,4á)]- 919
15.06 1.98 Caryophyllene 942
15.40 3.81 Bicyclo[3.1.1]hept-2-ene,2,6-dimethyl-6-(4-methyl-3pentenyl)- 954
15.93 0.77 Humulene 933
16.63 0.32 1,6,10-Dodecatriene,7,11-dimethyl-3-methylene-,(E)- 945
16.93 0.40 1,4-Methanoazulen-9-ol,decahydro-1,5,5,8a-tetramethyl-,[1R-(1à,3aá,4à,8aá,9S*)]- 784
17.06 0.31 Azulene,1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-,[1S-(1à,7à,8aá)]- 895
17.21 0.30 2,6,10-Dodecatrien-1-OL,3,7,11-trimethyl- 868
17.34 0.81 Naphthalene,1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-,(1à,4aá,8aà)- 946
17.98 2.30 Cyclohexene,4-[(1E)-1,5-dimethyl-1,4-hexadien-1-yl]-1-methyl- 939
18.50 0.21 Nerolidol 897
18.92 1.56 Caryophyllene oxide 917
19.56 0.37 (1R,3E,7E,11R)-1,5,5,8-tetramethyl-12oxabicyclo[9.1.0] dodeca-3,7-dien 895
19.72 0.36 Epicubenol 897
19.85 0.42 10-Epi-ç-eudesmol 935
20.34 1.54 .tau.-Cadinol 920
31.32 0.29 1H-Benzocyclohepten-7-ol,2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, cis- 801
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Discussion

Insecticide resistance is a critical problem in insect man-
agement. Resistance develops through such mechanisms 
as resistance to penetration, target-site alteration, and 
enhanced activity of detoxification enzymes (Tangtrakul-
wanich and Reddy 2014). Accordingly, essential oils have 
been used as insecticides due to their ability to act on 
multiple targets. They can enhance the insecticidal effect 
and are promising as an alternative to traditional insecti-
cides (Isman 2020; Duque et al. 2023). In general, the Oci-
mum genus is well known for its insecticidal effect against 
diverse insect pests (Rodríguez-González et al. 2019). The 
basic chemical composition of Ocimum plants is highly 
variable and may rely on the genetic properties of the plant 
and the cultivation conditions (Vieira and Simon 2000). 
Herein, we analyzed and identified the chemical compo-
sition of basil (O. basilicum) EO using GC–MS and the 
analysis revealed that the major constituents were linalool 

(29.34%), the most abundant compound, 3,7-dimethyl-
2,6-octadienal (13.16%), 2,6-octadienal, 3,7-dimethyl-, 
(Z)- (8.82%), and 3-cyclohexen-1-ol,4-methyl-1-(1-meth-
ylethyl)- (7.20%). The results also revealed that this plant 
may belong to linalool chemotype, which could have a 
repellent and toxic activities against insects (Rozman et al. 
2007; Chaaban et al. 2019).

Regarding the toxicity of O. basilicum EO, no signifi-
cant difference in its LC50 values between A. ipsilon and 
S. littoralis (about 1.03-fold). Beside toxicity, the sublethal 
effects on the behavioral and physiological parameters may 
play a key role in insect pests management (de Araújo 
et al. 2017). Our experiment showed that the LC15 and 
LC50 values of O. basilicum EO significantly prolonged 
the larval duration in both insects, in comparison with the 
control. Similarly, the pupal durations of A. ipsilon were 
significantly prolonged after administering the 2nd instar 
larvae with LC50 of O. basilicum EO. However, no signifi-
cant differences in the pupal duration of S. littoralis were 

Fig. 1   Chemical structure of the main bioactive compounds of basil EO, O. basilicum 

Table 2   Toxicity of basil 
(Ocimum. basilicum) essential 
oil to the second instar 
larvae of Agrotis ipsilon and 
Spodoptera littoralis 

Compounds LC15 (mg/L)
(95% confidence limits)

LC50 (mg/L)
(95% confidence limits)

Slope ± SE χ2

A. ipsilon 706.29
(220.94–1222.27)

2748.04
(1742.33–4092.38)

1.75 ± 0.04 2.14

S. littoralis 784.93
(454.38–1107.66)

2665.70
(2045.53–3529.39)

1.95 ± 0.28 4.47

Table 3   Effect of basil (Ocimum basilicum) essential oil on the development of Agrotis ipsilon and Spodoptera littoralis after treating the 2nd 
instar larvae with LC15 and LC50 values

Means that do not share a letter in row are significantly different

Developmental parameters Mean ± SD

A. ipsilon S. littoralis

Control LC15 LC50 Control LC15 LC50

Larval duration (days) 19.70b ± 1.3 21.68a ± 1.42 21.96a ± 1.28 16.59b ± 1.71 16.52b ± 1.19 17.65a ± 0.95
Pupal duration (days) 17.51b ± 1.69 18.42b ± 2.06 20.20a ± 1.8 13.15a ± 1.45 13.0a ± 1.34 13.10a ± 1.5
Pupation (%) 100a 95.83a ± 2.94 90.60a ± 7.43 95.53a ± 4.15 96.63a ± 2.73 92.20a ± 8.73
Male pupal weight (g) 0.35a ± 0.06 0.33a ± 0.06 0.33a ± 0.06 0.27a ± 0.03 0.25ab ± 0.03 0.24b ± 0.03
Female pupal weight (g) 0.36a ± 0.08 0.38a ± 0.07 0.31a ± 0.06 0.28a ± 0.04 0.26a ± 0.03 0.27a ± 0.04
Emergence (%) 98.61a ± 1.96 98.03a ± 2.77 95.23a ± 6.73 100a 100a 98.86a ± 1.6



Towards Sustainable Pest Management: Toxicity, Biochemical Effects, and Molecular Docking…

Fig. 2   Sex ratio of the emerged adults of Agrotis ipsilon and Spodoptera littoralis after treating the 2nd instar larvae with LC15 and LC50 of Oci-
mum basilicum essential oil

Table 4   The activity of detoxification enzymes (carboxylesterase (α- and β-esterase), cytochrome P-450, and GST) after 24, 48, 72, and 96 h of 
treating the 2nd instar larvae of Agrotis ipsilon with LC15 and LC50 of Ocimum basilicum essential oil

Means that do not share a letter in column are significantly different

Enzymes Treatments Mean ± SD

Hours after treatments

24 h 48 h 72 h 96 h

α-esterase (µmole/mg of protein) Control 0.08b ± 0.010 0.12a ± 0.020 0.16a ± 0.03 0.19ab ± 0.01
LC15 0.12ab ± 0.010 0.23a ± 0.029 0.23a ± 0.02 0.25a ± 0.04
LC50 0.15a ± 0.034 0.22a ± 0.056 0.19a ± 0.03 0.14b ± 0.03

β-esterase (µmole/mg of protein) Control 0.14a ± 0.033 0.12b ± 0.022 0.18b ± 0.002 0.25ab ± 0.009
LC15 0.24a ± 0.063 0.34a ± 0.035 0.33a ± 0.033 0.29a ± 0.028
LC50 0.26a ± 0.013 0.29a ± 0.037 0.27a ± 0.024 0.19b ± 0.028

Cytochrome P-450 (µmole/min /mg 
of protein)

Control 0.007c ± 0.0004 0.008a ± 0.0003 0.005b ± 0.0005 0.011a ± 0.001
LC15 0.011b ± 0.0003 0.012a ± 0.0021 0.008a ± 0.001 0.017a ± 0.001
LC50 0.016a ± 0.0017 0.011a ± 0.0019 0.007ab ± 0.0002 0.012a ± 0.004

GST (µmol/ml/mg of protein) Control 20.55b ± 5.046 21.23c ± 6.153 35.78b ± 1.80 47.32b ± 5.391
LC15 63.03a ± 17.725 51.44b ± 8.047 93.08a ± 8.10 96.42a ± 11.88
LC50 90.45a ± 13.787 90.0a ± 6.169 86.74a ± 12.17 100.8a ± 7.172
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recorded after treating the 2nd instar larvae with LC15 and 
LC50, compared to the control.

As to pupation, emergence percentage, and female pupal 
weight, no significant difference was observed after the 
treatment of the second instar larvae of both insects with 
LC15 and LC50 of O. basilicum EO. Nevertheless, the male 
pupal weight of S. littoralis was significantly decreased after 
treating the larvae with LC15 and LC50 values. It has been 
reported that poor nutrition before pupation affected pupa 
development and prolonged the pupa duration (Aqueel et al. 
2015). Earlier studies also confirmed the sublethal effects 
of chemical or bio-insecticides in a number of lepidopteran 
pests including A. ipsilon (Moustafa et al. 2021a and 2022), 
S. littoralis (Moustafa et al. 2021b and 2023a), Plutella 
xylostella (Linnaeus) (Lepidoptera: Plutellidae) (Wang et al. 
2023), Mamestra brassicae (Linnaeus) (Lepidoptera: Noc-
tuidae) (Moustafa et al. 2016 and 2023b), and Tuta absoluta 
(Kandil et al. 2020). According to Santos et al. (2017) and 
Huisamen et al. (2023), the sublethal effect on individuals 
that is followed by physiological impairment can negatively 
affect the insect activities and population growth.

Detoxification enzymes are key players in insecticide 
metabolism in insects (Fouad et al. 2022; You et al. 2022; 
Aioub et al. 2023; Moustafa et al. 2023c; Prasannakumar 
et al. 2023). Insect resistance is usually accompanied with 
enhanced activity of these enzymes (David et al. 2013). 
In fact, the EOs mode of action needs further understand-
ing. The EOs elicit such distinct neurotoxic symptoms as 
hyperactivity, agitation, paralysis, and knockdown (Ahmadi 
et  al. 2022). Besides, some studies reported that EOs 
inhibit detoxifying enzymes (P450s, CarEs, and GSTs) in 
insects (Tak et al. 2016; Huang et al. 2020). As a target for 

insecticides, GST is crucial for pesticide detoxification. It 
converts lipid metabolites of insecticides or combines with 
toxic molecules via chelation, to protect tissues from oxida-
tive stress (Korkina 2016; Liao et al. 2017). As revealed by 
our results, GST activities increased significantly by 4.4-, 
4.2-, 2.4-, and 2.1-fold after 24, 48, 72, and 96 h of treating 
A. ipsilon larvae with LC50 of O. basilicum EO. However, a 
different pattern was recorded for S. littoralis larvae, where 
the LC50 of O. basilicum EO caused a noticeable inhibition 
of GST activity 3.8-, 2.5-, 3.6-, and 6.1-fold after 24, 48, 
72, and 96 h after treatment, as compared with control. The 
inhibition of GST can be attributed to the presence of vari-
ous ingredients in basil EO that act through various modes 
of action (Liao et al. 2017) while the GST enhanced activity 
could be an indicator of the adaptation of insects to xeno-
biotics (Koirala et al. 2022). The cytochrome P450 system 
protects insects from poisons (Liao et al. 2017). Our study 
indicated that O. basilicum EO significantly induced the 
cytochrome P450 activity by about 2.3-fold in A. ipsilon 
larvae after 24 h of treatment and by about 1.5-, 1.7-, and 
twofold in S. littoralis larvae after 24, 48, and 72 h of treat-
ment with the LC50.

Interestingly, the esterase family of enzymes hydrolyzes 
ester bonds in insecticides and changes their activities that 
would result in chemical stress in insects (Gong et al. 2021). 
Our results showed that the treatment of the 2nd instar larvae 
with LC15 and LC50 of O. basilicum EO caused a significant 
increase in β-esterase activity in A. ipsilon whereas a sig-
nificant decline was observed in S. littoralis, after 48 and 
72 h of treatment.

Being more sensitive to essential oils than P450s and 
CarEs, GST may serve as the primary target of essential oils. 

Table 5   The activity of detoxification enzymes (carboxylesterase (α- and β-esterase), cytochrome P-450, and GST) after 24, 48, 72, and 96 h of 
treating the 2nd instar larvae of Spodoptera littoralis with LC15 and LC50 of Ocimum basilicum essential oil

Means that do not share a letter in column are significantly different

Enzymes Treatments Mean ± SD

Hours after treatments

24 h 48 h 72 h 96 h

α-esterase (µmole/mg of protein) Control 0.30a ± 0.032 0.13a ± 0.001 0.17a ± 0.010 0.22a ± 0.057
LC15 0.07b ± 0.005 0.08b ± 0.003 0.11b ± 0.014 0.23a ± 0.037
LC50 0.06b ± 0.013 0.09b ± 0.007 0.09b ± 0.014 0.23a ± 0.017

β-esterase (µmole/mg of protein) Control 0.37a ± 0.373 0.35a ± 0.035 0.33a ± 0.023 0.49a ± 0.083
LC15 0.14a ± 0.034 0.21b ± 0.045 0.25b ± 0.011 0.29b ± 0.023
LC50 0.18a ± 0.007 0.18b ± 0.017 0.23b ± 0.027 0.26b ± 0.01

Cytochrome P-450 (µmole/min /mg 
of protein)

Control 0.010b ± 0.0007 0.006b ± 0.0002 0.003b ± 0.0001 0.007a ± 0.0002
LC15 0.010b ± 0.0002 0.008ab ± 0.0002 0.006a ± 0.001 0.014a ± 0.0027
LC50 0.015a ± 0.0017 0.010a ± 0.002 0.006a ± 0.0009 0.008a ± 0.0031

GST (µmol/ml/mg of protein) Control 19.48a ± 1.23 11.75a ± 1.575 17.41a ± 1.834 19.57a ± 2.951
LC15 4.28b ± 0.579 2.95b ± 0.449 3.30b ± 0.774 3.71b ± 0.705
LC50 5.17b ± 1.128 4.76b ± 1.084 4.84b ± 0.577 3.22b ± 0.722
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Therefore, the decrease in GST activity may be one major 
cause of insect mortality. In this context, the molecular 
docking study enables us to specify the most optimal ligands 
for the GST enzyme. The docking energy score of linalool, 

the main constituent of basil EO, with the enzyme recep-
tor (PDB ID: 1PN9) was higher than that of the co-crystal-
lized ligand, which confirmed the strong binding between 
the compound and the receptor. In docking simulations, a 
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Fig. 3   2D and 3D molecular docking simulation of the interactions between the s-Hexylglutathione ligand (GTX) in the enzyme binding pocket 
and linalool with the active site of the receptor of GST (PDB ID: 1PN9)

Table 6   Docking interaction data calculations of co-crystallized s-Hexylglutathione ligand (GTX) in the enzyme binding pocket and linalool 
with the active site of the receptor of GST (PDB ID: 1PN9)

Compound Energy score (S) 
(Kcal/mol)

Affinity bond 
strength (Kcal/mol)

Affinity bond length (in Ao 
from main residue)

Amino acids Ligand Interaction

s-Hexylglutathione  − 4.558  − 4.9 2.61 GLU 202 O 33 H-donor
 − 1.2 3.01 SER 9 O 11 H-acceptor
 − 1.1 2.98 LYS 206 N 29 H-acceptor
 − 1.5 3.18 MET 34 O 36 H-acceptor

Linalool  − 4.7748  − 1.3 2.96 SER 9 O 28 H-acceptor



	 M. Awad et al.

lower energy score indicates stronger binding or greater 
engagement (Shahbaaz et al. 2017). Our current findings are 
consistent with the experimental findings of in vitro assay. 
Interaction with the detoxification enzymes is recognized 
to be the most critical element influencing the biological 
activity of the compounds against enzymes. For instance, 
the interaction between citral in Cymbopogon citratus EO 
and cytochrome P-450 enzyme of S. littoralis was reported 
by Moustafa et al. (2023a). Overall, the results could provide 
better understanding of the mode of action of O. basilicum 
EO at the molecular level, particularly linalool binding affin-
ity with GST receptor.

Conclusion

In conclusion, O. basilicum essential oil demonstrated lethal 
and sublethal effects against A. ipsilon and S. littoralis, two 
Lepidopteran pests severely damaging agricultural produc-
tion worldwide. In addition, the strong binding between lin-
alool, the main constituent of O. basilicum EO, and the GST 
receptor suggests that GST may be a primary target for O. 
basilicum EO. The obtained results are expected to promote 
sustainable pest control practices. However, in future inves-
tigations, insights into the effects of O. basilicum EO under 
field conditions will be needed to appropriately validate our 
results.
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