Skip to main content
Log in

Midgut Genes Knockdown by Oral dsRNA Administration Produces a Lethal Effect on Cotton Boll Weevil

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The “cotton boll weevil” (Anthonomus grandis Boheman) is a key pest in America whose larval stage develops within the cotton flower bud. During its development, the larva uses the flower bud as food and as a shelter from predators. This behavior limits the effective control through conventional insecticide applications and biocontrol techniques. Increasing genetic information from insects has allowed the development of new control technologies based on the use of RNA interference (RNAi) to design orally delivered double-stranded RNA (dsRNA) strategies. In this study, we evaluated the effect of continuous oral administration of six specific dsRNA in order to identify an effective target gene for RNAi-mediated control of cotton boll weevil. First, six selected A. grandis gene fragments were amplified and cloned to perform in vivo synthesis of the specific dsRNA, and subsequently, larvae and adults were fed with this dsRNA for 2 weeks. Larvae mortality ranged from 40 to 60% depending on the targeted gene sequence. Indeed, α-amylase and cytochrome p450 dsRNAs were the most effective. Oral administration in adults caused smaller but still significant death rates (15–30%). Thus, the results demonstrated RNAi responses depend on life stages and target genes. The dsRNA ingestion was capable of providing knockdown mRNA levels in cotton boll weevil midgut and this effect was significantly higher in the larval stage. In this study, we present a new report of silencing of midgut genes in A. grandis larva induced by continuously feeding with dsRNA. This potential new tool should be further evaluated in cotton boll weevil control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Almeida Garcia R, Lima Pepino Macedo L, Cabral Do Nascimiento D, Gillet F, Moreira-Pepino C, Faheem M, Moreschi Basso A, Mattar Silva M, Grossi De Sa M (2007) Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS One 12:e0189600

    Article  Google Scholar 

  • Araujo R, Santos A, Pinto F, Gontijo N, Lehane M, Pereira M (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum J, Bogaert T, Clinton W, Heck G, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Q, Kong J, Hu F, Li B, Wu C, Qin C, Zhang P, Shi N, Hong Y (2015) MR VIGS: microRNA-based virus-induced gene silencing in plants. Methods Mol Biol 1287:147–157

    Article  CAS  PubMed  Google Scholar 

  • Cross W, Lukefahr M, Fryxell P, Burke H (1975) Host plants of the boll weevil. Environ. Entomol. 4: 19-26. Environ Entomol 4:19–26

    Article  Google Scholar 

  • Cuadrado GA (2002) Anthonomus grandis Boheman (Coleoptera: Curculionidae) en la Zona Central y Sur Oeste de Misiones, Argentina: Polen Como Fuente Alimenticia y su Relación con el Estado Fisiológico en Insectos Adultos. Neotrop Entomol. 31:121–132

    Article  Google Scholar 

  • Dias S, Franco O, Magallanes CP, De Oliveira-Neto O, Laumann R, Figueira E, Melo F, Grossi De Sa MF (2005) Molecular cloning and expression of an alpha-amylase inhibitor from rye with potential for controlling insect pests. Protein J 24:113–123

    Article  CAS  PubMed  Google Scholar 

  • Fire AX, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Firmino AA, Fonseca FC, De Macedo LL, Coelho RR, Antonio De Souza J, Togawa RC, Silva-Junior OB, Pappas J, Da Silva MC, Engler G, Grossi De Sa MF (2013) Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests. PLoS One 8:e85079

    Article  PubMed  PubMed Central  Google Scholar 

  • Fye RE, Cole CL, Bull DL (1970) Populations of boll weevil in selected felds in Presidio County, Texas, and Ojinaga, chiauahua, Mexico, in late 1968 subsequent to reproductive-diapause control program in 1965-1967. J Econ Entomol 63:1084–1086

  • Gamboa Cedeño A, Niz J, Sciocco de Cap A, Salvador R (2015) Double-stranded RNA synthesized in bacteria can be transferred to bee and varroa tissues. J Apic Res 54:2:99-100

  • Garralla GA (2000) Plantas Alimenticias Alternativas del Picudo del Algodonero (Anthonomus grandis Boh.) (Coleoptera: Curculionidae) en la Provincia de Formosa, Argentina. Análisis Palinológico del Tracto Digestivo. An Soc Entomol Brasil 29:245–255

    Article  Google Scholar 

  • Gillet FX, Garcia RA, Macedo LL, Albuquerque EV, Silva MC, Grossi Da Silva MF (2017) Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Front Physiol 8:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins AR, Taft HM, James W (1975) Reference LC50 values for some insecticides against the boll weevil. J Econ Entomol 68:189–192

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  CAS  PubMed  Google Scholar 

  • Joga MR, Zotti M, Smaghee G, Christiaens O (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanga LH, Plapp FW, Wall ML, Karner MA, Huffman RL, Fuchs TW, Elzen GW, Martinez-Carillo JL (1995) Monitoring tolerance to insecticides in boll weevil populations (Coleoptera: Curculionidae) from Texas, Arkansas, Oklahoma, Mississippi, and Mexico. J Econ Entomol 88:198–204

  • Lecuona R (2009) Cría masiva en laboratorio del picudo del algodonero Anthonomus grandis Boheman (Coleoptera:Curculionidae),. En: Actas de XIII Jornadas Fitosanitarias Argentinas. Termas de Rio Hondo, S. del Estero,Argentina., pp. Z-45

  • Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H (2011a) RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Manag Sci 67:852–859

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang M, Zhang H (2011b) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6:e17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−ΔΔ C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Macedo L, Souza A, Coelho R, Fonseca F, Firmino A, Silva M, Fragoso R, Albuquerque E, Silva M, Almeida Engle J, Grossi Da Silva FM (2017) Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. Biotech Res and Innov 1(1, January–December):72–86

    Article  Google Scholar 

  • Mao YB, Wnah J, Hong GJ, Tao X, Wang L, Huang LJ, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Morales LP, Mendes Neto SF, Costa F, Oliveira T (1997) Resistência de genótipos de algodoeiro a Anthonomus grandis Boh Frankliniella sp e Aphis gossypii Glover. An Soc Entomol Brasil 26:93–98

    Article  Google Scholar 

  • Nunes FM, Simoes ZL (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol 39:157–160

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Neto OB, Batista JA, Rigden DJ, Franco O, Falcao R, Fragoso RR, Mello LV, Dos Santos R, Da Grossi SAMF (2003) Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance. J Protein Chem 22:77–87

    Article  CAS  PubMed  Google Scholar 

  • Philip BN, Tomoyasu Y (2011) Gene knockdown analysis by double-stranded RNA injection. Methods Mol Biol 772:471–497

    Article  CAS  PubMed  Google Scholar 

  • Rangasamy M, Siegfried BD (2012) Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag Sci 68:587–591

    Article  CAS  PubMed  Google Scholar 

  • Salvador R, Principi D, Berretta M, Fernandez P, Paniego N, Sciocco de Cap A, Hopp E (2014) Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae). J Insect Sci 14:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharf ME, Schwinghammer MA (2008) Application of RNA interference in functional genomics studies of a social insect. Methods Mol Biol 442:205–229

    Article  CAS  PubMed  Google Scholar 

  • Showler AT (2007) Subtropical boll weevil ecology. Am Entomol 53:240–249

    Article  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJP, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Teague T, Cate J R, Plapp F W (1983) Toxicity of azinphosmethyl and methyl parathion to three populations of boll weevil. Southwest Entomol 8:107–112

  • Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 13;4(7)

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36:153–161

    Article  CAS  PubMed  Google Scholar 

  • Vatanparast M, Kazzazi M, Mirzaie-Asl A, Hosseininaveh V (2017) RNA interference-mediated knockdown of some genes involved in digestion and development of Helicoverpa armigera. Bull Entomol Res 9:1–14

  • Walshe DP, Lehane SM, Lehane MJ, Haines LR (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 18:11–19

    Article  CAS  PubMed  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu X, Ma J, Zhai J (2013) Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bull Entomol Res 103:584–591

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994

    Article  CAS  PubMed  Google Scholar 

  • Zhao YY, Yang G, Wang-Pruski G, You MS (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815–822

    Article  CAS  Google Scholar 

  • Zhou X, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Julia Sabio y García for assistance with the English edition. Addgene Inc. (Cambridge, MA, USA) provided the plasmid L4440, whereas Caenorhabditis Genetics Center (CGC, Minneapolis, MN, USA), which is funded by the NIH National Center for Research Resources (NCCR), kindly provided the bacterial strain HT115(DE3). Most of the work was supported by a joint venture project entitled “Knowledge generation and development of non-pollutant biotechnologies for the control of cotton weevil” signed between INTA and the governments of Chaco, Formosa, Santa Fe, and Santiago del Estero provinces (Argentina).

Funding

Most of the work was supported by a joint venture project entitled “Knowledge generation and development of non-pollutant biotechnologies for the control of cotton weevil” signed between the governments of Chaco, Formosa, Santa Fe, and Santiago del Estero provinces (Argentina) and the National Institute of Agricultural Technology (INTA).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Salvador, Ricardo; Niz, José; Pedarros, Analia; Nakaya, Pablo; and Hopp, Esteban. Investigation: Salvador, Ricardo; Niz, José; Pedarros, Analía; and Nakaya, Pablo. Supervision: Salvador, Ricardo and Hopp, Esteban. Writing original draft: Salvador, Ricardo. Writing review and editing: Salvador, Ricardo and Hopp, Esteban. Funding acquisition: Hopp, Esteban.

Corresponding author

Correspondence to Ricardo Salvador.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Herbert AA Siqueira – UFRPE

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, R., Niz, J.M., Nakaya, P.A. et al. Midgut Genes Knockdown by Oral dsRNA Administration Produces a Lethal Effect on Cotton Boll Weevil. Neotrop Entomol 50, 121–128 (2021). https://doi.org/10.1007/s13744-020-00819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-020-00819-1

Keywords

Navigation