
Journal on Data Semantics (2021) 10:165–188
https://doi.org/10.1007/s13740-021-00132-z

ORIG INAL ART ICLE

Integrating BPMN and DMN: Modeling and Analysis

Massimiliano de Leoni1 · Paolo Felli2 ·Marco Montali2

Received: 28 July 2020 / Revised: 12 February 2021 / Accepted: 27 May 2021 / Published online: 15 June 2021
© The Author(s) 2021

Abstract
The operational backbone of modern organizations is the target of business process management, where business process
models are produced to describe how the organization should react to events and coordinate the execution of activities so as
to satisfy its business goals. At the same time, operational decisions are made by considering internal and external contextual
factors, according to decision models that are typically based on declarative, rule-based specifications that describe how input
configurations correspond to output results. The increasing importance and maturity of these two intertwined dimensions,
those of processes and decisions, have led to a wide range of data-aware models and associated methodologies, such as BPMN
for processes and DMN for operational decisions. While it is important to analyze these two aspects independently, it has been
pointed out by several authors that it is also crucial to analyze them in combination. In this paper, we provide a native, formal
definition of DBPMN models, namely data-aware and decision-aware processes that build on BPMN and DMN S-FEEL,
illustrating their use and giving their formal execution semantics via an encoding into Data Petri nets (DPNs). By exploiting
this encoding, we then build on previous work in which we lifted the classical notion of soundness of processes to this richer,
data-aware setting, and show how the abstraction and verification techniques that were devised for DPNs can be directly used
for DBPMN models. This paves the way towards even richer forms of analysis, beyond that of assessing soundness, that are
based on the same technique.

Keywords BPMN · DMN · Decision-aware processes · Data-aware soundness

1 Introduction

Modern organizations rely on a variety of management dis-
ciplines, with IT as underlying enabling technology, to drive
their internal operations and the interactions with customers
and other organizations, and in turn continuously improve
and optimize strategic goals.

The operational backbone of an organization is the tar-
get of business process management, which focuses on the
discovery, modeling, analysis, enactment, and continuous

This work has been partially supported by the Unibz projects
DACoMan, SMART-APP, WineID and VERBA.

B Paolo Felli
paolo.felli@unibz.it

Massimiliano de Leoni
deleoni@math.unipd.it

Marco Montali
montali@inf.unibz.it

1 University of Padua, Padua, Italy

2 Free University of Bozen-Bolzano, Bolzano, Italy

improvement of business processes. (Business) processmod-
els are produced to describe how the organization should
react to events and coordinate the execution of activities so
as to satisfy its business goals, with particular emphasis on
the order in which such activities have to be executed (the
so-called process control flow). At the same time, process
management systems are used to orchestrate the execution
of process instances according to what is dictated by the
control flow, recording the event data generated during the
execution.

When enacting a process, multiple operational decisions
have to be taken, considering internal and external contex-
tual factors and in turn determining how process instances
are routed. Operational decisions fall under the umbrella
of enterprise decision management, which broadly speaking
targets decision making within the organization, in connec-
tionwith the strategy and processes enacted therein. Decision
models are typically based on declarative, rule-based speci-
fications that describe how input configurations correspond
to output results.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-021-00132-z&domain=pdf
http://orcid.org/0000-0001-9561-8775

166 M. de Leoni et al.

The increasing importance and maturity of the two inter-
twined dimensions of processes and decisions have led to a
wide range of models and associated methodologies, finally
culminating in two standards by the Object Management
Group (OMG): BPMN for processes [1] and DMN for oper-
ational decisions [2]. While BPMN has been around for
quite some time, DMN is the recent result of a revived
interest in enterprise decision management and its rela-
tionship with business process management. The advent
of the DMN standard has triggered a number of technical
and empirical studies on decision models specified using
DMN [3]. From the technical point of view, many anal-
ysis tasks aimed at checking for correctness, refactoring,
and optimizing decision models are now being addressed,
by (re)studying well-established analysis problems [4,5]
in light of the specific modeling choices adopted by the
standard [6]. In particular, the S-FEEL DMN language
[2] provides an interesting trade-off between expressive-
ness and computational tractability of various forms of
reasoning [6,7].

Several connections between decision and process mod-
els have been explored in the literature since the creation
of the DMN standard. In [8], a technique is introduced to
automatically extract a DMN decision requirement diagram
from a BPMN process model, whereas in [9] the extraction
is casted as a mining problem applied to process execution
trails. In [10], DMN models are infused with the notion of
context, and used on the one hand to capture decisions sepa-
rately from process models, and on the other hand to support
process variability by design.

TheDMNstandard [2] advocates amore tightly integrated
approach between BPMN and DMN, where business rules
tasks included in a BPMN diagram are linked to a corre-
sponding DMN decision. The standard itself does so by only
giving some general guidelines. This triggers a number of
questions on the overall execution semantics of the resulting,
integrated models, and in turn on how to analyze them [11–
13]. In fact, seemingly correct decisions and processes may
lead to subtle, undesired behaviors when they are combined
into a single, integrated model. While this type of integration
is the one of interest for us, it is important to stress that similar
questions arise when the process is described using model-
ing languages that are different from BPMN. For example,
[14] studies how to integrate DMN decisions and declarative
process models.

Within the literature addressing the integration of BPMN
and DMN, two main lines of research have been pursued. A
first direction targetsmethodologies and goodmodeling prin-
ciples for processes and decisions [12], considering not just
single DMN tables, but also their interconnection into deci-
sion requirement graphs. The resulting model is described
conceptually, but does not come with a formal execution
semantics. A second direction concentrates on the overall

correctness of so-called decision-aware processes, where
BPMN business rule tasks are linked to DMNS-FEEL tables
[11]. Specifically, [11] brings forward a set of correctness
checks that build upon the well-known notion of control-
flow soundness [15], lifting it to more involved soundness
criteria for decision-aware processes. Also in this case, the
overall model is informally described. An implicit execution
semantics is given in [16] using Colored Petri nets, show-
ing that checking the decision-aware soundness criteria is
decidable.

In a parallel research thread, we have studied the formal-
ism of Data Petri nets (DPNs) [17], which extends classical
Petri nets with a weak form of data: case variables that can
be read and written by transitions, to, respectively, represent
guards on transition firing, and constrained updates. Specifi-
cally, in [18] we have studied, in the spirit of [11], how to lift
the classical notion of soundness to this richer, data-aware
setting, and how to devise suitable data abstraction tech-
niques so as to give an effective way for checking data-aware
soundness; the approach is then implemented via an encod-
ing into Colored Petri nets. In [19], we have extended the
model and our technique so as to account also for variable-
to-variable conditions. In such works, we have been only
claiming that DPNs could provide the formal underpinning
to define and check for correctness decision-aware processes
in the style of [11,12].

The purpose of this paper is to substantiate this claim,
providing a native, formal definition of decision-aware pro-
cesses based on BPMN and DMN decision tables with
S-FEEL conditions, and defining a corresponding execution
semantics via DPNs. More specifically, our contribution is
threefold:

1. We introduce DBPMN, a formal model that extends
BPMN with an explicit language to express guards and
updates over case data objects (represented as simple vari-
ables), and with business rule tasks that are defined in
an extension of DMN S-FEEL. Differently from [11,16],
where only the start event can input data into the process,
in DBPMN any manual task can update data objects, cap-
turing (controlled) user input. In addition, we consider the
more recent version of the DMN standard, where deci-
sion tables may come with default outputs, an aspect that
requires specific care. Furthermore, our model supports
the notion of parameterized decision tables, containing
placeholders that are dynamically bound to actual val-
ues only at runtime. This, in turn, allows the modeler to
capture configurable decision tables, as well as decision
tables with column-to-column conditions. Although we
do not consider decision requirement graphs in our for-
malization, DBPMN incorporates various good modeling
practices defined in [12].

123

Integrating BPMN and DMN: Modeling and Analysis 167

2. We define the execution semantics of DBPMN through
DPNs, by modularly translating the process control-
flow using well-known methods, and then enriching the
resulting net with guards and updates that reflect the
manipulation of data objects and the logic of decision
tables linked to business rule tasks. This is done via a
two-step encoding, which first translates a DBPMN pro-
cess into an extended DPN that can express full boolean
guards andupdates overmultiple variables, and then trans-
lates the extended DPN into a standard DPN. The latter
encoding is of independent interest.

3. We show how we can take advantage from the DBPMN-
to-DPN encoding not only to get an execution semantics,
but also to obtain effective verification techniques. In par-
ticular, we concentrate on the decision-aware soundness
properties in [11], define them formally in our setting,
and show how they can be checked using the machinery
introduced in [19].

The literature flourishes of integrated models for processes
and data that are richer than the DPN framework, especially
for what concerns the data component and the corresponding
verification tasks [20]. However, these approaches comewith
too general techniques that are not specifically suited to the
problem we target here, nor come with readily implemented
techniques. By adopting a more controlled formal model and
related techniques, which are more tailored to DBPMN, we
instead set the basis for proof-of-concept implementations,
and also for tackling more sophisticated reasoning tasks. In
fact, the encoding into DPNs we adopt in this paper can
already be used, off-the-shelf, to consider more sophisticated
properties such as those studied in [21], which account for
multiple actors.

The remainder of this paper is organized as follows. In
Sect. 2we give an informal description of theDBPMNmodel
by introducing a running example. The model is then for-
mally presented in Sect. 3. In particular, we first briefly recall
the components of a BPMN control-flow in Sect. 3.1; then
in Sect. 3.2 we formalize DMN decision tables whose rules
are specified in (an extended version of) the S-FEEL lan-
guage; finally in Sect. 3.3 we show how these two ingredients
are combined. In Sect. 4 we give the execution semantics of
DBPMN via DPNs, by showing how the possible executions
of a DBPMN process can be represented as a DPN. Then,
in Sect. 5 we consider a set of properties that can be used
to characterize various notion of data-aware correctness of
DPNs, in terms of soundness, which in turn can be used
to express the correctness of DBPMN processes. We show
in Sect. 5.2 how these properties can be verified by relying
on known verification techniques devised for DPNs. Finally,
Sect. 6 concludes the paper, providing some comments on
the limitations of the current approach and on how it could
be extended.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN
model and its soundness analysis, by means of the running
example concerned with the management of packages by a
fictitious company called BlackShip.

To disambiguate the terminology, in this paper we call
DBPMN model the integrated model that we formalize, and
DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively
to highlight the main distinctive features of the DBPMN
model, of which we defer the formal definition to Sect. 3.
As explained at the end of this section, this process is inten-
tionally flawed even though this is not immediately apparent.
We use this example to motivate our unified modeling and
verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects
manipulation and the decision logic) is unable to verify the
correctness of these processes.
Process description The example captures a fragment of a
typical order-to-delivery process and is graphically repre-
sented in DBPMN as shown in Fig. 1.

The process starts when a package is received by Black-
Ship from a customer. The package comes with an indication
of its type (represented by the pType data object in Fig. 1),
which implicitly identifies the size of the package.

To determine how to handle the package, BlackShip
needs to obtain two physical features of the package, namely
length and weight. These two features are obtained con-
currently. To get the package length, the process uses a
business rule task that computes the package length (data
object pLength) from pType. This getlength task links to a
DMN decision table where package types are put in corre-
spondence with their lengths. To link the table with the task,
it is necessary to indicate how the input/output columns of
the table (i.e., Type and Length) are mapped to actual data
objects that are manipulated by the process. Such mapping
is shown in the figure, next to the decision table.

To get the package weight, a dedicated manual task is
executed, storing the obtained result into the pWeight data
object. The actual weight value is measured externally to the
process and then communicated to the process by a human,
so the process cannot control in general which specific value
is produced. Nonetheless, the process can constrain which
values are acceptable (this is, e.g., what happens when a user
form is used for injecting external input data into the pro-
cess). For instance, the “> 0” annotation close to pWeight
in Fig. 1 indicates that themeasureweight task stores a pos-
itive number into pWeight.

Once both the tasks used to get the package length and
measure its weight are executed, a decision point is employed
to decidewhether to proceed or not, based on the correspond-
ing results. In particular the process terminates if the package

123

168 M. de Leoni et al.

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding declarations

length could not be determined, or if the package is too heavy
(that is, has aweight greater than10kg).Notice that the length
is not determinedwhen the corresponding decision table can-
not be applied, which happens when the provided package
type does not correspond to any of the strings explicitly indi-
cated in the table (namely std,large,xl). When this is
the case, since the table does not specify any default length
value, this measure is set to the special undef value.

If the package length has been properly determined and
the package is within the supported weight range, the pro-
cess continues by invoking a second DMN decision table to
determine the shipment mode (by either car or truck), based
on the weight and package length. As previously done for

the package length, the process then tests whether the table
has produced a proper output.

If so, the process continues by choosing whether consent
is needed to ship the package and, if this is the case, who
should sign the attached declaration. The decision is deter-
mined by the package weight and shipment mode, by means
of a DMN decision table of an external authority that defines
weight thresholds related to the different shipment modes.
Specifically, the table dictates that: (i) if a threshold of 6 kg
is exceeded when a package is shipped by car, then a dec-
laration signed by the package owner (value owner) has to
be obtained; (ii) if a threshold of 8kg is exceeded when a
package is shipped by truck, then a declaration signed by the
shipment company (value com) has to be attached. Unlike

123

Integrating BPMN and DMN: Modeling and Analysis 169

the two DMN tables already commented, the table captur-
ing this decision employs the notion of default output value
(the underlined none output value) to indicate that if nei-
ther of the above conditions applies, then no declaration is
needed (i.e., in these cases the value none is used in place
of undef).

The process finally proceeds by obtaining the declara-
tion in case one is required. The package is then ready to
be shipped, a state that marks the end of the process.

Process correctness The subtle interplay of control-flow,
data object manipulation and decision logic potentially
induces some complex constraints on the supported exe-
cutions, including potential flaws. In the specific example
at hand, the process contains two dead branches, that is,
two sequence flows that cannot be at all executed. Such
dead branches, in turn, are determined by the fact that some
legitimate values are never produced by the decision tables
associated to business rule tasks in the process, due to the
way these are put in context and indirectly interconnected.
The presence of a dead branch makes the process unsound
[11], so it is important to be able to detect this and report it
back to the modeler for further consideration.

The first dead branch is the conditional branch captur-
ing the situation where the shipment mode computed by the
determined mode task is undef. In fact, while in principle
the Determine Mode table could output an undefined value,
this is never the case in the specific context where the table
is used. Indeed, this table is applied after having ensured that
the given package weight does not exceed 10 kg, and that
the given package length is defined, which in turn means that
such length is necessarily a positive number (this can be seen
by inspecting the decision logic contained in the Get Length
table). This consequently guarantees that one (and only one)
rule of the Determine Mode table will always apply, thus
ensuring that the outputted mode is a defined value, distinct
from undef.

The second dead branch is the conditional branch indicat-
ing that a shipment consent from the owner is needed. The
issue here again emerges from the chaining of multiple deci-
sion tables as dictated by the control-flow of the process. This
may result in an overall undesired behavior, especially if the
decision tables come from different, independent authorities.
This is the case for theDetermineMode andChoose Consent
tables in our example. In particular,Determine Mode implic-
itly dictates that packages are transported by car only if they
do not exceed 5 kg of weight; similarly, the Choose Consent
table demands owner consent only for packages transported
by car and exceeding 6 kg of weight. The consequence is
that the first rule in the Choose Consent table will never
fire and, even more problematically, the owner output value
will never be outputted by the table. This has, in turn, an
effect on the consequent fragment of the control-flow: the
condition consent = owner will never be true, making the

fetch declaration task a dead task that will never be per-
formed.

3 The DBPMNModel

We now formally introduce the DBPMN model, which
allows to capture the type of processes as the one shown
in Fig. 1. The model combines BPMN with DMN S-FEEL
decisions through the use of case data objects.

For simplicity of presentation, we do not enter into
datatyping issues of data objects and decision table attributes,
and we homogeneously assume that they are all real num-
bers equipped with the built-in binary comparison operators
=, <, ≤, and their negated versions. We also assume that
the domain of values includes, in addition to real numbers,
a special undef value which we use to model the case in
which an object value is undefined.

Notice that other datatypes such as booleans and strings
(only equipped with equality and inequality) are easily
encodable using the real domain. Further, it can be shown that
finite or dense domains are in fact seamlessly supported in our
framework and require no special treatment nor encoding.On
the other hand, we do not support integers nor arithmetics,
due to technical reasons that will be clarified in Sect. 4.1.

3.1 BPMN

To specify the control-flow backbone of the process, we use
BPMN. Since our approach is orthogonal to the control-flow
constructs used, we do not enter into the specific definition
of a BPMN but consider it as a black-box. Thus, in what fol-
lows we only introduce the notation that we use to “extract”
from a BPMN process the relevant elements required for the
technical development in the following sections.

Although we assume the reader to be familiar with the
BPMN standard [1] and terminology, we exemplify these
elements by referring to the control flow of the process in
Fig. 1, i.e., by taking it as a BPMNprocess (thus disregarding
the DMN tables in the example). Given a BPMN process P:

– P.tasks returns the tasks contained in P; we assume this
set to be partitioned into the set P.manTasks of man-
ual tasks and the set P.brTasks of business rule tasks. A
business rule task is a task that invokes a decision logic
incorporated in an external business rule management
system, and these are the tasks to which a DMN deci-
sion table will be associated in DBPMN. For instance,
in the running example get length, measure weight,
determine mode and choose consent are business rule
tasks;

– P.events return the (non-boundary) events contained in
P. A boundary event is a special type of event which

123

170 M. de Leoni et al.

defines how it is handled when occurring during the exe-
cution of a task or subprocess. In the running example
there are five events (the initial one, plus four end events),
and none is a boundary event;

– P.dataObj returns the case data objects contained in P;
in agreement with what is written before, these are sim-
ply variables holding a real number (or undef). In the
example, these are pType, pLenght, etc.;

– Given a node n ∈ P.tasks ∪ P.events, n.inObj and
n.outObj, respectively, return the set of input/output data
objects linked to/from n via data flow connectors. In the
example we have, for instance, (get length).inObj =
{pType};

– P.choicePoints returns the (exclusive) choice gateways
contained in P. In the example, there are three choice
gateways, denoted by a diamond symbol marked with a
“X” (the last such diamond symbol at the bottom of Fig. 1
is instead a “merging” gateway);1

– Given a choice gateway gway ∈ P.choicePoints, then
gway.condFlows returns the sequence flows depart-
ing from gway. For instance, given the first choice
gateway gway in the example (the one used after the
length and weight of the package are determined), then
gway.condFlows returns two outgoing sequence flows.

3.2 DMNDecision Tables

To specify the decision logic underlying the business rule
tasks in a process, we employ decision tables from the DMN
standard [2], and in particular we consider decision rules
that are specified in (an extended version of) the S-FEEL
language, also part of the standard.

A DMN decision table consists of columns correspond-
ing to input or output attributes and rows corresponding to
rules. Each column has a type (e.g., a string, a number, a
date), whichwe hereby call a facet. The set of possible values
can be further restricted by specifying a facet condition. For
instance, the attribute Mode in the Choose Consent table in
Fig. 1 is of type string and it is associated to a facet condition
imposing that its value is either car or truck. Similarly,
Weight is a real number and has an associated condition
imposing that its value is positive.

Each row has an identifier, a condition for each input
column, and one specific value for each output column. Infor-
mally, given a vector of input values (one per column), if the
conditions associated to each column of a rule are satisfied
by this input vector, then we say that the input matches with
the rule (i.e., the row), so that the output associated to that
rule is produced.

1 For simplicity, we do not consider here inclusive gateways, as their
translation to Petri nets is not univocal. Notice that control-flow con-
structs are orthogonal to the approach presented in this paper.

A hit-policy indicator indicates whether the table accepts
the possibility that multiple rules simultaneously match and,
if so, how the overall output is computed. The latter situation
is handled by either identifying which rule takes precedence
(single hit indicators), or by dictating how to combine the
output values of multiple matching rules into a single result
(multiple hit indicators). For instance, the tableChoose Con-
sent in Fig. 1 has unique hit-policy, as specified by the U
symbol.

In the DMN standard, facet and rule conditions are
expressed in the friendly enoughexpression language (FEEL),
ofwhich S-FEEL is a fragment. As alreadymentioned, in this
paper we employ decision tables with S-FEEL conditions,
extended with the ability to mention external parameters,
which have to be dynamically bound to actual values before
invoking the decision table. This mechanism is useful to
capture configurable decision tables that are dynamically
instantiated based on process context (that is, the values
stored in the case data objects). Crucially, this also allows
one to compare between themselves the values of multiple
data objects in the process, that is, to perform attribute-to-
attribute comparisons. Moreover, tools exist in practice that
extend DMN tables in the same way (see, e.g., [22]). For a
discussion on features and limitations of our approach, see
Sect. 6.

In the remainder of this section we first formalize the
language of the aforementioned conditions (Definition 1),
then we introduce decision tables (Definition 2), followed by
examples. We borrow and adapt to our needs the definitions
introduced in [6,7].

Definition 1 An (S-FEEL real attribute) condition with
external parameters X is inductively defined as follows:

<condition> ::= <disjCond> | “not(′′<disjCond>“)′′
<disjCond> ::= <atomicCond> | <atomicCond>“,′′<disjCond>

<atomicCond> ::= “−′′ | k | <compOp> k | <openInt> k1“,
′′k2 <closeInt>

<compOp> ::= “<′′ | “≤′′ | “>′′ | “≥′′
<openInt> ::= “[′′ | “(′′
<closeInt> ::= “]′′ | “)′′

where quotes are used to isolate reserved keywords, while
k, k1, k2 are either numbers (constants) fromR or parameters
in X .2

Conditions with external parameters are interpreted by
first mapping these to real numbers, then interpreting them
as specified below.We say that a condition is ground if it does
not contain parameters in X and we omit external parame-
ters of ground conditions. Intuitively, the interpretation of a
ground condition ϕ is as follows:

2 Notice that S-FEEL supports also arithmetics on constants. We
assume that these calculations are pre-processed and directly use the
resulting value in the condition.

123

Integrating BPMN and DMN: Modeling and Analysis 171

– if ϕ = “−′′ then it is a “don’t care” condition, matching
with any number;

– if ϕ = “k′′ then it matches with number k;
– if ϕ is a comparison or interval condition (such as ≥ 0 or

(1, 3]) then it matches with every number belonging to
the interval selected by the condition;

– comma-separated conditions are interpreted disjunc-
tively, that is, if ϕ = “ψ1, . . . , ψ

′′
n then ϕ matches with

a number if condition ψi matches with that number, for
some i ∈ {1, . . . , n};

– if ϕ = “not(ψ)′′, then it matches with a number if con-
dition ψ does not match.

Using conditions as basic building block, we now define the
notion of decision table, based on the DMN standard. As
pointed out above, we limit ourselves to real attributes. How-
ever, when graphically representing decision tables, we also
employ string attributes.

Definition 2 A decision table is a tuple

〈Name, I , O, X , InFacet,ORange,ODef, R, H〉

where:

– Name is the table name.
– I andO are disjoint, finite ordered sets of input andoutput
attributes, respectively.

– X is a set of external parameters.
– InFacet is a facet function that associates each input
attribute a ∈ I to an S-FEEL condition with external
parameters X , specifying the allowed input values for a.

– ORange is an output range function that associates each
output attribute b ∈ O to an n-tuple of possible output
values (together with an ordering).

– ODef : O 	→ R is a default assignment (partial) function
mapping some output attributes to corresponding default
values.

– R is an ordered set 〈r1, . . . , rp〉 of rules. Each rule r j is
a pair 〈If j , Then j 〉, where If j is an input entry function
that associates each input attribute a ∈ I to a condition
with external parameters X , and Then j is an output entry
function that associates each output attribute b ∈ O to an
object in R ∪ X .

– H ∈ {U , A, P, O,C, R} is the hit-policy indicator for
the decision table.

A DMN table is said to be parametric if X �= ∅ and either
InFacet(a), If j (a) or Then j (a) is not ground for some a ∈ I
and j ∈ {1, . . . , |R|}.

We provide next three examples of DMN tables, showing
an increasingly sophisticated usage of parameters.

Example 1 Referring to the decision table Determine Mode
in Fig. 1, we have Name equal to “Determine Mode”,
I = {Length,Weight}, O = {Mode}, X = ∅, InFacet
is so that InFacet(Length) = InFacet(Weight) = (> 0),
ORange is so that ORange(Mode) = 〈car,truck〉, ODef
is not defined for Mode, R is equal to 〈r1, r2, r3〉 with,
e.g., If1(Lenght) = (0, 1], If1(Weight) = (0, 5] and
Then1(Mode) = car. The hit policy is U .

Example 2 Figure 2 shows a fragment of a DBPMN model
that contains a parametric table. The example is inspired by
the same scenario captured in Fig. 1, and employs some of
the data objects used there. Specifically, the process frag-
ment is about the classification of the safety level associate
to a package, based on the package weight and the shipment
mode.

The table provides a general set of rule templates, which
indicate that the safety level depends on how the package
weight relates to a given threshold t : if it is below the thresh-
old, then the level corresponds to 1, whereas if it exceeds the
threshold then the level is 2 or 3 depending on the shipment
mode. The actual threshold value is defined on an organiza-
tional basis, depending on the characteristics of the vehicle
fleet employed by the organization. When invoked by a busi-
ness rule task, the table must be grounded by binding its
threshold to a data object of the invoker process. In our exam-
ple, this is done as follows: first, an external actor sends the
value of the threshold to the process, which stores it into the
wThreshold data object; consequently, the classify package
task invokes the aforementioned table by grounding the
threshold therein to the value carried by wThreshold.

Example 3 Consider the DMN decision table of Fig. 3 (left).
The table takes as input two dimensions of a package and
determines whether the package is small, thin, or thick.
Which output is produced depends on how these dimensions
compare to two external parameters.We now assume that the
table is invoked within a DBPMNprocess where the package
comes with awidth and a height. Figure 3 (right) shows two
possible bindings, and how they induce two distinct ground
tables. Both bindings assign width to the first input column,
and height to the second one. However, they differ on the
binding for parameters.

The first binding assigns both parameters to the constant
value of50 cm. This results in a ground tablewhere the pack-
age is declared as small if its width is strictly less than 50
cm, thin if the height is strictly less than 50 cm and thick
otherwise. The second binding differ from the first one in that
it assignswidth to both the first input column of the table and
parameter @p2. This implicitly induces variable-to-variable
conditions constraining the second input columnbased on the
value assigned to the first one: whenever the package width
is equal to or longer than 50 cm, the decision on whether the

123

172 M. de Leoni et al.

Fig. 2 Fragment of a DBPMN model with a parametric table

Fig. 3 A parametric table with two possible bindings that link the table columns and parameters to corresponding constants and data objectswidth
and height, showing the resulting geometric interpretation

package is declared as thin or thick depends on whether
its width is shorter than its height or not.

We are finally able to formally define when a rule in a
DMN decision table matches with a given table input.

In the following, we use a dot notation to single out an
element of a decision tabled (similarly towhat is done inDef-
inition 2). For example, d.I denotes the set of input attributes
of the table. We extend the notion of grounding to an entire
rule, simply as the ground rule obtained by grounding each
single condition and output value.

A table input comes in the form of an ordered tuple of
numerical or undef values, where each value instantiates
a corresponding input attribute. We say that a ground rule

r j = 〈If j , Then j 〉 of a decision table d matches with a given
input if every value contained therein satisfies two criteria:

1. it is a valid value according to its corresponding input
attribute, that is, it is a proper value (not undef) that
satisfies the facet condition attached to the attribute, as
specified by d.InFacet;

2. the input condition If j matches with the input.

Example 4 Referring again to the table Determine Mode
Fig. 1 (with ground rules r1−r3), rule r1 matches, for
instance, with the table input 〈1, 3〉, while the rule r2 matches
with the table input 〈2, 3〉. No rule matches with the input

123

Integrating BPMN and DMN: Modeling and Analysis 173

〈0, 3〉, as it violates the facet condition for Length (as well
as the input conditions of r1−r3).

If there is no matching ground rule for a given input then
the produced output values correspond, one by one, to the
default value associated to each attribute, or to undef if no
default value for an attribute is given.

In the remainder of this paper, for simplicity of presenta-
tionweonly consider decision tableswith hit-policy indicator
U , i.e., unique hit policies. This is the simplest single-hit pol-
icy, declaring that rules do not overlap, that is, that there are
no table inputs with which multiple rules match. It is impor-
tant to notice that, technically, this is not introducing any loss
of generality of our approach, since a decision table with an
arbitrary hit policy can be transformed into a semantically
equivalent decision table with unique hit policy. This trans-
formation is called uniqueification [23].

3.3 The DBPMNModel

A DBPMN process integrates a BPMN process with deci-
sion tasks linked to corresponding decision tables. The main
features of this model are as follows:

– a DBPMN process operates over data objects, not
employing persistent data;

– BPMN standard tasks operate over data objects, possibly
writing them based on constrained inputs provided by the
external environment (e.g., via a user form);

– exclusive choice gateways determine which outgoing
sequence flow is taken, depending on the values assigned
to data objects.

– BPMN business rule tasks are linked to corresponding
decision tables, which are instantiated by inspecting the
values present in some data objects, and write their pro-
duced output back to data objects.

Formally, we represent DBPMN processes as follows.

Definition 3 A DBPMN process is a tuple

〈P,writeGuard, choiceGuard, D, taskToDec, objToDec〉

where:

– P is a BPMN process (cf. Sect. 3.1);
– writeGuard is a total function that maps each pair 〈t, o〉,

where t ∈ P.manTasks ∪ P.events is either a manual
task or event of P and o ∈ t .outObj is an output object of
t , to a corresponding ground condition (cf. Definition 1)
representing the write guard of t for o;

– choiceGuard is a total function that, given a choice gate-
way gway ∈ P.choicePoints, maps every sequence flow

s ∈ g.condFlows departing from gway to a correspond-
ing guard, that is, to a boolean formula whose atoms are
values in R and data objects in P.dataObj;3

– D is a finite set of decision tables (cf. Definition 2);
– taskToDec is a total function thatmaps each business rule
task t ∈ P.brTasks to a corresponding decision table in
D;

– objToDec is a table-to-objectmap that, for every decision
table d ∈ D, binds every attribute and parameter in d.I ∪
d.O∪d.X to a corresponding data object o ∈ P.dataObj,
as depicted in Fig. 1 next to each decision table.

As done before for both BPMN and DMN, we use the dot
notation to extract the constitutive components of a DBPMN
process (e.g., given a process Bwe denote by B.P its BPMN
process).

When a default sequence flow is used after a choice gate-
way (graphically represented with a diagonal slash marker
at the beginning of the connector) we assume that its guard
is the negation of the conjunction of the guards attached to
the other sequence flows departing from the same choice
gateway. For example, the default flow departing from the
second choice gateway of Fig. 1 is associated to the guard
sMode �= undef, because the only other sequence flow has
guard sMode = undef.

Since the use of default sequence flows is optional accord-
ing to the BPMN standard [1], we do not impose that
the guards attached to each choice gateways must always
cover all possible cases. In fact, at a choice gateway gway,
it may happen that some combination of values of data
objects does not satisfy the guard of any sequence flow in
gway.condFlows. Likewise, there might be a sequence flow
such that the associated guard can be never made true. For
instance, we may have an exclusive choice coming after
tasks that either explicitly or implicitly impose constraints
on the allowed values for a given data object. For example,
if an exclusive choice comes after a manual task writing a
value less than 10 into data object o, then a sequence flow
s ∈ gway.condFlows with choiceGuard(s) = o ≥ 10 will
never be taken. These apparent mismatches between the syn-
tactic shape of aDBPMNprocess and the possible executions
that it allows are considered in Sect. 5 for defining various
notions of correctness. To this end, we first need to formally
capture the actual set of executions that a DBPMN process
allows, which is done in the next section.

3 For choice gateways we require, as customary, that for every gway ∈
P.choicePoints and every two distinct sequence flows s1, s2 ∈
gway.condFlows, the two formulae choiceGuard(s1) and
choiceGuard(s2) are mutually exclusive.

123

174 M. de Leoni et al.

4 Execution Semantics of DBPMN

In this section, we formalize the execution semantics for
DBPMN processes, illustrating their encoding into a tar-
get formalism that comes with a formal semantics. We
choose the Data Petri Net (DPN) formalism [17,19], which
extends the Petri nets with data attributes, based on which
one can express data conditions guarding the enablement of
transitions. DPNs, although simple, provide a formal rep-
resentation that is rich enough to capture the behavior of
DBPMN processes. In particular, we adopt the DPN vari-
ant that supports variable-to-variable conditions [19]. The
encoding is achieved by first translating theDBPMNcontrol-
flow to a suitable Petri net. Then, the resulting net is enriched
with data manipulation operations that are essential to recon-
struct the interplay of the process, the data objects, and the
decision logic.

4.1 The Formalism of Data Petri Nets

A DPN allows process-model designers to represent a pro-
cess model in which the control-flow perspective is enriched
with a data dimension, in the form of data constraints that
specify how the guards on the execution of tasks, which
are modeled here as Petri net transitions. Instead of data
attributes, constraints in a DPN are defined over a finite set of
process variables manipulated with the firing of transitions.

We preserve here the simplification adopted in previous
sections, and assume that all variables have R as domain
and that the set of possible comparison predicates over this
domain is Σ = {<,>,=, �=,≤,≥}. The technical devel-
opment in this and following sections does not depend on
this assumption, as the model can be directly extended to
account for the required variable typing, with some restric-
tions. In fact, the results on DPN from [18,19] hold for any
variable domain that is either dense or is finite (plus has decid-
able comparison operators and a set Σ that is closed under
negation). We refer to [19] for more details and examples.
Finally, as done in previous sections, we also consider an
additional special value undef that is used when no other
value is specified, and we assume predicates to be defined
over R ∪ {undef}.

Consider a finite set V of variables. As a transition (which
we use for modeling a DBPMN task) can read the current
value of a variable v ∈ V but also update its value, we denote
the current value of v by vr and,whenever relevant,wedenote
by vw its new value after the firing of the transition. For this
reason, we often refer to the read and written variables for a
given transition, so that we consider two distinct sets Vr and
Vw defined as Vr = {vr | v ∈ V } and Vw = {vw | v ∈ V }.
When we do not need to distinguish, in what follows we use
the symbol v to denote any member of (Vr ∪ Vw).

This provides the basic building block to define logical
conditions on data, constraining the evolutions of a DPN,
which we call guards. We will associate guards to transitions
when formally introducing DPNs. The basic type of guards
are called simple guards.

Definition 4 Given a set of typed variables V , a simple guard
has the form:

– (v k), where v ∈ (Vr ∪ Vw), k ∈ R ∪ {undef} and
 ∈ Σ ; or

– (v1 v2), where v1 ∈ (V r ∪ Vw), v2 ∈ V r and ∈ Σ .

We denote by CV the set of all possible simple guards on V .

A simple guard of the form (vr k) (in this paper, k
always denotes a constant) captures a condition requiring
that the current value of the variable v is compared with k
through . For instance, (ar ≥ 0) expresses that the current
value of a is greater or equal to 0. Similarly, the simple guard
(vw k) imposes a restriction on the new value of variable
v (that is being written by the transition to which this guard
is associated). For example, (aw > 0) specifies that the new
value of a is positive. Simple guards of the form (vr1 vr2)

and (vw
1 vr2) are analogous, but relate to the current value

of a variable v2. If needed, we can express a simple guard
that is always true by any tautological condition (such as
(vr1 = vr1)). Parentheses around simple guards are only used
for readability, and may be omitted.

In this paper we do not restrict ourselves to DPNs inwhich
only the simple data conditions as above can be associated
to transitions, but extend the model in [19] to also account
for arbitrary boolean combinations of simple guards. Hence
we consider the set GuardsV defined as follows.

Definition 5 Given a set V of variables and the set CV of
simple guards defined on V , we denote by GuardsV the set
of guards obtained by the grammar:

g
.= sg | g1 ∧ g2 | g1 ∨ g2

where sg is a simple guard in CV .

As a result, a guard is either a simple guard or a boolean
combination of simple guards. Note that, since the set Σ of
operators is closed under negation, the negation of a simple
guard can always be expressed as another simple guard: it
is sufficient to replace the predicate with its negation. For
instance, the negation of (a = b) is (a �= b). By extending
this to arbitrary guards, we can in fact express the negation
of any guard without the need of an explicit operator in the
language of guards. Nonetheless, if needed, for convenience
we write ¬g to denote the negation of a guard g.

123

Integrating BPMN and DMN: Modeling and Analysis 175

We define a state variable assignment as a function α :
V 	→ R ∪ {undef}, used for specifying the current value of
all variables.

Definition 6 [DataPetriNet]ADPNN = 〈Pl, T , F, V , αI ,

guard〉 is a Petri net 〈Pl, T , F〉 with additional components:

– V is a finite set of process variables, as above;
– αI is the initial state variable assignment, specifying the
initial value of variables;

– guard : T 	→ GuardsV assigns a guard to each transition.

The variables in V that are read and written by a guard
g are, respectively, denoted by read(g) and write(g). For
instance, read((ar=br) ∨ (ar<10))={a,b}, read((aw ≥
br)={b}, write((ar<3) ∧ (br=ar)) = ∅. To ease the nota-
tion, given t ∈ T we write as shorthand read(t)

.= {v ∈
V | v ∈ read(guard(t))}, and analogously write(t).

Moreover, we assume that a DPN is always associated
with an arbitrary initial marking MI and an arbitrary final
marking MF . When MF is reached the execution of the pro-
cess instance ends.

To define the execution of DPNs, we need a way to
relate the state variable assignments before and after a tran-
sition is fired. A guard variable assignment is a function
β : (V r ∪ Vw) 	→ R ∪ {undef}, which assigns a value
to read and written variables. As the name suggests, these
assignments are used to specify the values of variables for
evaluating the guards associated to transitions, as we intu-
itively described above. In general, this requires to compare
previous and current values. The difference with a state vari-
able assignment α is that β is used for evaluating transition
guards, while a state variable assignment holds the current
value of each variable in V .

Given a guard variable assignment β and a simple guard
sg, we say that sg is satisfied by β if and only if the guard
is true after assigning values to variables as per β. Consider
for example the simple guard (vr k): if β(vr) = k′ then
the guard is true if and only if the comparison (k′, k) is
true. For (vr1 vr2), this requires (k1, k2) with k1 = β(vr1),
k2 = β(vr2). The case for (vw

1 vr2) is analogous.
We denote that a simple guard sg is true given a guard

variable assignment β by writing sg[β]=true. For instance,
a simple guard (vw > vr) imposes that v is updated with a
value greater than its current value. For β with β(aw) = 3
and β(ar) = 2, then (aw > ar)[β]=true.

As we discussed already, although we restrict here to
variables of domain R, our formalization is able to handle
multiple domain types at once. Nonetheless, even with this
restriction in place,we still need to dealwith the case inwhich
variables or values of distinct types are compared, as undef
is not a real value. Therefore, we impose that only values

with the same domain can be compared, otherwise the com-
parison is assumed to be always false, with the exception of
(undef = undef). In otherwords, (vundef)[β] = true

if an only if β(v) = undef and is =.
We extend this to boolean combinations, hence to arbitrary

guards, in the trivial manner, so that (g1 ∧ g2)[β]=true if
and only if g1[β]=true and g2[β]=true, and similarly (g1∨
g2)[β]=true if and only if g1[β]=true or g2[β]=true.

Example 5 Consider as an example the DPN in Fig. 4, in
which two variables a and b exist with initial values 0 and
10, respectively (namely αI (a) = 0 and αI (b) = 10).
From the initial marking MI = [p0] a transition t1 updates
the value of a to any integer greater of 0 and not equal to 5.
Then, either t2 or t3 are executable, depending on the current
value assigned in t1. Similarly, t4 can be executed only if
the current value of b (which is never updated) is smaller
than the current value of a. One can easily verify, by visual
inspection, that the only possible sequence of transition that
reaches the final marking is t1, t2, t4, and that, obviously, not
every value assigned to variable a allows to reach the end of
the process. However, arbitrarily complex nets do not allow
visual inspection to be carried out comprehensively, so that a
simplistic analysis that disregards the possible state variable
assignments at each step, and thus only considers the control-
flow of the net, could easily lead towrong conclusions. In this
case, from the fact that, apparently, all transitions and places
are reachable in the control flow, we could naively conclude
that there are no dead transitions and that it is always possible
to reach the final marking avoiding deadlocks, i.e., that the
net is classically sound.

We are finally ready to formalize the execution semantics
of DPNs. The set of possible configurations ofN is the set of
all pairs (M, α)where M is a marking ofN and α is the (cur-
rent) state variable assignment. From a configuration (M, α),
a transition t can be fired so to reach the new configuration
(M ′, α′) only if M[t〉M ′4 and α′ represents a possible update
of α (defined next) which satisfies the guard guard(t), i.e.,
so that guard(t)[β]=true. A pair (t, β) where t ∈ T and β

is a guard variable assignment is called transition firing.

Definition 7 A DPN N = 〈Pl, T , F, V , αI , guard〉 evolves
from configuration (M, α) to configuration (M ′, α′) by tran-
sition firing (t, β) iff M[t〉M ′ and:

– β(vr) = α(v) for every v ∈ read(t): the guard vari-
able assignment β assigns the same values as α to read
variables;

– the new state variable assignment α′ is as α but updated
as per β for the variables that are written. Namely, for all

4 We denote by M[t〉M ′ that M ′ is the marking reached from M by
firing t .

123

176 M. de Leoni et al.

Fig. 4 A simple DPN N, with
initial configuration
([p0], {αI (a) = 0, αI (b) =
10})

v ∈ V , we have α′(v) = α(v) if v /∈ write(t), otherwise
α′(v) = β(vw);

– guard(t)[β]=true: the guard is satisfied by β.

Essentially, a transition firing fully specifies a transition
execution: it specifies the transition label and all the vari-
able values before and after the transition is executed. For
instance, referring again to Fig. 4, from the initial configu-
ration, the transition firing (t1, β) with β(aw) = 7 results in
the new configuration ([p1], {α′(a) = 7, α′(b) = 0}).

We denote a transition firing (t, β) as in Definition 7,
from configuration (M, α) to configuration (M ′, α′), bywrit-
ing (M, α)

t,β−→ (M ′, α′). We also extend this definition
to sequences of the form σ = (t1, β1) · · · (tn, βn) and thus

define runs as the sequences of the form ρ = (M0, α0)
t1,β1−−→

. . .
tn ,βn−−−→ (Mn, αn), also denoted as (M0, α0)

σ−→ (Mn, αn).
Moreover, we write (M0, α0)

∗−→ (Mn, αn) to mean that
there exists a non-empty sequence σ as above that reaches
(Mn, αn).

A run of N is a run as above starting from (MI , αI), that
is, from the configuration obtained by considering the initial
marking and the initial state variable assignment. We denote
by ReachN the set of configurations that are reachable by a
run of N, namely {(M, α) | (MI , αI)

∗−→ (M, α)}.
Finally, given two markings M ′ and M of a DPN N, we

write M ′ ≥ M (and say that M ′ is larger than or equal to
M) iff for each place p ∈ Pl inN we have M ′(p) ≥ M(p),
and we write M ′ > M iff M ′ ≥ M and there exists p ∈ Pl
s.t. M ′(p) > M(p). When needed, we write M ′

� M to
indicate that it is not the case that M ′ ≥ M . A configuration
(M, α) so that M ≥ MF is called final, since the process has
reached the final marking on the underlying Petri net.

4.2 Encoding DBPMN into DPNs

WenowshowhowaDBPMNprocessB can be encoded into a
corresponding DPN, in turn defining the execution semantics
of B. The translation works in three steps.

The DPN resulting from the application of the three steps
detailed in this section on the DBPMN in Fig. 1 is shown in
Fig. 5.
Step 1: control-flow. The first step consists in the encoding
of the control-flow of the BPMN process B.P into a cor-
responding Petri net, by ignoring case data and decisions.
This can be achieving by an off-the-shelf use of any of the

encoding procedures available in the literature, such as the
one by Dijkman et al. fig[24]. To give an intuition on how
the control-flow of the BPMN process can be encoded into a
Petri net by following the cited approach, we report in [24]
a depiction of how the basic BPMN elements are encoded,
takendirectly fromFig6.This encoding is adopted inFig. 5 to
formally represent the BPMN constructs employed in Fig. 1.
The reader can refer to that work for details on how further
BPMN elements and subprocesses can be encoded as well.

Two observations are in place when it comes to the BPMN
control-flow and its Petri net encoding in our setting. First,
it is important to stress that the elements shown in Fig 6 and
more in general the encoding introduced in [24], only cover
the core BPMN constructs; representingmore advanced con-
structs such as or joins and interrupting boundary events
calls for more sophisticated formal models, such as Petri nets
with cancellation regions and equipped with other advanced
constructs (see, e.g., [25] and the Petri net-based encoding
of advanced workflow patterns5). Second, as it will become
apparent in Sect. 5, our formal analysis for DBPMN is based
on the combination of standard control-flow analysis tech-
niques for Petri nets and faithful data abstraction techniques
for tackling the data dimension. This combination continues
to hold even when the control-flow part employs the more
advanced constructs mentioned above. The main issue, in
this setting, is that even in the pure control-flow case all basic
properties becomes undecidable, unless one ensures that the
net is bounded (in the standard Petri net sense). This is actu-
ally a standard assumption in soundness analysis, where a
single case is expected to generate only boundedly many
concurrent threads of control.

From now on, we then assume to have a black-box,
control-flow encoding function encodeFlow that, given a
BPMN model B.P, transforms it into a Petri net
encodeFlow(B.P) that captures the control-flow execution
semantics of B.P, with the following assumptions6:

– every business rule task t ∈ B.P.brTasks becomes a dis-
tinct transition t in the Petri net encodeFlow(B.P), with
a single input place (representing the enablement of the
task) and a single output place (representing the com-

5 http://www.workflowpatterns.com.
6 Such assumptions can be easily relaxed, e.g., to a non-atomic model
for activities with multiple transitions per task, making sure that data
object updates are pushed upon completion.

123

Integrating BPMN and DMN: Modeling and Analysis 177

Fig. 5 DPN encoding of the DBPMN model in Fig. 1 (once having
collapsed the three end-events of the process into a single one), using
the control-flow encoding of BPMN into Petri nets from [24]. The ini-
tial and final markings MI and MF have a single token in the first/last
place, respectively. For space reasons, we use compact names for the
variables corresponding to the data objects of the DBPMNmodel. Inter-
nal transitions used to capture events and gateways are shown in gray,
whereas transitions mirroring actual tasks are shown in white, and asso-

ciated to a meaningful label. Guards are shown in disjunctive normal
form and semantically simplified, and we use therein atoms of the form
x ∈ (k1, k2] as a shorthand for (x > k1) ∧ (x ≤ k2), and x /∈ (k1, k2]
as a shorthand notation for (x ≤ k1) ∨ (x > k2). Dead transitions,
which can never be executed starting from the initial configuration that
assigns one token to the topmost place and assumes that all data objects
are initially undefined, are shown in red (cf. Example 11)

123

178 M. de Leoni et al.

Fig. 6 Figure taken from [24], depicting how task, events, and gateways can be encoded as Petri nets

pletion of the task). Note that this restriction is assumed
only on (business rule) tasks and not, for instance, on the
encoding of choice gateways, joins, etc. This assumption
is thus made without loss of generality. Moreover, note
that the encoding in [24] is consistent with this assump-
tion (see Fig 6). Whenever needed, we denote the input
and output places for a given t as pti and pto, respectively;

– for every choice gateway gway ∈ B.P.choicePoints,
each conditional flow s ∈ gway.condFlows (that is,
each sequence flow departing from gway) is mapped
to a distinct transition s in encodeFlow(B.P). Also this
requirement is met by the encoding in [24] (see bottom-
left of Fig 6).

It is easy to show that such a black-box encoding does not
alter the structure of the original process, so that the result-
ing DPN can be analyzed to assess correctness. Accordingly,
with a slight abuse of notation, in this paper we use the same
symbol to denote a BPMN task or sequence flow and its
corresponding DPN transition, since these are in direct cor-
respondence.
Step 2: expansion of business rule tasks. Since business rule
tasks are linked to DMN tables, we have to enhance the
Petri net encodeFlow(B.P) obtained in the first step so as
to explicitly account for the firing of table rules. This is
done as follows. Given a business rule task t ∈ B.P.brTasks,
we denote by DecRowsB(t) the set of additional transitions
that represent all possible modes of applying the decision
table d = B.taskToDec(t) attached to t . These correspond
to the rules d.R in the decision table d (indexed by their
position), together with an additional transition with special
index noRow. The latter accounts for the case where no rule

in d matches the given inputs (and, consequently, the default
outputs, or alternatively undef values, have to be produced
in output). Specifically:

DecRowsB(t)
.= {t j | j ∈ {1, . . . , |d.R|}} ∪ {tnoRow}

According to encodeFlow(B.P) (see Step 1), each busi-
ness rule task t ∈ B.P.brTasks is translated into a transition
having one input place pti and one output place pto. In the
expansion of encodeFlow(B.P), which we also denote by
encodeFlow(B) each transition t ∈ B.P.brTasks as above
is replaced by the set DecRowsB(t) of transitions, so that
each of such transitions has pti as single input place and pto
as single output place. This captures that whenever a token
is present in pti , then one rule of the table B.taskToDec(t)
can nondeterministically fire, marking the completion of the
task by producing a token in pto (recall that B.taskToDec(t)
is a unique-hit table—cf. the end of Sect. 3.2). The guards
attached to these transitions will be discussed in Step 3.

All in all, we denote by Tasks(B) all the transitions that
correspond to tasks inB, that is, manual tasks or rule-indexed
business rule tasks:

Tasks(B)
.= B.P.manTasks ∪

⋃

t∈B.P.brTasks

DecRowsB(t)

Example 6 Figure 5 shows the full DPN encoding of the
DBPMN diagram in Fig. 1. The initial part of the net
encodes the message reception event, the measure weight
and the get length tasks. The latter explicitly shows the
expansion discussed so far: in place of having a single
transition, we have four alternative transitions get length j ,

123

Integrating BPMN and DMN: Modeling and Analysis 179

j ∈ {1, 2, 3,noRow}, denoting the application of one of
the three rules in the corresponding DMN table plus one for
the situation where no rule matches. The computation of the
guards associated to these transitions is part of the next step.

Step 3: variables and guards. The third step requires to trans-
form the guards and decision rules present in B into DPN
guards conforming to Definition 5. Two aspects have to be
considered here: (i) S-FEEL conditions (as in Definition 1)
and their combination into rules have to be suitably encoded
into proper boolean formulae; (ii) suitable read/write vari-
ables have to be employed when building such formulae.

In the following, we directly employ column names and
data objects as variables. In addition, we denote by Vars(ϕ)

the set of (data object) variables appearing in the boolean
formula ϕ. We also make use of the standard notion of vari-
able substitution to replace, in boolean formulae, a variable
denoting a data object or table column with a corresponding
read/written DPN variable. Given a boolean formula ϕ and
a variable substitution function θ defined over Vars(ϕ), we
write ϕ[θ] to denote the boolean formula obtained from ϕ by
replacing each data object a v with θ(a) ∈ V . Note that,
however, ϕ[θ] is still not a guard as in Definition 5, because it
is defined on variables in V rather than on (Vr ∪ Vw). This
is done next, for the various cases.

The first and most direct case is that of conditional
flows in B, namely sequence flows with attached condi-
tions. These conditions are in fact already boolean formulae,
so it is enough to make sure that all the involved vari-
ables appear as read variables (i.e., in Vr), witnessing that
they are used to evaluate the condition. Given a condition
ϕ ∈ B.P.choiceGuard(gway) for some choice gateway
gway ∈ B.P.choicePoints, we denote by encodeTest(ϕ) the
DPN guard (in the sense of Definition 5) obtained from ϕ by
substituting each variable v ∈ Vars(ϕ) by its corresponding
read version vr ∈ Vr .

Example 7 Consider the first choice gateway in Fig. 1. The
encoding of the guards attached to the two conditional
branches correspond to guards (pLengthr = undef) ∨
(pWeightr > 10) and (pLengthr �= undef)∧(pWeightr ≤
10).

The encoding of write guards and decision tables is more
involved, as this requires to perform additional manipula-
tions. As a basic building block, we need to define how to
encode an S-FEEL condition (as of Definition 1) into a corre-
sponding DPN guard. To this end, we build on prior work on
the logical formalization of DMN [7]. Specifically, given an
S-FEEL condition ϕ with external parameters X and variable

v, we define the DPN guard for ϕ relatively to v, as follows:
encodeSFEELv(ϕ)

.=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v �= undef) if ϕ = “ − ”

(v = k) if ϕ = “k”

(v k) if ϕ = “ k” and ∈ {<, >, ≤, ≥}
(v > k1) ∧ (v < k2) if ϕ = “(k1, k2)”

. . . (similarly for the other types

of intervals)

¬encodeSFEELv(ψ) if ϕ = “¬ψ”

encodeSFEELv(ψ1)

∨encodeSFEELv(ψ2) if ϕ = “ψ1, ψ2”

We can directly use this encoding to define the DPN guard
corresponding to the update induced by the execution of a
manual task t ∈ B.P.manTasks, by encoding its output data
objects and their associated condition (business rule tasks are
encoded differently, on the basis of their associated decision
tables). When no condition is specified for some output data
object, then we assume an implicit condition ϕ = “−”. This
DPN guard, denoted by encodeUpdateB(t), simply amounts
to the conjunction of the encoding of each write guard, con-
sidering as variables the write variables corresponding to the
output data objects of the manual task t :

encodeUpdateB(t)
.=

∧

o∈B.outObj(t)

encodeSFEELo
w
(
B.writeGuard

(〈t, o〉)
)

Example 8 Consider the manual task measure weight in
Fig. 1. It has a single output data object, namely pWeight,
and the write guard associated to this output is the S-FEEL
condition “>0′′. We then have:

encodeUpdate(measure weight) = (pWeightw > 0)

Intuitively, a similar encoding is used for determining the
guards associated to DPN transitions corresponding to rules
of decision tables, such as those mentioned in Example 6.
Recall that each such rule encodes an input–output relation
between the input and output attributes of the table, dictat-
ing that every input attribute must be conforming to its facet
and must also satisfy the corresponding S-FEEL condition,
whereas every output attribute must match with the corre-
sponding value/parameter. Once this conjunctive formula is
built, we then replace the input/output attributes and param-
eters used therein with the data objects that are mapped to
them, by considering that while input conditions read the
corresponding variables and parameters, output conditions
write them. After this encoding is completed, we then add
an additional, ad-hoc formula to capture the case where no

123

180 M. de Leoni et al.

rule applies (i.e. the noRow transition commented in Exam-
ple 6), and consequently the result produced for each output
attribute corresponds to its default value (if defined), or to
undef (if no default value is specified in the table).

The intuitive encoding just described in formalized as fol-
lows. Consider a business rule task t ∈ B.P.brTasks, and let
θ = B.objToDec(t) be the table-to-object map associated to
t . Since we use column names and data objects as variables
in the DPN, then θ can be used as a variable substitution
function. The encoding of the premise of rule 〈If, Then〉 ∈
B.taskToDec(t).R is defined as encodeIf B,t (〈If, Then〉) .=

encodeTest
(∧

a∈B.taskToDec(t).I

(
encodeSFEELa

(
If(a)

))
[θ]

)

The core part of the formalization above is the boolean for-
mula testing that a satisfies the condition assigned to a by
the rule; this is obtained by encoding the S-FEEL condition
If(a) through the encodeSFEEL procedure. The so-obtained
formula, denoted by ϕ in what follows, requires, for the rule
to match, that all input conditions satisfy the three criteria
above. However, ϕ is not yet a DPN guard as in Definition 5.
First, since a is mapped through θ to a corresponding data
object of B, we need to replace a, as well as the parameters
possibly mentioned in the input conditions, to corresponding
data objects as dictated by θ . Second, we need to apply the
encodeTest function to ϕ. This function simply replaces all
the data object variables in Vars(ϕ) to their corresponding
read version in Vr . The so-obtained formula is a guard as in
Definition 5, capturing the required test on (read) variables.

Next, the encoding of the result of applying a rule
〈If, Then〉 is defined as theguard encodeThenB,t (〈If, Then〉) .=

∧

b∈B.taskToDec(t).O
{

(vw = k) if θ(b) = v, Then(b) = k and k ∈ R

(vw
1 = vr2) if θ(b) = v1, θ(x) = v2, Then(b) = x and x ∈ X

This encoding handles the update of output attributes (i.e.,
output attributes of the decision table B.taskToDec(t)) with
the output values/parameters mentioned by the rule. As in
the case of the rule premise, we have to take care of the fact
that each output attribute b needs to be substituted with the
correspondingdata object as per θ (which is thenused asDPN
variable). Therefore, since the output attributes are produced
as output, we encode this through a variable that is written
(hence in Vw). Moreover, note that we separately consider
the case where the output is an actual value (which is simply
assigned to the variable), and the case where the output is
a parameter (which needs to be replaced by the reading of
the data object assigned to the parameter by θ). If multiple
output attributes are present, their corresponding formulae
need to be conjoined together.

To obtain the full encoding of the rule as a DPN guard,
the two encodings of the premise and consequence parts of
the rule have to be accompanied by a further part, which
checks the “well-formedness” of the involved attributes by
verifying, for each input attribute a:

1. that a is not undef. This check is needed because, as
explained in Sect. 4.1, simple guards can be true only if
the compared variables and values are of the same type
(recall that undef /∈ R);

2. that a satisfies its facet condition. This is obtained by
encoding the S-FEEL condition InFacet(a) through the
encodeSFEELa procedure.

Formally, the resulting formula for well-formedness, defined
by using the same approach as that of encodeIf B,t , is
encodeWFB,t

.=

encodeTest

⎛

⎝
∧

a∈B.taskToDec(t).I

(
(a �= undef)

∧ encodeSFEELa
(
InFacet(a)

)
)

[θ]

⎞

⎠

As a result, the input–output relation induced by the entire
rule 〈If, Then〉 is then captured by the DPN input–output
guard encodeRuleB,t (〈If, Then〉) .=

encodeWFB,t ∧ encodeIf B,t (〈If, Then〉) ∧ encodeThenB,t (〈If, Then〉)
∧

∧

b∈B.taskToDec(t).O

encodeSFEELθ(b)w
(
InFacet(b)

)

where we also include an additional well-formedness test for
the produced output, so as to ensure that the written value of
each output attribute is matched by the corresponding facet
condition. This conjunct is redundant when the table contains
explicit output values (provided that these have the right type,
namely are in the facet).

Example 9 We discuss how the first rule of the decision table
attached to the determined mode task in Fig. 1 is encoded
into a DPN guard. The S-FEEL condition associated to the
Length attribute is encoded through encodeSFEELa (that
is, encodeSFEELLength) into (Length > 0) ∧ (Length ≤
1), whereas the S-FEEL condition associated to the Weight
attribute is encoded as (Weight > 0) ∧ (Weight ≤ 5). The
resulting conjunctive formula is subject to the application of
the table-to-object map associated to the determined mode
task, which maps attribute Length to data object pLength,
and Weight to pWeight. pLength and pWeight are thus
used as DPN variables. The application of encodeTest then
ensures that pLength and pWeight are read, thus producing,
for the input part of the rule, the formula (pLengthr > 0) ∧
(pLengthr ≤ 1) ∧ (pWeightr > 0) ∧ (pWeightr ≤ 5).
Similarly, the output attributemode is assigned by the rule to
the value car, and is substituted with data object sMode by

123

Integrating BPMN and DMN: Modeling and Analysis 181

the table-to-object map associated to the determined mode
task. So, its encoding produces formula (sModew = car).
Considering the contribution of the attribute facets, and the
additional tests ensuring that the attributes are defined, the
encoding of the rule produces, overall:

(pLengthr �= undef) ∧ (pWeightr �= undef) ∧ (pLengthr > 0)

∧ (pWeightr > 0) ∧ (pLengthr > 0)

∧ (pLengthr ≤ 1) ∧ (pWeightr > 0)

∧ (pWeightr ≤ 5) ∧ (sModew = car)

which can be simplified into the logically equivalent, simpler
formula:

(pLengthr > 0) ∧ (pLengthr ≤ 1) ∧ (pWeightr > 0)

∧ (pWeightr ≤ 5) ∧ (sModew = car)

The formula induces an input–output relation established by
task determined mode between the two input data objects
pLength and pWeight and the output data object sMode.

Finally, we have to handle the default situation where no
rule of a table matches, by writing the guard to be associated
to the tnoRow DPN transition, for each business rule task t .
We distinguish, in this respect, two reasons for this:

1. no rule matches because the provided input is not well-
formed, that is, it contains undefined values or values that
do not respect the facet conditions of their associated table
attributes. In this case, we outputundef for all the output
attributes, witnessing the inapplicability of the decision
logic;

2. no rule matches because, even though the provided input
is well-formed, it violates at least one input condition in
each of the rules in the table. In this case, for every output
attribute we produce as a result the default value assigned
to the attribute, or undef if no such a default value is
given.

Considering again a business rule task t and θ as above, this
is defined as the DPN formula encodeDefaultRuleB(t)

.=

¬encodeWFB,t ∧
∧

b∈B.taskToDec(t).O

(θ(b)w = undef) ∨

encodeWFB,t ∧

⎛

⎜⎜⎜⎝

∧
r∈B.taskToDec(t).R ¬encodeIf B,t (r) ∧

∧
b∈B.taskToDec(t).O

⎧
⎪⎨

⎪⎩

(θ(b)w = k) if B.taskToDec(t).ODef(b) = k

(θ(b)w = undef) if B.taskToDec(t).ODef(b)

is undefined

⎞

⎟⎟⎟⎠

where ODef is the function assigning a default value for
the decision table B.taskToDec(t), as in Definition 2. The
first disjunct captures the case where the table cannot be
applied due to non-well-formedness (case 1), so undef val-
ues are written in output. The second disjunct instead handles
the case where well-formedness is satisfied (case 2). For
this case, the resulting guard is divided in two parts (cor-
responding to the two lines in the formula above, in the
second disjunct). The first line requires that the default for-
mula is applied when none of the rule premises holds (i.e.,
¬encodeIf B,t (r) for each rule r). The second line specifies
which output value is written into each data object (hence
variable) to which the output attribute is mapped by θ : either
the default value (if present) or the undef value.

Example 10 Consider again the determined mode task in
Fig. 1. The default formula associated to this task captures
the situationwhere the execution of the task, that is, the appli-
cation of its associated decision table, results in an undefined
shipment mode (note that no default output value is defined).
This is formalized as a guard indicating that sMode is unde-
fined whenever the involved attributes are either undefined,
do not respect their facet conditions, or they do but none of
the rules applies:

⎛

⎜⎜⎝

⎛

⎜⎜⎝

pLengthr = undef

∨pWeightr = undef

∨pLengthr ≤ 0
∨pWeightr ≤ 0

⎞

⎟⎟⎠ ∧ (sModew = undef)

⎞

⎟⎟⎠

∨

⎛

⎜⎜⎝

⎛

⎜⎜⎝

pLengthr �= undef ∧ pWeightr �= undef

∧pLengthr > 0 ∧ pWeightr > 0

∧
(

(pWeightr > 10)
∨(

pWeightr ≤ 5 ∧ pLengthr > 2
)
)

⎞

⎟⎟⎠ ∧ (sModew = undef)

⎞

⎟⎟⎠

This can be semantically simplified into:

⎛

⎜⎜⎝

⎛

⎜⎜⎝

pLengthr = undef

∨pWeightr = undef

∨pLengthr ≤ 0
∨pWeightr ≤ 0

⎞

⎟⎟⎠ ∧ (sModew = undef)

⎞

⎟⎟⎠

∨
((

(pWeightr > 10)
∨(

pWeightr > 0 ∧ pWeightr ≤ 5 ∧ pLengthr > 2
)
)

∧ (sModew = undef)

)

Putting everything together We are now ready to define the
overall encoding of B into a corresponding DPN. The DPN
of B is the net DPN(B)

.= 〈Pl, T , F, V , αI , guard〉, where:

123

182 M. de Leoni et al.

– the net backbone consists of the expansion of the Petri net
encoding of B.P, that is, 〈Pl, T , F〉 = encodeFlow(B);

– the net variables are the data objects of B, that is, V =
B.P.dataObj;

– αI is so that every data object is initialized to the undef
value;

– guard associates to each conditional flow transition its
corresponding DPN test guard, to each manual task its
corresponding DPN update guard, and to each decision
rule transition its corresponding DPN rule input–output
guard. Formally, guard is defined as:

– for every choice gateway gway ∈ B.P.choicePoints
and every conditional flow transition t ∈ B.

P.condFlows(gway),wehaveguard(t) = encodeTest
(B.choiceGuard);

– for every manual task t ∈ B.P.manTasks, we have
guard(t) = encodeUpdateB(t);

– for every business rule task t ∈ B.P.brTasks and
every rule ri ∈ B.taskToDec(t).R with position i
in the associated table, we have guard(〈t, i〉) =
encodeRuleB,t (ri);

– for every business rule task t ∈ B.P.brTasks, we have
guard(〈t,noRow〉) = encodeDefaultRuleB(t);

– for every other transition t ∈ T , guard(t) is assumed
to a tautological guard.

5 Soundness Analysis of DBPMN Processes

In this section we consider a set of properties that can be used
to characterize various notion of correctness of a process in
terms of soundness. These properties include (an adaptation
of) those introduced in [11], which are combined in that work
to define various notions of decision-aware soundness. First,
in Sect. 5.1 we formalize these properties directly on DPNs,
as we have captured the execution semantics for DBPMN
through these nets. Then, in Sect. 5.2, we detail how these
properties can be verified by relying on a known verification
technique for DPNs.

5.1 Notions of Data-Aware Soundness of DBPMN
Processes

Given aDBPMNprocessB = 〈P,writeGuard, choiceGuard,

D, taskToDec, objToDec〉, letDPN(B) = 〈Pl, T , F, V , αI ,

guard〉 be the DPN defined in the previous section.We define
the following properties onDPN(B), adoptingwhen possible
the names and terminology of [11]:

P1 (Option to Complete) For each reachable configuration
that is not final there is always an option to reach a final

configuration. Formally, ∀(M, α) ∈ ReachDPN(B). M �

MF ⇒ ∃α′. (M, α) ∗−→ (M ′, α′) ∧ M ′ ≥ MF .7

P2 (Clean completion) Whenever a final configuration is
reached, no token is left in the rest of the net and no task
can still be executed. Formally,∀(M, α) ∈ ReachDPN(B).
M ≥ MF ⇒ (M = MF) ∧�t . M[t〉.

P3 (No dead task) For each transition t (corresponding
to a manual task of B, that is excluding transitions
that encode rules of decision tables), there is at least
one run that enables t . Formally, ∀t ∈ B.P.manTasks.
∃M1, M2, α1, α2, β. (M1, α1) ∈ ReachDPN(B)∧(M1, α1)
t,β−→ (M2, α2).
P4 (DMN Conditional Completeness) Each DMN table
always produces a result. This can be checked by requir-
ing that, whenever it is enabled according to the control
flow, a DPN transition t i that encodes a rule of a deci-
sion table for some business rule task t ∈ B.P.brTasks
(i.e., t i ∈ DecRowsB(t)), then at least one DPN tran-
sition t j encoding a rule of the same decision table can
be fired (possibly with i= j). Moreover, if j = noRow
then we require that a default output value exists, i.e., a
default output value is given in output for the variable v

such that {v} = write(t j) (with a little abuse of notation,
we denote the new value of v as α′(write(t j))). For-
mally, ∀(M, α) ∈ ReachDPN(B), t ∈ B.P.brTasks, t i ∈
DecRowsB(t). M[t i 〉 ⇒ ∃t j ∈ DecRowsB(t), β, α′.
(M, α)

t j ,β−−→ (M ′, α′) ∧ (j �= noRow∨ α′(write(t j)) �=
undef).
P5 (DMN Conditional Output Coverage) No rule in
DMN tables can cause a deadlock when hit. This can
be modeled by requiring that, whenever a DPN tran-
sition t i that encodes a rule of the decision table
associated to some t ∈ B.P.brTasks is fired (including
i = noRow), then the execution can continue. For-
mally, ∀(M, α) ∈ ReachDPN(B), t ∈ B.P.brTasks, t i ∈
DecRowsB(t), β, α′. ∃M ′, α′. (M, α)

t i ,β−−→ (M ′, α′) ⇒
∃M ′′, α′′. (M ′, α′) ∗−→ (M ′′, α′′).

For instance, in the DPN in Fig. 5, P4 requires that,
whenever a transition determine modei is enabled for
some i ∈ {1, 2, 3,noRow}, then at least one transi-
tion determine mode j can eventually fire, for some j ∈
{1, 2, 3,noRow}. The same is required for all other business
rule tasks.

By combining the five above properties, it is possible to
express, on the DBPMN process B captured by DPN(B),
various notions of soundness introduced in the literature. As
already said, in what followwe consider possible adaptations
of the different definitions of decision-aware soundness dis-

7 Recall that, given a DPN N, ReachN denotes the set of reachable
configurations—see Sect. 4.1.

123

Integrating BPMN and DMN: Modeling and Analysis 183

Fig. 7 The various notions of data-aware soundness, inspired to those
of decision-aware soundness illustrated in [11]. The figure also shows to
which properties these correspond in terms of the DBPMN behavioral

properties. Note that P1−P3 correspond to the properties considered
in [19] for arbitrary DPNs, with the difference that P3 is here adapted
to DBPMN processes that distinguish manual and business rule tasks

cussed in [11]. These properties are depicted in Fig. 7, where
P1b and P1c are weaker versions of property P1, and P2b
is a weaker version of property P2, defined below. The arc
between two soundness notations indicatewhether the source
implies the target.

P1b: It is possible to extend any run to reach a marking
larger than or equal to the final marking if this did

not happen already along the run: (MI , αI)
t1,β1−−→

(M1, α1) . . .
tn ,βn−−−→ (Mn, αn) ∧ ∧n

i=1 Mi � MF ⇒
∃M, α. (Mn, αn)

∗−→ (M, α) ∧ M ≥ MF .
P1c: A configuration with a marking larger than or equal

to the final marking is reachable by at least one run:
∃α, M . (M, α) ∈ ReachDPN(B) ∧ M ≥ MF .

P2b: From any configuration with a marking larger than
or equal to MF it is still possible to continue the exe-
cution, but is nomore possible to again reach one such
configuration:∀(M, α) ∈ ReachDPN(B), M ′, α′.M ≥
MF ∧ (M, α) ∗−→ (M ′, α′) ⇒ M ′

� MF .

By adopting again the names of the decision-aware proper-
ties in [11], we define here various properties of data-aware
soundness. The strongest property is that of Data-aware
soundness, which is captured by requiring all properties P1–
P5. A DBPMN process B for which P3 is true but P1 and
P2 do not hold on DPN(B) is instead called Data-aware
relaxed sound. In such processes, every manual task can par-
ticipate in at least one process execution (P3), every DMN
table is complete (P4) and none of its output leads to a dead-
lock (P5). A considerably weaker soundness notion is that
of Data-aware easy soundness, where the only property is
P1b: there is at least one process execution from the initial
state to one of the final states. If instead only property P3
does not hold for DPN(B), then the DBPMN process B is
said to be Data-aware weak sound. This means that there
is always an option to complete, and in a clean manner, but

some tasks might be dead (however, from P4 it follows that
no decision task can be dead). Finally, a further weaker prop-
erty is called Data-Aware Lazy Soundness, as it allows the
DBPMNprocess to be lazy: the executionmay continue after
reaching a final state, hence violating P2, but it cannot again
reach a new final state (P2b), and there is always an option
to complete before reaching a final state for the first time
(P1b).

For completeness, we also consider the following prop-
erty, which corresponds to the counterpart of P3 for DPN
transitions corresponding to rules in decision tables associ-
ated to business rule tasks.

P6 (No dead table row): There is an execution that
hits each row of each DMN table. This can be mod-
eled by requiring that, for each transition t representing
a row of a DMN table (but excluding the additional
default rule that was added by the encoding), there
exists a run that enables t . Formally, ∀t ∈ B.P.brTasks,
t i ∈ DecRowsB(t), i �= noRow. ∃M1, M2, α1, α2, β.

(M1, α1) ∈ ReachN ∧ (M1, α1)
t i ,β−−→ (M2, α2).

Example 11 Given the DPN N shown in Fig. 5, assessing
the properties discussed in this section is not a trivial task.
It requires one to adopt the approach illustrated in Sect. 5.2,
based on the verification technique in [19], to exhaustively
account for any possible execution of the process. We simply
comment here on the truth values of these formulae, assuming
to have completed the verification procedure.

Properties P1 is true, although this is not evident by
inspecting the DPN: from any reachable configuration of
RGN, it is always possible to reach the final marking. Intu-
itively, this means that the combination of the conditions
associated to manual tasks and business rule tasks cannot
induce neither a deadlock nor a livelock. As a consequence,
P5 is true as well (it can be easily shown that P1 implies

123

184 M. de Leoni et al.

P5). Property P2 is also true, and this is evident by visual
inspection: only one token exists in each reachable marking,
so when a final configuration is reached, the termination is
“clean”. Property P3 is instead false, although this is not evi-
dent by visual inspection: there are in fact dead transitions
(marked in red in Fig. 5) and, between these, two encode
manual tasks (fetch declaration and the transitionwith guard
(sMr = undef)). This means that it is in fact not possible to
assign owner as value of object consent and it is also never
the case that the output of tableChoose Consent is undefined
(that is, that either the facet conditions are not satisfied or that
no rulematches but there is no default value for this table – see
the guard associated to transitions choose consentnoRow). It
can be verified that P4 is true forN, since there are no runs of
this process for which, at some point, a decision table cannot
produce any result in output. Property P6 is violated: among
the dead transitionsmarked in red in Fig. 5, one encodes a rule
in a DMN table, namely choose consent1: it can be shown
that the first rule of choose consent can never be matched.

All these issues were already commented on the original
DBPMN process in Sect. 2, where the running example is
introduced, although we are now able to employ automated
verification techniques to detect such issues. Finally, note that
two more transition are marked as dead in the figure, namely
the two transitions immediately preceding and following the
transition fetch declaration. However, these two transitions
were added during the encoding for technical reasons and
do not encode manual tasks nor rules of DMN tables, hence
have no impact on the truth values of the properties we are
considering (specifically, P3).

5.2 Verifying Notions of Data-Aware Soundness of
DBPMN Processes

In previous work [19], we have shown how to check data-
aware soundness of DPNs (as in the previous section) in spite
of the fact that the possible runs of a DPN are in fact infi-
nite in general, both in number and in length. The technique
was then extended to account for arbitrary temporal formu-
lae expressing requirements on both the control-flowand data
[21]. The approach is based on an interval-abstraction tech-
nique that allows to represent all possible runs of a given
DPN, hence its behavior, as a finite-state structure which is
called constraint graph [19, Definition 6]. Being finite-state,
we can analyze such a graph and determine whether the orig-
inal DPN is data-aware sound.

Crucially, it can be easily shown that such result holds not
only for the properties considered in that work, but in fact
for any property that does not depend on the specific value of
variables along the runs of a DPN, nor on its specific branch-
ing structure. This is the case for all the properties considered
in the previous section. Consider as an example the definition
of P4. It is evident that the specific state variable assignment

α in the configuration (M, α), nor the specific guard variable
assignment β in the transition firing (t, β) are in fact rele-
vant: we quantify either universally or existentially on both.
The same is true for the other properties.

Therefore, in this section we comment on how to apply
the very same abstraction technique in [19] to verify all our
properties on the finite-state abstraction of DPNs, and in par-
ticular on the net DPN(B) for a given DBPMN process B.
However, this technique is not directly applicable, due to a
limitation in the kind ofDPNs considered in that work, which
restricts guards of the DPNs to simple guards. Instead, the
DPNs modeled in Sect. 4.1 allow arbitrary boolean combi-
nations of simple guards (cf. Definition 5). Nonetheless, we
show how a DPN as in Sect. 4.1 can be equivalently rep-
resented by a simpler (although larger) DPN that only uses
simple guards.A number of transformation steps are required
on the transitions Tasks(B) in the DPN, as follows.
Step 1: Transform guards in disjunctive normal form.
We transform the guard guard(t) of each transition t ∈
Tasks(B), obtained as in Sect. 4.2, into disjunctive normal
form, hence into guards of the form g1∨· · ·∨gm where each
gi , for i ∈ {1, . . . ,m}, is a conjunction of simple guards.
Step 2: Eliminate disjunction. For each transition t ∈
Tasks(B) with input place pti , output place pto and guard
guard(t) = g1 ∨ · · · ∨ gm as above, we add a set of tran-
sitions {t1, . . . tm} with guard(ti) = gi , for i ∈ {1, . . . ,m},
between two places p, p′ that we add to Pl (i.e., each ti has
p and p′ as input and output place respectively). Moreover,
we create an additional transition ts (“start” t), between pti
and p, representing the fact that the process entered the eval-
uation block of the guard, while the transition t is arranged
from p′ and pto. Note that the additional task ts is added to
T , but is not in Tasks(B) ⊂ T .

An example is given in Fig. 8, and it is immediate to
see that the semantics of the original transition is pre-
served: recall that a state variable assignment β is so that
(g1 ∨ g2)[β] = true iff either g1[β] = true or g2[β] =
true. As for regular DPNs, in this section we assume a tau-
tological guard (cf. the text after Definition 4) whenever a
guard is not specified for some transition.
Step 3: Replace transitions with DPN fragments. At this
stage, each transition in {t1, . . . , tm} obtained in the step
above for each transition t ∈ Tasks(B), is assigned a
conjunctive guard of the form gi = sg1 ∧ · · · ∧ sgn , for
i ∈ {1, . . . ,m}, consisting only of simple guards. Hence we
substitute each such transition ti by a DPN fragment encod-
ing three basic steps: a write step, a test step and a copy step.
These are intuitively depicted in Fig. 9.

– Write step: for each variable v ∈ write(ti), we create
a transition tv that writes a copy v of v in any pos-
sible way, i.e., with guard (vw �= undef). We also
add places between these transitions, when required. If

123

Integrating BPMN and DMN: Modeling and Analysis 185

Fig. 8 Example of disjunction
elimination, by introducing
transitions {t1, t2}

Fig. 9 The intuitive translation scheme to be applied to transitions
{t1, . . . tm}, as in Fig. 8 (here,m = 2), corresponding (through the elim-
ination of disjunctions) to a transition t with guard(t) = g1 ∨ · · · ∨ gm ,
where gi = sg1 ∧ · · · ∧ sgn for each i ∈ [1,m]. Each ti is translated by

a sequence of Write, Test, Copy steps. Places p and p′ are as in Fig. 8.
Note that the place shownwith a token is unique for the entire net, which
guarantees that interleaving is disallowed across distinct sequences

write(g) = ∅, then a single transition is added, with a
tautological guard. Note that this step requires to add a
fresh variable v to V for each v ∈ write(g): these are used
as temporary variables, so that we do not overwrite the
current values until the overall guard guard(ti) is deter-
mined to be satisfied and ti is finally fired;

– Test step:we add a sequence of n transitions (and required
places), one for each simple guard sgi as above, i ∈
[1, n]. These transitions implement the tests needed to
evaluate the entire conjunctive guard gi = guard(ti) =
sg1∧. . .∧sgn . Moreover, to capture those cases in which
one or more of these simple guards are not satisfied, we
add further n transitions, eachwith guard¬sgi , that allow
theDPN to restart theWrite step so as to select newvalues
for the written variables. A more formal formalization
of this simple step is cumbersome, hence we directly
provide examples in Fig. 10;

– Copy step: the current value of each special variable v,
one for each v ∈ write(ti) as in theWrite step, is assigned
to v, namely we add a transition with guard (vw = vr).

Given a DBPMN process B, whose corresponding DPN
is DPN(B), we denote the DPN obtained by transforming
DPN(B) according to the steps above (thus using only sim-
ple guards) as DPN(B)↓. As commented in the steps above,
DPN(B)↓ includes additional transitions and places that are
not in DPN(B). Clearly, this has a potential impact on how
properties (P1−P6 in Sect. 5) can be defined on DPN(B)↓,
because there are fragments of DPN(B)↓ which now account
for the evaluation of non-simple guards that were atomic in
both DPN(B) and in the original DBPMN process B.

In order to disambiguate, we denote the markings of
DPN(B)↓ in which no such additional place contains at least
one token as Markings(B). A marking in this set has tokens
only in the places of DPN(B).

5.2.1 Checking Data-Aware Soundness ofB on DPN(B)↓

In this section, we reformulate the properties P1−P6 on
DPN(B)↓, rather than on DPN(B). The difference is that
we have to suitably take care on the additional markings,
not in Markings(B), which were introduced by transform-
ing DPN(B) into DPN(B)↓. Likewise, we have to take into
account the fact that, for each transition t ∈ Tasks(B),
DPN(B)↓ now contains a DPN fragment as defined in the
previous section (whose first transition is ts and the last is t
itself—see examples in Fig. 10).

We list here only the properties that need to be modified,
namely P1, P2 and P4,while it is immediate to show that the
other properties still capture the intended properties. Given
DPN(B) = 〈Pl, T , F, V , αI , guard〉 and DPN(B)↓:

P1 (Option to Complete) For each reachable configuration
that is not final and in which there are no tokens in the
additional places added by following the procedure in
the previous section (when transforming DPN(B) into
DPN(B)↓), there is always an option to reach a final con-
figuration. Intuitively, the difference is that we allow the
DPN execution to reach live-locks only when attempting
to satisfy a guard that is not satisfiable (i.e., when there are
tokens in the yellow area in Fig. 10 but the transition can
never be enabled). Formally, ∀(M, α) ∈ ReachDPN(B)↓ .

123

186 M. de Leoni et al.

Fig. 10 Examples of the complete translation of transition with arbi-
trary guards (for simplicity, those depicted are without disjunction) into
DPN fragments that only use simple guards. Places denoted by p, p′
are as in Fig. 9. Note that all possible guards (as exemplified on the left)
are translated according to the exact same translation scheme, although
some simple cases could be encoded more succinctly. This is done for
uniformity so that this technique can be easily implemented. The red,

yellow and green areas correspond to the result produced by following
the Write, Test and Copy steps, respectively. When the green area is
reached, it means that the transition t can be fired, because guard(t) is
satisfied. A livelock in the red and yellow areas means that the guard is
not satisfiable given the current state variable assignment when a token
is in pti

M � MF ∧ M ∈ Markings(B) ⇒ ∃α′. (M, α) ∗−→
(M ′, α′) ∧ M ′ ≥ MF .

P2 (Clean completion) Whenever a final configuration is
reached, no token is left in the rest of the net and no
task of the original DPN can still be executed. For-
mally, ∀(M, α) ∈ ReachDPN(B)↓ . M ≥ MF ⇒ (M =
MF) ∧ �ts, t ∈ T . M[t〉.

P4 (DMN Conditional Completeness) It is the same property
as before but with one simple modification: the transition
t is (and not t

i itself) is used to detect when a transition t i ,
encoding a rule in a decision table, is enabled according
to the control flow. Formally: ∀(M, α) ∈ ReachDPN(B),
t ∈ B.P.brTasks, t i ∈ DecRowsB(t). M[t is 〉 ⇒ ∃t j ∈
DecRowsB(t), β, α′. (M, α)

t j ,β−−→ (M ′, α′) ∧ (j �=
noRow ∨ α′(write(t j)) �= undef).

Finally, we are now able to check data-aware soundness of
B on DPN(B)↓.

Proposition 1 A DBPMN process B is data-aware sound
(properties P1−P5 for DPN(B)) iff DPN(B)↓ is data-aware
sound.

It can be easily shown that the same result holds for any
of the various notions of data-aware soundness as in Fig. 7.

Proof (Sketch.)Consider property P1andassume suchprop-
erty to be true in B, namely that P1 is true in DPN(B).
We then need to show that DPN(B)↓ satisfies P1 (modi-
fied as described earlier in this section). If this is not the
case, a configuration (M, α) exists in DPN(B)↓ so that
a final configuration is not reachable from (M, α). How-
ever, it is immediate to verify that the configurations of
DPN(B) are a “subset” of the configurations of DPN(B)↓,
and (M, α) cannot be a configurationofDPN(B)or otherwise

this would contradict the hypothesis because (M, α)
t,β−→

(M ′, α′) in DPN(B) implies, by construction, that (M, α) ∗−→
(M ′′, α′′) t−→ (M ′, α′) in DPN(B)↓ – see Fig. 9. This implies
that M /∈ Markings(B), thus the property P1 imposes
no requirement on (M, α). The same observation allows to
prove the other direction. If indeed DPN(B)↓ satisfies P1 but
a configuration (M, α) exists in DPN(B) so that a final con-
figuration is not reachable from (M, α), then it means that
a deadlock exists in DPN(B). By construction, this implies
that there is a livelock in DPN(B)↓, namely, for some tran-
sition t we cannot reach the green area as in Fig. 9 for any
transition in {t1, . . . tm} that correspond to t through the elim-

123

Integrating BPMN and DMN: Modeling and Analysis 187

ination of disjunctions. This then contradicts that DPN(B)↓
satisfies P1. Similar simple reasonings can be used for all
the properties considered in this paper. ��

6 Conclusions

In this paper we have studied the integration of BPMN
with DMN S-FEEL decisions into a single model, called
DBPMN, providing a unified modeling framework which
allows to capture complex processes enriched with decision
points encoding the business decision logic. The execution
semantics of the resulting formalism is given by encoding
a DBPMN process by using DPNs, which extends the Petri
nets with data attributes, based on which one can express
data conditions guarding the enablement of transitions. The
encoding is achieved by first translating theDBPMNcontrol-
flow to a suitable Petri Net. Then, the resulting net is enriched
with data manipulation operations that are essential to recon-
struct the interplay of the process, the data objects, and the
decision logic.

The formalism of DPNs, although simple, not only pro-
vides a formal representation that is rich enough to capture
the behavior of complexDBPMNprocesses but, most impor-
tantly, it allows us to leverage the verification techniques
already available forDPNs,which are implementable in prac-
tice. As a result, we are able to perform fine-grained analysis
of the possible behaviors of DBPMN processes by relying
on well understood abstraction techniques, and effectively
check various data-aware soundness properties of these inte-
grated DBPMN processes.

We conclude by highlighting the main limitations of
our current approach, and how they can be addressed in
future work. First and foremost, in our current approach we
only support an extended version of the S-FEEL language,
whereas we do not target the interconnection of decision
tables into decision requirement diagrams, nor we capture
DMN decisions expressed in (richer fragments of) the full
FEEL language. Targeting decision requirement diagrams
is definitely at reach with the current DBPMN framework.
This would pave the way towards complementing the good
modeling practices introduced in [12] with corresponding
operational techniques to check whether such practices are
properly adopted. Targeting the full FEEL language is instead
a more challenging proposition, due to the expressivity of
this language. It would be then interesting to see which frag-
ments of FEEL could be handled beyond what is currently
supported. A first step in that direction would be to study
which features of FEEL are already implicitly supported in
DBPMN. Indeed, note that in DBPMN decision tables are
interconnected through net fragments that can easily encode
if-then-else and loop constructs.

Another important limitation is related to datatypes: we
currently do not support integer variables nor more com-
plex forms of arithmetic conditions. Integer variables could
be allowed, without any modification, only for simple pro-
cesses where their interplay with the control-flow does not
simulate for-loops. A dedicated treatment of integer values,
in the general case, is currently left as future work. We are
also studying this problem by focusing on richer languages
for conditions, such as linear arithmetic and its fragments.

Finally, in this paper all sources of nondeterminism
present in a DBPMN process are homogeneously handled,
because we assume that there is a single actor in charge of
deciding which next task to execute, and with which data.
Real processes are more sophisticated, as they are executed
by multiple actors who control different sources of nonde-
terminism (for example, different actors responsible for the
execution of different manual tasks and the updates they
induce over data objects). We have recently studied this rel-
evant setting in the context of DPNs [21], and it would be
interesting to see how the techniques defined there could be
conceptually mirrored into DBPMN.

Funding Open access funding provided by Libera Università di
Bolzano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Business process model and notation (BPMN) v2.0 (2011) https://
www.omg.org/spec/BPMN/2.0/

2. Decision model and notation (DMN) v1.3 (2020) https://www.
omg.org/spec/DMN/1.3/

3. Figl K, Mendling J, Tokdemir G, Vanthienen J (2018) What we
know and what we do not know about DMN. Enterp Modell Inf
Syst Architect 13(2):1–16

4. CODASYLDecision Table TaskGroup (1982) Amodern appraisal
of decision tables: a CODASYL report. ACM

5. Vanthienen J, Dries E (1992) Developments in decision tables:
evolution, applications and a proposed standard. Research Report
9227, Katholieke Universiteit Leuven

6. Calvanese D, Dumas M, Laurson Ü, Maggi FM, Montali M,
Teinemaa I (2018) Semantics, analysis and simplification of DMN
decision tables. Inf Syst 78:112–125

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/DMN/1.3/
https://www.omg.org/spec/DMN/1.3/

188 M. de Leoni et al.

7. Calvanese D, Montali M, Dumas M, Maggi FM (2019) Semantic
DMN: formalizing and reasoning about decisions in the presence of
background knowledge. Theory Pract Log Program 19(4):536–573

8. Bazhenova E, Zerbato F, Oliboni B, Weske M (2019) From BPMN
process models to DMN decision models. Inf Syst 83:69–88

9. De Smedt J, Hasic F, vanden Broucke SKLM, Vanthienen J (2019)
Holistic discovery of decision models from process execution data.
Knowl Based Syst 183:104866

10. Song R, Vanthienen J, Cui W, Wang Y, Huang L (2019) A
dmn-based method for context-aware business process modeling
towards process variability. In: Abramowicz W, Corchuelo R (eds)
Proceedings of the 22nd international conference on business infor-
mation systems (BIS 2019), lecture notes in business information
processing. Springer, vol 353, pp 176–188

11. Batoulis K, Haarmann S, Weske M (2017) Various notions of
soundness for decision-aware business processes. In: Proceedings
of ER 2017. Springer, LNCS, vol 10650, pp 403–418

12. Hasic F, De Smedt J, Vanthienen J (2018) Augmenting processes
with decision intelligence: principles for integrated modelling.
Decis Support Syst 107:1–12

13. Montali M (2019) Putting decisions in perspective. In: Francesco-
marino CD, Dijkman RM, Zdun U (eds) Proceedings of the
business process management 2019 workshops. Springer, LNBIP,
vol 362, pp 355–361

14. Mertens S, Gailly F, Poels G (2015) Enhancing declarative pro-
cess models with DMN decision logic. In: Gaaloul K, Schmidt R,
Nurcan S, Guerreiro S, Ma Q (eds) Proceedings of the enterprise
16th international conference on business-process and information
systems modeling (BPMDS-EMMSAD 2015). Springer, Lecture
Notes in Business Information Processing, vol 214, pp 151–165

15. van der Aalst WMP, van Hee KM, ter Hofstede AHM, Sidorova
N, Verbeek HMW, Voorhoeve M, Wynn MT (2011) Soundness
of workflow nets: classification, decidability, and analysis. Formal
Asp Comput 23(3):333–363

16. Batoulis K (2019) Sound integration of process and decision mod-
els. Ph.D. thesis, HPI

17. Mannhardt F (2018) Multi-perspective process mining. Ph.D. the-
sis, Eindhoven University of Technology. http://repository.tue.nl/
b40869c0-2d11-4016-a92f-8e4ee9cd9d66

18. de Leoni M, Felli P, Montali M (2018) A holistic approach for
soundness verification of decision-aware process models. In: Con-
ceptual modeling—37th international conference, ER 2018, Xi’an,
China, October 22–25, 2018, proceedings, pp 219–235

19. Felli P, de Leoni M, Montali M (2019) Soundness verifica-
tion of decision-aware process models with variable-to-variable
conditions. In: 19th international conference on application of con-
currency to system design (ACSD), pp 82–91

20. Calvanese D, De Giacomo G, Montali M (2013) Foundations of
data aware process analysis: a database theory perspective. In: Pro-
ceedings of PODS 2013. ACM

21. de Leoni M, Felli P, Montali M (2020) Strategy synthesis for
data-aware dynamic systems with multiple actors. In: Calvanese
D, Erdem E, Thielscher M (eds) Proceedings of the 17th interna-
tional conference on principles of knowledge representation and
reasoning, KR 2020, Rhodes, Greece, September 12–18, 2020, pp
315–325. https://doi.org/10.24963/kr.2020/32

22. Feldman J (2017) DMN in action with openrules
23. Batoulis K, Weske M (2018) A tool for the uniqueification of

DMN decision tables. In: van der AalstWMP, Casati F, Conforti R,
de Leoni M, Dumas M, Kumar A, Mendling J, Nepal S, Pentland
BT, Weber B (eds) Proceedings of the dissertation award, demon-
stration, and industrial track at BPM 2018, CEUR-WS.org, CEUR
workshop proceedings, vol 2196, pp 116–119

24. Dijkman RM, Dumas M, Ouyang C (2008) Semantics and anal-
ysis of business process models in BPMN. Inf Softw Technol
50(12):1281–1294

25. WynnMT,VerbeekHMW, van derAalstWMP, ter HofstedeAHM,
Edmond D (2009) Reduction rules for YAWLworkflows with can-
cellation regions and or-joins. Inf SoftwTechnol 51(6):1010–1020.
https://doi.org/10.1016/j.infsof.2008.12.002

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://repository.tue.nl/b40869c0-2d11-4016-a92f-8e4ee9cd9d66
http://repository.tue.nl/b40869c0-2d11-4016-a92f-8e4ee9cd9d66
https://doi.org/10.24963/kr.2020/32
https://doi.org/10.1016/j.infsof.2008.12.002

	Integrating BPMN and DMN: Modeling and Analysis
	Abstract
	1 Introduction
	2 A Gentle Introduction to DBPMN
	3 The DBPMN Model
	3.1 BPMN
	3.2 DMN Decision Tables
	3.3 The DBPMN Model

	4 Execution Semantics of DBPMN
	4.1 The Formalism of Data Petri Nets
	4.2 Encoding DBPMN into DPNs

	5 Soundness Analysis of DBPMN Processes
	5.1 Notions of Data-Aware Soundness of DBPMN Processes
	5.2 Verifying Notions of Data-Aware Soundness of DBPMN Processes
	5.2.1 Checking Data-Aware Soundness of mathcalB on DPN(mathcalB)downarrow

	6 Conclusions
	References

