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Abstract
Business processes are often specified in descriptive or normative models. Both types of models should adhere to internal and
external regulations, such as company guidelines or laws. Employing compliance checking techniques, it is possible to verify
process models against rules. While traditionally compliance checking focuses on well-structured processes, we address case
management scenarios. In case management, knowledge workers drive multi-variant and adaptive processes. Our contribution
is based on the fragment-based case management approach, which splits a process into a set of fragments. The fragments are
synchronized through shared data but can, otherwise, be dynamically instantiated and executed. We formalize case models
using Petri nets. We demonstrate the formalization for design-time and run-time compliance checking and present a proof-
of-concept implementation. The application of the implemented compliance checking approach to a use case exemplifies its
effectiveness while designing a case model. The empirical evaluation on a set of case models for measuring the performance
of the approach shows that rules can often be checked in less than a second.

Keywords Compliance checking · Case management · Model verification · Data-centric processes

1 Introduction

Business processes include activities that are executedby sys-
tems and workers to create business value. The tasks are in
a relationship with each other and with data. This constrains
the possible orders inwhich tasks are executed [37]. Business
process management (BPM) provides methodologies, meth-
ods, and tools for companies to design, implement, enact, and
analyze their processes [56]. At any point, companies must
comply with laws and regulations, which must be reflected
in the processes, respectively. For example, a company must
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get consent from their customers before processing personal
data. Compliance checking is a set of methods that allow
verifying processes against rules [20,46]: they enable com-
panies to check process models at design-time, to monitor
executions with regard to compliance during run-time, and
to detect violations in event logs that record past behavior.We
focus on model-based compliance checking to find violating
execution paths at design-time and and situations leading to
violations at run-time.

While traditionally compliance checking in BPM can be
applied to highly structured processes that can be speci-
fied through imperative process models (e.g., using process
modeling languages common in industry, such as Busi-
ness Process Model and Notation (BPMN) [39]), there
exists little support for compliance checking of knowledge-
intensive processes. Such processes are executed by highly
trained workers (i.e., knowledge workers) that perform vari-
ous interconnected decision-making tasks to reach a certain
goal for a case (e.g., consulting, healthcare, or education
processes) [12]. They are richer in their variations, are
information- and data-driven, and often require ad hoc adap-
tation at run-time [12].

Case management addresses these processes by enabling
knowledge workers to specify, execute, and adapt them as
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needed [53]. To this end, the fragment-based Case Man-
agement (fCM) approach combines activity-centric process
fragments with data requirements [22]. Fragments can be
instantiated and executed dynamically as well as added dur-
ing execution. All fragments operate on shared data; data
requirements, which are modeled in the fragments, lead to
dependencies and, hence, synchronization among fragments.
Due to the loose coupling, fCM case models describe highly
concurrent and multi-variant processes in a compact yet pre-
cise way. This characteristic of fCM case models makes
model verification hard (due to the exponentially growing
state-space) but, at the same time, necessary (since errors
may be easily overlooked by process designers).

Consider an emergency ward at a hospital (the detailed
case model for the example is presented in Sect. 3). After
a patient arrives, he or she will be examined, an X-ray may
be conducted, and different treatments may be performed.
Every patient is different, and it is the physicians’ respon-
sibility to decide on the right course of action. However,
clinical guidelines and laws may specify rules that must not
be violated, and an activity may require data objects, which
must be gathered upfront. These rules and requirements can
be captured in fCM’s fragments. Physicians may than instan-
tiate and execute activities dynamically to fit the specific case
as long as the specified constraints are not violated. This pro-
vides physicians with guidance but still offers the required
flexibility. To guide knowledge workers reliably, it is crucial
that the fCM model complies with the given guidelines and
laws.

In this paper, we present a framework for compliance
checking case models at design-time and detecting situations
that inevitably lead to compliance violations at run-time.
According to Johnson a framework is defined as “a skeleton
of an application that can be customized by an application
developer” [28]. In this paper, we present a formal frame-
work that can be implemented in different systems. It can
be deployed as part of a larger compliance management sys-
tem to verify case models and instances against temporal
logic formulas. The developed framework provides model
checking for case models by covering the traditional three
steps of model checking: (1) formalization of the model, (2)
formalization of the rule to check, and (3) model checking.
Therefore, we present a translational semantics that maps
case models to Petri nets. Additionally, we present adapta-
tions reducing the state space to improve the efficiency of the
compliance checking. We use the formalism for design-time
compliance checking.

Furthermore, we present a solution that takes the current
state of a running case (i.e., instance) and the formal model
to check whether a compliance violation is inevitable for
that specific instance. Furthermore,we can verify adaptations
made at run-time: when a new fragment is added, the updated
case model can be formalized. Using the current state of the

system as a starting point, our framework can check whether
the adapted model includes any violations.

This paper extends our previous work in [26]. We extend
the paper by providing detailed and formal description of the
translational semantics as pseudo-code algorithms. Further-
more, we evaluate our approach on a use case and empirically
investigate case models of different complexity.

The remainder of this paper is structured as follows. In
Sect. 2, we provide an overview of related work regarding
case management, compliance checking, and Petri net-based
formalization. Preliminaries, such as case models and Petri
nets, are introduced in Sect. 3. Next, we provide a for-
malization for case models as well as adaptations used for
compliance checking (Sect. 4). In Sect. 5, the approach of
checking case models for compliance and an approach find-
ing situations leading to violations at run-time is introduced
and explained. Section 6 contains a description of our proof-
of-concept implementation as well as an evaluation. In the
evaluation, we discuss a case study centered on the process
of computer-aided translation of documents. Furthermore,
we empirically analyze the performance of our tool using
case models of varying complexity and different assump-
tions. Finally, we conclude our paper in Sect. 7.

2 RelatedWork and Background

In the following, we provide an overview of related work
divided into three categories: first, we describe related work
in the field of compliance checking for business processes.
Next, we give an overview of case management approaches
and corresponding modeling languages. The last paragraph
lists works about formalizing and analyzing process models
with Petri nets.

2.1 Compliance Checking

Compliance checking examines whether processes adhere to
regulations such as company guidelines and laws. Hashmi
et al. survey compliance checking approaches aiming at an
holistic overview [20]. Following the categorization intro-
duced by Hashmi et al., our approach is based on model
checking and allowing the verification of control flow and
data related compliance rules of flexible processes at design-
time and at run-time. Awad et al. verified BPMN process
models against temporal logic properties [1] using a visual
languages for rules (BPMN-Q) [4]. The authors extended
the approach to data objects and their state [3]. Avad et al.
limit processes to highly structured ones; rules are limited
to ordering and existential constraints. More recent works
by different authors lift assumptions and consider a grow-
ing set of perspectives such as data attributes [29], decision
logic [18], roles [49], and more. Knuplesch et al. provide
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a visual language for multi-perspective compliance rules as
well as an implementation to verify models and to moni-
tor processes [30,35,36]. Fragment-based case management
(fCM) models contain information about the control flow,
data objects, and data dependencies. Therefore, we focus on
the control flow perspective while considering data objects
and their states similar to [3]. In contrast, we focus on semi-
structured, flexible processes that are driven by data and
decisions.

Besides compliance checking, we can assert compliant
models through compliance by design methods. Such meth-
ods are common for flexible processes: declarative process
modeling languages, e.g., DECLARE [42] or DCR graphs
[24], are based on rules. Instead of building up the behavior
in an imperative way, they enable scoping it through a set
of constraints. Such constraints can also represent compli-
ance rules. A process that is designed this way is compliant.
However, corresponding models become complex if they
contain highly structured process segments, and they do
not support data-centric processes. While there exist exten-
sions supporting additional perspectives, such as data and
time [7,9], complexity and comprehensibility of the mod-
els remains problematic. Our approach addresses this gap.
We target fCM that combines highly structured process frag-
ments with declarative, data-driven dependencies.

Compliance management permeates the whole process
life cycle. However, we focus on process models and, thus,
limit this overview to respective work. The reader interested
in compliancemonitoring, conformance checking, or a poste-
riori violation detection is referred to the surveys by Hashmi
et al. [20] and by Sackmann et al. [46].

2.2 Case Management

Case management aims to support knowledge workers per-
forming processes that require flexibility and adaptability.
Knowledge-intensive processes are often data-centric and
driven by the knowledge workers [12]. In general, case
management approaches are divided into adaptive case man-
agement andproduction casemanagement. The formermixes
design and execution into a single phase that allows knowl-
edge workers to define the process on the go. Production
case management assumes a (under-specified) base model
designed upfront that can be adapted during execution [53].
In the following, we focus on production case management.

The Guard Stage Milestone (GSM) approach is a data-
centric casemanagement approach, which arranges activities
in stages [27]. Stages have guards (data pre-conditions) and
milestones (data post-conditions); if a guard is satisfied, the
stage can be entered and the activities inside can be executed.
Once a milestone is satisfied, the stage can be left. Mul-
tiple approaches to verify GSM models exists [5,16,34,51];
however, verification is in general undecidable [51]. Inspired

Activity Centric

Case Management

Data Centric

fCM

Process Modeling

Fig. 1 Process modeling comprises activity-centric, data-centric, and
hybrid approaches. Case management addresses knowledge-intensive
(and often flexible) processes. fCM is a hybrid case-management
approach that combines activity-centric and data-centric process mod-
eling

by the GSM approach, the Case Management Model and
Notation (CMMN) [40] standard has been developed. The
key concept of CMMN are also stages consisting of activi-
ties with entry and exit criteria. Activities can be repetitive,
mandatory, or optional. Dependencies among activities and
stages can be defined by links. CMMN is rather an activity-
centric case management approach because data is captured
implicitly and not modeled visually.

Despite an existing standard, other related approaches
were still continued or newly developed, most prominently
PHILharmonicFlows [32], DCRGraph (Dynamic Condition
Response Graph) [50], and fragment-based Case Manage-
ment (fCM) [22]. PHILharmonicFlows [32] is a data-centric
process modeling approach, which represents an alternative
to widespread activity-centric process modeling languages
such as BPMN.

DCRGraphs [50], an alternative activity-centricmodeling
approach, consist of a set of process activities, which are
visually connected by a temporal constraint relation instead
of traditional control flow.However, data artifacts do not play
an essential role.

We base our work on the fCM approach [22]. fCM is
a hybrid approach combining ideas from data-centric and
activity-centric process modeling. Hybrid approaches have
been used, e.g., by [10,41], to strengthen and verify the
connection of the processes to information systems and
databases or by [47] to incorporate imperative and declar-
ative business rules. fCM is different from [10,41] because
it focuses on flexible and knowledge-intensive processes.
While [47] combines declarative and imperative processes
modeling resulting in two connected models of the process,
fCMcombines activity-centric process fragmentswith object
life cycles and data models. fCM fragments support imper-
ative control flow and declarative data conditions, while the
data model and object life cycles complement the model
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with detailed information about the objects in the process.
Thereby, structured parts can be expressed in a compre-
hensible way while flexibility through loose coupling of
fragments adds little complexity to the models visual rep-
resentation [23]. We detail the fCM approach in Sect. 3.

2.3 Formal Semantics for Process Models

Business process models are used for specification, analysis,
and verification. These tasks require a precise understand-
ing of the models’ semantics. To this end, formal models are
employed. A common formalization for business processes
are Petri nets, which offer a visual representation and pre-
cise semantics. Van Hee et al. demonstrate how Petri nets
can be used to model and verify business processes [21]. The
authors focus on workflow nets and present different vari-
ants. While workflow-nets can be used to model processes
directly, they quickly become hard to comprehendwhen used
for multi-variant and highly concurrent processes. We use
fCMfor a concise representation and establish formal seman-
tics through a Petri net mapping, which is hidden from the
end-user. Thereby, we combine the advantages of Petri nets
clear semantics with the benefits of a more abstract modeling
language such as fCM.

Petri net-based semantics for BPMN models have been
defined by Dijkman et al. [13]. Awad et al. added data access
semantics [3] (for data objects with a finite set of states). A
firstmapping of fCMmodels to Petri nets has been defined by
Sporleder [52]. These three mappings are the foundation for
our Petri net-based formalization. In contrast to related work,
we consider the concurrent execution of activities, adapta-
tions necessary to verify flexiblemodels, run-time extensions
(of the model), as well as the mapping’s application to com-
pliance checking for flexible processes.

BesidesPetri nets, process algebras, such asπ -calculus [38]
or CSP [25], are another commonmeans to formalize process
models. While Petri nets advantage is a visual representa-
tion, process algebras allow composing and decomposing
processes. We use Petri nets since they are widely used in
the BPM community, are structured and visualized similarly
to the original process model, and are supported by a set of
sophisticated tools, such as LoLA [48].

3 Preliminaries

Model-based compliance checking investigates whether a
process model adheres to rules. To automate this step, it
is necessary that both the model and the rules have formal
semantics. We dedicate this section to introduce and concep-
tualize both fragment-based casemanagement (fCM)models
as well as Petri nets, which are used to assign formal seman-
tics.

new diagnosed

surgery

medication

treated discharged

OLC: Patient File

Fig. 2 OLC for an object of type patient file: A state change is only
valid if the corresponding nodes are connected

3.1 Fragment-Based Case Management

In case management, a case evolves around data. The
knowledgeworkers consult and create data objectswhile per-
forming tasks. Thereby, they advance the state of the process.
Each case has a central object, the case object. Progressing
the state of the case object is themain obligation of a case. On
a model level, a domain model (Definition 1) of a fragment-
based case model describes the types of data objects, the
(data) classes, that are involved in a case.

Definition 1 (Domain model) Let C be a non-empty, finite
set of classes in a case, and let cc ∈ C be the central case
class. The domain model for a case model is D = (C, cc).

Consider an emergency ward. Patients arrive, are diag-
nosed and treated. Meanwhile, multiple documents are
created and updated: a patient file contains all patient related
information (it is the case object), but further objects such
as an X-ray, a prescription, and a report may be created.
Certain objects are required by certain steps. As in the case
of the prescription object, which is necessary to administer
medication.

During a case, the involved objects run through a series
of states. A patient arrives (patient file in state new), is diag-
nosed (patient file in state diagnosed), and, eventually, is
released. The possible sequences for each object are limited,
e.g., a patient that just arrived in the emergency ward cannot
undergo surgery without a prior diagnosis. A class-specific
object life cycle (OLC) defines all possible states and state
transitions of corresponding objects (Definition 2 and Fig.
2).

Definition 2 (Object life cycle) Let C be a set of classes,
c ∈ C a class, and Qc the set of possible states for objects of
the class c. Furthermore, let

c−→⊆ Qc ×Qc be the set of valid
state transitions. The object life cycle of c is a state transition
system l(c) = (Qc,

c−→). l(C) describes the set of object life
cycles corresponding to classes in C .

Data objects with state information are essential to case
models. They are not only input and output of activities, they
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are also used to define the goal state of the case. In order to
close a case properly, the goal must have been accomplished.
In our example, the patient must be discharged. This can be
expressed by a data condition that requires the object patient
file in state discharged. Furthermore, the inputs and outputs
of activities can be specified by such data conditions as well.

Definition 3 (Data object condition) LetC be a set of classes,
c a class, and Qc the set of corresponding states. We define
that (c, q) ∈ {c}× Qc is a data object condition that requires
an object of type c in state q. O(c) = {c} × Qc is the set
of all possible data object conditions for a single class, and
O(C) denotes the set of all possible data object conditions
of a set of classes C .

Classes are instantiated and objects are updated through
activities. Knowledge workers drive the case by deciding
on the next activity and executing it. However, they can-
not choose freely. Control flow creates dependencies among
activities of one process fragment (see Definition 4), and data
requirements add additional constraints. A fragment encap-
sulates activities that must be executed in a structured way.
There are initial fragments with start events representing the
beginning of a new case and regular fragmentswithout events
that can be instantiated and executed arbitrarily often (as long
as all data requirements are satisfied).

A case in the emergency ward (cf. Fig. 3) always begins
with the admission of a new patient followed by the diag-
noses. However, different treatments, such as a surgery or
medication,maybe conducted before discharging the patient.
The fragment f1 (diagnosis) is an initial fragment. It starts
with a new patient arriving, continues with examination,
requesting an X-ray, and finally deciding on a treatment.
Note, that the X-ray is made in another fragment (f2), which
can be executed if the X-ray is required. Instances of frag-
ments can run concurrently and thereby influence each other
through data.

Definition 4 (Fragment) Let D = (C, cc) be a domain
model and l(C) the set of corresponding object life cycles,

where (Qci ,
ci−→) denotes the life cycle of a class ci ∈ C . Let

A = {a1, a2, . . . , a j } be a finite non-empty set of activities
andG a finite set of exclusive gateways.We define a fragment

as a tuple f = (A,G, s,
c f−→, read, wri te) where

• s is the start event or the special value ⊥ if the fragment
has no start event;

• c f−→⊂ (A ∪ G ∪ {s}) × (A ∪ G) is a set of control flow
connections (a fragment is always acyclic);

• read : A → 2O(C) assigns each activity a set of data
conditions. For an activity a ∈ A, read(a) denotes the
data objects that can be read by a.

examine require
X-ray

decide
treatment

patient fi le

[new]

patient fi le

[diagnosed]

patient fi le

[medication |
surgery]

X-ray

[required]

X-ray

[created]

Report

[required]

patient

make
x-rayX-ray

[required]

X-ray

[created]

report

[required]

report

[draft]

write
report

choose
medication

patient fi le

[medication]

administer
medication

patient fi le

[treated]

prescription

[created]

prescription

[administered]

exam
patient

patient fi le

[treated]

discharge
patient

patient fi le

[discharged]

report

[final]

report

[draft]

conduct
surgery

require
X-ray

evaluate
operation

patient fi le

[medication |
treated]

X-ray

[required]

X-ray

[created]

patient fi le

[surgery]

f1: diagnosis

f3: report

f6: surgery

f2: X-ray

f4: medication

f5: discharge

Fig. 3 Fragments of a case model describing the emergency ward at
a hospital; we use a subset of the BPMN notation [39] to describe
fragments. If an activity can write an object in one of multiple states, we
represent this as a single node, separating the states with |(see fragment
f6)
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• wri te : (A∪{s}) → 2O(C) assigns each activity a second
set of data conditions. Given an activity a ∈ A,wri te(a)

denotes the data objects that can be written by a.

Let c ∈ C be a data class with the object life cycle
l(c) = (Qc,

c−→). Let a ∈ A be an activity that reads and
writes an object of type c then ∀q1 ∈ {q ∈ Qc|(c, q) ∈
read(a)}, ∃q2 ∈ {q ∈ Qc|(c, q) ∈ wri te(a)} : (q1, q2) ∈ c−→.
Furthermore, we define the set of input-sets and output-sets
of a. Let Ca

i = {c|∃q ∈ Q : (c, q) ∈ read(a)} and Ca
o =

{c|∃q ∈ Q : (c, q) ∈ wri te(a)} be the set of classes which
objects may be read or written by a, respectively. The input
sets of a are defined as i(a) = �c∈Ca

i
{(c, q) ∈ read(a)} and

the set of output-sets as o(a) = �c∈Ca
o
{(c, q) ∈ wri te(a)}

where � forms all combinations of the sets (similar to a
Cartesian product but creating a set of sets instead of a set of
tuples).

Definitions 1–4 each specify an aspect of case models.
Next, we need to combine the different components to one
case model. The domain model, the OLCs, the termination
conditions, and the fragments compose the case model (Def-
inition 5). Case models are blue prints for a set of similar
cases, but they are also under-specified. To find a balance
between guidance and flexibility for the involved knowledge
workers, case models couple fragments loosely and allow
adaptation at run-time. Knowledge workers may extend the
case model by adding new fragments that comply with the
object life cycles at run-time.

Definition 5 (Case model) Let D = (C, cc) be a domain
model, l(C) the set of corresponding OLCs, and F a set of
fragments defined over D. A case model is defined by tuple
M = (F, D,T) where T = {t1, t2, . . . , tn} ⊆ 2O(C) is a set
of termination conditions. The case can terminate if for any
ti ∈ T all data object conditions o ∈ ti are satisfied.

3.2 Petri Nets

Just from looking at a case model, it is hard to determine
all modeled variants and dependencies. Petri nets, in con-
trast, have clear execution semantics allowing an automated
formal analysis [45]. They are commonly used to model con-
current systems and suit the setting of casemanagementwell.
While a general Petri net is a simple bipartite graph consist-
ing of nodes divided into places and transitions and arcs,
we consider labeled Petri nets assigning labels to places and
transition. Using the labels, we can reflect the relationships
between the original case model and its Petri net formaliza-
tion.

Definition 6 ((Labeled) Petri Net) Let P be a set of
places and T a set of transitions. A Petri net is a tuple
N = (P, T ,→) where →⊆ (P × T ) ∪ (T × P) connects

the places with the transitions and vice versa. A labeled Petri
net is a tuple N = (P, T ,→, λ) where (P, T ,→) is a Petri
net and λ : P ∪ T → (� ∪ {⊥}) is a function assigning a
label or the null value (⊥) to each transition and place.

In an instantiated Petri net, the current state is given by
the position of tokens—this is called a marking. Each place
can hold an arbitrary amount of tokens, which are indistin-
guishable. A transition consumes a token of each place from
which an arc leads to the transition and produces a token on
the places directly succeeding the transition. The firing of a
transition changes the Petri net’s state. In labeled Petri nets, a
meaning is assigned to tokens via the label of places. Process
models usually contain control-flow and data-flow. Similar
to [3], we distinguish between data places and control flow
places (see Definition 7).

Definition 7 (Petri Net w. Control Flow and Data Places)
Following [43], we define a Petri net with control flow and
data places as a tuple N = (P, T ,→, λ, σ ) where

– (P, T ,→, λ) is a labeled Petri net, and
– σ : P → {CF, D} is a function that assigns each place
a status where

– CF denotes control flow places, and
– D denotes data places.

4 A Formal Execution Semantics for Case
Models

To verify case models using model checking, we must assign
formal semantics to case models. Therefore, we provide a
translational semantics mapping case models to Petri nets.
We assume that all state changes of data objects performed by
activities are reflected in the corresponding OLC. This prop-
erty is called object life cycle conformance. Furthermore,
inputs and outputs of an activity can be combined arbitrarily.

Activities belong to fragments and are connected by con-
trol and data flow. Different fragments are loosely coupled
through data objects. The loose coupling and traditional
control flow allows us to build the case model’s Petri net
representation bottom-up: we formalize activities followed
by control flow dependencies to derive fragments. Next, we
can translate the termination conditions before assembling
the case model’s formalization from the fragments and the
termination condition.

Figure 4 provides an overviewof the algorithmsmapping a
case model to a Petri net. The case model is provided as input
to the overarching algorithm translateCaseModel.
The algorithm translates each of the case model’s frag-
ments by calling translateFragment, and the termi-
nation condition by calling translateTermination
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translate case model (algorithm 6)

translate fragment (algorithm 4)

translate
activity

(algorithm 1)

translate
gateway

(algorithm 2)

translate
start event

(algorithm 3)

fragment

Petri nets
for

activities

Petri nets
for

gateways

Petri net
for start

event

fragments Petri nets
for

fragments

translate
termination

condition
(algorithm 5)

Petri nets
for

termination
condition

termination
condition

termination
condition

fragments

object
life cycles

Petri net
for

case model

case model

Fig. 4 Overview of the algorithms presented in this section and the corresponding call hierarchy. As shown in the figure, most functions can run
concurrently and synchronization only occurs at the level of the calling function, e.g., all calls to translateFragment can run concurrently,
the calling instance of translateCaseModel waits for all outputs, our algorithms work sequentially to ease comprehension

Condition. A fragment is formalized by looking at indi-
vidual control flow nodes, activities, gateways, and the start
event. These can be mapped individually and independently
before being assembled to a bigger Petri net representing the
fragment. The Petri nets for all fragments are combined with
the one for the termination condition to derive the final out-
put: the Petri net representation of the whole case model. In
the reminder of this section, we look at each of thementioned
mapping in more detail.
Mapping activities. We start by formalizing an activity (cf.
Algorithm 1). To execute an activity, it has to be enabled by
control flow, and its data precondition must be satisfied. We
add a place with label act[enabled] for each activity
act (line 5). A token on this place enables the activity (by
control flow). Furthermore, we explicitly consider the run-
ning state of activities. Therefore, we add a place labeled
act[running] (line 6).

To enter the running state, an activity reads and binds
the data objects of one input set. Upon termination, these
objects are either released or updated. A Petri net transition
has one set of places from which it consumes tokens; thus,
the mapping has one transition for each of the activity’s input
sets input Set ∈ i(act) (see Definition 4) labeled begin
act,inputSet (line 8). The transition’s pre-set contains
theact[enabled] place (line 9) aswell as a place for each
element in the input set (lines 14–16). Such a place has a label
obj[state] reflecting that an object obj is in a certain
state. The transition’s post-set contains act[running]
but also a place inputSet[bound]2act indicating that
the chosen input set is now bound (line 10), i.e., it cannot be

used by another activity. Furthermore, transitions for initial
activities, those without a predecessor node, put a token back
on act[enabled] to allow new fragment instances to be
started (lines 11–12).

Note each input set can be combined with each out-
put set, since we assume that all contained state transitions
are valid according to the object life cycles. Thus, we
need to create transitions terminating activities for the cross
product of input sets and output sets. Given an input set
inputSet and an output set outputSet, we create a
transition labeled act,inputSet, outputSet (line
19). The transition terminates the activity consuming a
token from act[running] and releases the objects in
the input set, reflected in the consumption of a token from
inputSet[bound]2act (line 20). The place input
Set[bound]2act asserts that only terminating transitions
for the bound input set can fire. Consequently, all bound
objects are either released or updated: the transition produces
tokens for the data objects that have been read and those that
are created (lines 21–23). Algorithm 1 duplicates some data
places, which we merge in a later stage.

Consider the activity decide treatment. It has one input set
requiring the patient file in state diagnosed and the x-ray in
state created. Furthermore, it has two output sets as it will
create a report object in state required and either update the
state of the patient file to medication or to surgery. The cor-
responding Petri net is shown in Fig. 5. It has two transitions
representing the termination,which additionally to the output
set put a token on x-ray[created], because the object
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Algorithm 1: Function translateActivities

input : a fragment (A,G,s,
c f−→,read,write)

output: a mapping activityNets, which assigns each activity a Petri net

1 activityNets = new Map();
2 for act ∈ A do
3 pn = new EmptyPetriNetWithControlFlow();
4 for inputSet ∈ i(act) do
5 enablementPlace = pn.createCfPlace().withLabel(act[enabled]);
6 runningCfPlace = pn.createCFPlace().withLabel(act[running]);
7 bindingPlace = pn.createDataPlace().withLabel(inputSet[bound]2act);
8 startingTransition = pn.createTransition().withLabel(begin

act,inputSet);
9 startingTransition.addToPreset(enablementPlace);

10 startingTransition.addToPostset(runningCfPlace, bindingPlace);
11 if |getIncomingCfFor(act)|=0 then
12 startingTransition.addToPostset(enablementPlace);
13 end
14 for (obj, state) ∈ inputSet do
15 dataObjectPlace = pn.createDataPlace().withLabel(obj[state]);
16 startingTransition.addToPreset(dataObjectPlace);
17 end
18 for outputSet ∈ o(a) do
19 terminatingTransition =

pn.createTransition().withLabel(terminate
act,inputSet,outputSet);

20 terminatingTransition.addToPreset(runningCfPlace,
bindingPlace);

21 for (obj, state) ∈ (outputSet ∪{(o,s)∈inputSet:� (o,s′) in
outputSet}) do

22 dataObjectPlace =
pn.createDataPlace().withLabel(obj[state]);

23 terminatingTransition.addToPostset(dataObjectPlace);
24 end
25 end
26 end
27 activityNets.put(act, pn);
28 end
29 return activityNets;
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Fig. 5 Petri net formalization of the activity decide treatment. The
following abbreviations are used: x for x-ray, pf for patient file, R for
report, c for created, d for diagnosed, m for medication, s for surgery,
and r for required. The Petri net is created by Algorithm 1

is bound upon start and released upon termination of decide
treatment.
Translate gateway. Fragments may contain exclusive gate-
ways. An exclusive gateway triggers one of its outgoing
control flow arcs whenever one of its incoming control flow
arcs got triggered. Given a gateway gw, we create a place
labeled gw[enabled] (Algorithm 2, line 4). A token on
this place represent a triggered incoming control flow. Fur-
thermore, we add a transition for each outgoing control flow.
We label it gw, targetwhere target is the target node

of said control flow (line 6). Each of these transitions has the
place gw[enabled] in its pre-set (line 7).

Algorithm 2: Function translateGateways

input : a fragment (A,G,s,
c f−→,read,write)

output: a map gatewayNets, which assigns each gateway a Petri net

1 gatewayNets = new Map();
2 for gw ∈ G do
3 pn = new EmptyPetriNetWithControlFlow();
4 enablementCfPlace = pn.createCfPlace().withLabel(gw[enabled]);
5 for (gw,successor) ∈ getOugoingControlFlow(gw) do
6 transition = pn.createTransition().withLabel(gw,successor);
7 transition.addToPreset(enablementCfPlace);
8 end
9 gatewayNets.put(gw, pn);

10 end
11 return gatewayNets;

Translating start events. Start events create new cases and
may produce data objects. As such they can have different
output sets similar to an activity. Algorithm 3 maps start
events to Petri nets. If a fragment has a start event (s �= ⊥),
we create a transition for each output set (line 6). If an object
obj in state state is in the output set, a corresponding
data place is added to the net and the transition’s post set
(lines 7–9).

Algorithm 3: Function translateStartEvent

input : a fragment (A,G,s,
c f−→,read,write)

output: null or a Petri net representing the start event

1 if s = ⊥ then
2 return ⊥;
3 end
4 pn = new emptyPetriNetWithControlFlow();
5 for outputSet ∈ o(s) do
6 startEventTransition = pn.createTransition().withLabel(s,outputSet);
7 for (obj,state) ∈ outputSet do
8 dataObjectPlace = pn.createDataPlace().withLabel(obj[state]);
9 startEventTransition.addToPostset(dataObjectPlace);

10 end
11 end
12 return pn;

Translating process fragments. Each activity, gateway, and
start event belongs to a fragment. We formalize a fragment
by first translating individual elements (see Algorithms 1, 2,
and 3) before connecting them according to the control flow.

Algorithm 4 shows the procedure for translating a whole
fragment. After translating all control flow nodes (lines 3–
5), the algorithm iterates over the sequence flow. It connects
transitions representing the source node to the enablement
place of the target node, where the target is either an activ-
ity or a gateway (lines 8–24). If the source node is a start
event, the algorithm selects all transitions representing the
event and adds the enablement place of its successor to the
transitions’ post-sets (lines 19–22). If the source node is an
activity, it does the same for all the transitions representing
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the termination of the activity (lines 9–13). If it is a gateway,
however, it takes the single transition representing the con-
trol flow arc that starts in the gateway and ends in the target
(lines 14–18).

Algorithm 4: Function translateFragments
input : a set F of fragments
output: a map fragmentNets, which maps fragments to their Petri net

formalization

1 fragmentNets = new Map();

2 for (A,G,s,
c f−→,read,write) ∈ F do

3 activityNets = translateActivities(A,G,s,
c f−→,read,write);

4 gatewayNets = translateGateways(A,G,s,
c f−→,read,write);

5 startEventNet = translateStartEvent(A,G,s,
c f−→,read,write);

6 fragmentNet = combineNets(activityNets, gatewayNets, startEventNet);

7 for (source,target) ∈ c f−→ do
8 enablementPlace =

fragmentNet.findPlaceWhere(label=target[enabled]);
9 if source ∈ A then

10 for transition ∈ fragmentNet.findTransitionWhere(label LIKE
’terminate source*’) do

11 transition.addToPostSet(enablementPlace);
12 end
13 end
14 if source ∈ G then
15 for transition ∈

fragmentNet.findTransitionWhere(label=source,target) do
16 transition.addToPostSet(enablementPlace);
17 end
18 end
19 if source = s then
20 for transition ∈ fragmentNet.findTransitionWhere(label LIKE

’s*’) do
21 transition.addToPostSet(enablementPlace);
22 end
23 end
24 end

25 fragmentNets.put((A,G,s,
c f−→,read,write), fragmentNet);

26 end
27 return fragmentNets;

Figure 6 depicts the formalization of the fragment med-
ication. In the fragment, the activity choose medication is
followed by administer prescription. The Petri net contains
four transitions for the start and termination of the activities,
respectively. When the Petri nets for the individual activities
are concatenated, data places with the same label are merged
into one (line 15).1 The exit place of the first activity’s net is
merged with the one of the latter.

See Fig. 6 for a formalization of the fragment f4 medi-
cation. Its first activity, choose medication, requires a data
object patient file in state medication. The Petri net has a
transition begin choose medication, {(pf,m)}
that consumes a respective token and binds the data object by
producing a token on the binding place. Furthermore, it con-
sumes a token from the control flow place choose medi-
cation[enabled]. Since choose medication is the first

1 The function combinePetriNets is like box calculus operations
which combine smaller Petri nets to larger ones [6].

activity of the fragment, a token is also produced on the place
to allow more instances to run concurrently. After the transi-
tion fired, a token on choose medication[running]
reflects that the activity is currently executed. On termina-
tion (represented by a subsequent transition), the patient file
is released, a prescription is created, and the control flow is
progressed. The fragment continues with the activity admin-
ister medication.
Mapping the termination conditions. The set of termination
conditions contains data conditions. Whenever one of the
conditions is satisfied, the case can be closed. Similar to
the start of an activity, we need to represent the different
conditions by different transitions. For each elemental ter-
mination condition, we create one transition (Algorithm 5,
line 5) and the corresponding data places in the transition’s
pre-set (lines 8–11). The pre-sets and post-sets of all these
transitions have a common control flow place with the label
terminationConditions[enabled] (lines 2 and 5)
and terminationConditions[fired] (lines 3 and
6), respectively.

Algorithm 5: Function translateTerminationConditions
input : a set of termination conditions T
output: a labeled Petri net pn with control flow

1 pn = new EmptyPetriNetWithControlFlow();
2 enablementCfPlace =
pn.createCfPlace().withLabel(terminationConditions[enabled]);

3 firedCfPlace = pn.createCfPlace().withLabel(terminationConditions[fired]);
4 for condition ∈ T do
5 transition =

pn.createTransition().withLabel(terminationCondition,condition);
6 transition.addToPreset(enablementCfPlace);
7 transition.addToPostset(firedCfPlace);
8 for (obj,state) ∈ condition do
9 inputPlace = pn.createDataPlace().withLabel(obj[state]);

10 transition.addToPreset(inputPlace);
11 end
12 end
13 return pn;

Mapping the case model. Given a case model, we translate
all fragments and the termination condition (seeAlgorithm 6,
lines 1 and 2). Next, we combine all retrieved Petri nets into
one (line 3): all transitions and control flow places, includ-
ing corresponding arcs, are added to the combined Petri net.
Furthermore, we partition the data places of all Petri nets
according to their label. For each partition, we add one place
to the combined Petri net. This place has all the outgoing and
incoming arcs of the places in the corresponding partition.
In the resulting Petri net, there is exactly one place for each
combination of a data object and its state. The transitions rep-
resenting activities that consume or write the corresponding
data object configuration access this place.

Next, we must add additional places and arcs to connect
the start events to the fragments. First, we add a control flow
place with label i (line 4). The place is added to the pre-
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Fig. 6 Petri net representation of the fragment medication is derived by sequentially combining the Petri nets for the activity choose medication
and administer medication. We use the same abbreviations as in Fig. 5 and additionally a for administered and t for treated
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Fig. 7 Petri net representation of parts of the fragment diagnosis and the fragment x-ray after processing them according to Algorithm 6

set of transitions representing a start event (lines 5 and 8).
This place is the initial place. It holds one token in the initial
marking. Furthermore, we must enable the fragments when
the the start event fires. We take all the enablement control
flow places for initial activities (line 6). Next, we add the
places to the post-set of each transition representing a start
event (lines 9–11).

Figure 7 depicts a part of the emergency handling case
model formalized as a Petri net. It contains the start event;
when the respective transition fires, the first activities of all
fragments are enabled. Furthermore, it contains the fragment
x-ray and parts of the fragment diagnosis. Both fragments
can run concurrently. Due to mutual dependencies, it is nec-
essary that they run in an interleaved manner: first the patient
needs to be examined (fragment diagnosis), then an X-ray
must be requested (fragment diagnosis), the X-ray must be
made (fragment x-ray), before the diagnosis can continue
(fragment diagnosis, activity decide treatment).

Algorithm 6:Mapping case models to Petri Nets
input : a case model M = (F, D,math f rakT )

output: a Petri net N = (P, T ,→, λ, σ )

1 fragmentNets = translateFragments(F);
2 terminationConditionNet = translateTerminationConditions(mathfrakT);
3 caseModelNet = combinePetriNets(fragmentNets, terminationConditionNet);
4 initialPlace = caseModelNet.createCfPlace().withLabel(i);
5 startEventTransitions = findStartEventTransitionsIn(caseModelNet);
6 enablementPlaces =
findEnablementPlacesOfInitialActivitiesIn(caseModelNet);

7 for transition ∈ startEventTransitions do
8 transition.addToPreset(initialPlace);
9 for place ∈ enablementPlaces do

10 transition.addToPostset(place);
11 end
12 end

Adding Fragments to the case model. Case models can be
adapted at run-time by adding new fragments. Adding a frag-
ment does not require a full re-run of the formalization. We
translate the new fragment separately (using Algorithm 4)
from the remaining casemodel. The resulting Petri net can be
combined with the existing model using the function com-
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binePetriNets. This allows to adapt the formalization
incrementally as new fragments are added to a case.

5 Compliance Checking Framework

In general, our frameworks follows a model checking
approach to verify a case model against compliance rules
(see Fig. 8). A model checker extracts a state space from a
formal model and aligns it with a formal specification (i.e.,
given as temporal logic expressions). More specifically, we
take a case model (see definitions in Sect. 3) and formal-
ize its behavior using Petri nets (see mapping in Sect. 4).
Furthermore, we specify compliance rules as temporal logic
formulas (using CTL*) with respect to the Petri net. A propo-
sition corresponds to a token in the net. A model checker
extracts the Petri net’s state space and verifies the formula.
If the property does not hold, the model checker returns a
counterexample in the form of a trace violating the property.
In this section, we detail how the proposed framework uses
this approach to both design-time compliance checking as
well as run-time compliance checking.

5.1 Design-Time Compliance Checking

At design-time the model checking process can prove that
a case model adheres to compliance rules. To do so, the
complete behavior, this means all possible traces, must be
considered. Therefore, the fully specified case model is
checked. However, case models describe multi-variant pro-
cesses and the state space may grow infeasible large or may
even be unbounded.

Fragments can be executed arbitrarily often, in sequence
or concurrently. However, the state space is only bound if
every place of the Petri net is bound. This means there must
be an upper limit for the number of data objects and fragment
instances. Consequently, for any fragment, there can only be
a finite number of instances per case. Furthermore, fragments
creating new object instances can only be executed finitely
often.

Some case models satisfy this property naturally: in order
to start a new fragment instance certain data objects must be
in specific states. The first activity of such a fragment may
invalidate this condition. Hence, it disables the fragment so
that no further instances can be spawned.

More often, however, parts of the model are unbound,
or the knowledge limiting the number of instances is not
reflected in the model. In such cases, the Petri net mapping
from Sect. 4 cannot be used for model checking. We need to
adapt the formal model in order to limit the state space to a
finite number of states. To this end, our framework limits the
number of instances for each fragment. A finite number of

instances can only create a finite number of objects leading
to an upper bound for the resulting Petri net.

For each fragment, we add a place with a fixed number of
tokens. The transitions representing the respective fragment’s
first activity consume a token from the place. Whenever a
new instance of the fragment is created, the first activity is
executed and the number of tokens is decremented. If no
token is left, the transitions cannot fire anymore; hence, no
more fragment instances can be spawned. The resulting state
space is finite.

Real-world processes usually accomplish a certain busi-
ness goal. Therefore, cases should not run indefinitely.
However, a rich set of process variants which may partly
be unknown at run-time require a flexible approach such
as frag-ment-based case management (fCM). Nevertheless,
limiting the number of fragment instances is in most cases a
reasonable assumption; while preventing infinite loops and
data object creation, a sufficiently high bound still captures
all possible execution orders. Our approach validates these
orders and, thus, returns correct results despite the bound (see
Sect. 6 for details).

5.2 Run-Time Compliance Checking

Usually, case models remain under-specified at design-time.
Knowledge workers decide on the next activity to be exe-
cuted (out of the set of enabled activities). Furthermore, fCM
allows adapting the specification by adding new fragments to
a running case. Both the decisions and adaptations made at
run-timemay impact the case’s compliance. Therefore, com-
pliance violations at design-time may be acceptable if the
knowledge workers prevent them through intelligent deci-
sions at run-time. At the same time, adding new fragments
may introduce flaws, which are absent in the base model.

Compliance can be assessed at design-time, at run-time,
or a posteriori. Run-time compliance monitors the state of
running cases and makes statements about the cases’ com-
pliance in the past, present, and sometimes in the future. Our
framework supports and distinguishes between two scenar-
ios:

1. Run-Time Detection: The first scenario allows com-
pliance violations during design-time, but we want to
detect situations in which compliance violations become
unavoidable at run-time.

2. Run-Time Extensions: In the second scenario, knowl-
edge workers may extend the case model and potentially
invalidate existing results from design-time compliance
checking.

Run-Time Detection. Checking processes models can detect
and prevent compliance violations. However, especially
multi-variant processes may become rather complex when
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Fig. 8 High-level view on the
compliance-checking
framework. The process is
specified in a case model,
formalized as a Petri net, and
verified against (temporal logic)
compliance rules cf. [31])
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compliance is incorporated at design-time.Anunder-specified
modelmay allow both valid and invalid behavior. In this case,
it is up to the user (i.e., the knowledgeworker) to choose paths
that do not lead to a compliance violation.

If multiple activities are enabled, knowledge workers
decide on the next one. Thereby, they perform a set of
decision tasks that drive the case. If themodel allows compli-
ance violations, the knowledge workers must keep the case
compliant and choose appropriate next actions. Automated
approaches can support the knowledge worker at run-time.

Compliance auditing can detect violations of running pro-
cesses: past states are recorded and investigated with respect
to compliance rules. Generally, it is desirable to prevent com-
pliance violations or to detect themas early as possible to take
appropriate counter measures. We apply a hybrid approach
that uses the case model as well as state information of the
running case. Therefore, we (i) formalize themodel as a Petri
net and (ii) induce the current state of the case, before (iii)
we verify the compliance.

The model is formalized as described in Sect. 4. However,
we do not include any tokens. Tokens are added in the sec-
ond step; we consider the state of the running case: for each
instance of a data object, we add a token to the respective
place. Furthermore, we add tokens for enabled and running
activities and gateways.

Considering the enabled activities, we can use a model
checker to investigate whether certain actions lead to com-
pliance violations at run-time. If, by performing a certain
activity, a violation becomes unavoidable, the knowledge
worker can abort the activity or adapt the process model to
remain compliant. Consider a rule for the emergency ward
that requires the report to be finalized before discharging the
patient. Assuming that the fragments would allow a violation
of the rule, the physicians would be informed when they start
the activity “discharge patient” and the report is not in state
final. If compliance violations are possible but avoidable,
the potential future violation is presented to the knowledge
worker (and can be avoided).
Run-Time Extensions. Case management allows knowledge
workers to adapt the process at run-time.Regarding this, fCM
allows adding new fragments to an already running case.
Before conducting a surgery a detailed diagnosis is made,
including an X-ray. However, the health of the patient might

request
emergency

surgery

provide
second
opinion

surgery
request

[requested]

surgery
request

[declined]

surgery
request

[affi rmed]

conduct
surgery

Fig. 9 Extension to the emergency ward case model: The fragment
allows to perform an emergency surgery if two physicians agree on it

be in a critical state. A surgery may be necessary. A new
fragment can be added that allows to conduct a surgery if
two physicians independently decide on its necessity.

Such an addition can changewhether a casemodel is com-
pliant. The example fragment in Fig. 9 shows the emergency
surgery: if a physician reports an emergency, a second opin-
ion is consulted before conducting the surgery. However, the
fragment allows conducting the surgery nomatter the second
physicians’ opinion. This represents a compliance violation
which does not exist in the base model.

In order to verify the adapted model, we need to formalize
it, add the case’s state, and check it. From the Petri net for-
malism, we know that fragments are composed concurrently.
In order to check the compliance for the adapted model, we
(i) have to add the new fragment to the formalism and (ii)
introduce the current state as a marking. There are two dif-
ferences to the approach presented in the section “Run-Time
Detection.” First, we obviously use the updated model rather
than the original one. Secondly, it may be necessary to verify
the model against rules that held for the original (at design-
time), since introduced changes may affect the compliance
of the case model.

We showed in Sect. 4 that case models are modular: frag-
ments can be formalized independently of one another and
the results can be composed into a larger Petri net. Hence, it
is sufficient to formalize the newly created fragment and add
to the existing formalization as (a concurrent sub-net). The
addition will never restrict the behavior but may extend it.
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This extensionmay lead to a compliance violation previously
absent.

6 Proof of Concept and Evaluation

In this section, we present our proof of concept implementa-
tion and an evaluation. The evaluation is twofold: it consists
of an application to a real world use case as well as an empir-
ical analysis of our implementation’s run-time performance.
The first part evaluates the effectiveness. It demonstrates that
our approach performs as expected. The second part shows
that compliance checking can be performed within reason-
able time and that our approach is, therefore, feasible.

6.1 Prototypical Implementation

The proposed formal behavioral model for fragment-based
case management (fCM) is based on generating a Petri net
for a given case model. This Petri net can then be used to
check compliance of the originating model. We applied this
approach by integrating a prototypical compliance checking
component into an existing system for modeling and execut-
ing fCM models.
Architecture Overview. The existing fCM system comprises
a modeler for fCM case models called Gryphon2,3 and the
case execution engine Chimera4 [19] shown in the system
architecture in Fig. 10. In the usual workflow, case models
are designed in Gryphon. Once they are deemed complete,
they are deployed to Chimera, where they can be executed.
If a case model needs to be adapted, it can be changed in
Gryphon and then re-deployed to Chimera. Following our
presented approach of mapping fCM case models to Petri
nets, we decided to use the Low Level Analyzer (LoLA) [48]
as model checker for the generated Petri nets. LoLA can per-
form (among others) model checks on Petri nets using rules
specified as linear temporal logic (LTL) and computation tree
logic (CTL) formulae.
To extract and analyze the state space of fCM case models
with LoLA, they need to be translated to Petri nets.We imple-
mented the compliance checking logic—including a mapper
translating fCM models to Petri nets—in the fCM execution
engine Chimera, cf. system architecture in Fig. 10. Placing
the translation and compliance checking component in the
execution engine instead of the modeler offers the advan-
tage that run-time state information of case instances can be
accessed. Still, a user interface for the process designer to
the compliance checker is integrated in the Gryphon mod-
eler further presented in the next paragraph. Afterward, the

2 https://github.com/bptlab/gryphon.
3 Gryphon is based on Camunda’s BPMN.io: https://bpmn.io/.
4 https://github.com/bptlab/chimera.

Fig. 10 The fCM system comprising a modeler, an execution engine
and a model checker

execution of a compliance request is explained, and finally,
the realization of checking run-time extensions is presented.

The project page5 contains more information and a
demonstrating screencast.
User interface. Our proof of concept implementation has a
user interface in Gryphon that allows checking CTL* formu-
lae (formalized compliance rules) against a designed case
model. Compliance checking requests are forwarded to a
linked and running Chimera instance. The overall result
(yes/no/unknown) and a witness state or witness path, if
present, are then displayed to the user in Gryphon.

Let us consider the exemplary constraints “Every patient
will eventually be discharged” and “Per patient, a maximum
of one Xray is created”, which are formalized to the queries

F ({Discharge patient} = 1)

and

G ({Xray[created]} <= 1)

respectively.6 The first property requires that a state satis-
fying the termination condition can always be reached, this
property is also called weak termination. The second prop-
erty is more domain specific. It limits the number of X-rays
per patient, which is a reasonable safety measure to limit
the exposure to radiation. When checking these two example
constraints, Gryphon reports that the first formula is satisfied,
while the second is not. For the first query, no witness path is
produced, since it is always satisfied. For the second one, a
witness path is shown that lists the corresponding transition
of the Make Xray activity twice, once during the Diagno-
sis fragment, and once during the Surgery fragment. More

5 https://bptlab.github.io/ds2020-data-driven-case-management-
compliance/.
6 The constraints are not raised from reality but reasonable for the given
scenario.
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Fig. 11 Cropped screenshot of the Gryphonmodeler showing the result
of a compliance check

specifically, also the selected pre- and post-condition sets are
listed with the corresponding consumed and produced data
objects in their respective states as shown in Fig. 11. Thus,
the two tokens on Xray[created] can be found in the witness
path.
Execution of a compliance request. Compliance checking
requests sent from Gryphon to Chimera contain a CTL* for-
mula, individually serialized fragments of the case model,
and optionally a case instance ID if run-time compliance
checking is selected. When Chimera receives such a compli-
ance checking request, multiple tasks are performed. First,
the referenced case model is retrieved from the model repos-
itory and translated to a Petri net, using the aforementioned
mapping. Secondly, the CTL* formula is rewritten, so that
identifiers of fCM model elements and their specific states
are identified and internally replaced with the identifiers of
the corresponding places/transitions in the Petri net. Third, a
marking is generated for the Petri net: for design-time com-
pliance checking, an initial marking is generated, while for
run-time compliance checking, the run-time state of the refer-
enced case instance is used to generate amarking that reflects
the current execution state. The Petri net, its marking, and the
rewritten compliance formula are then sent to LoLA to per-
form the actual model checking step. Upon completion, the
result is parsed. If a witness state/path is provided by LoLA,
the referenced identifiers (pointing to places or transitions in
the Petri net) are translated back to meaningful identifiers in
the case model.
Run-time extensions. A compliance request of Gryphon to
Chimera contains the serialized case model’s fragments. The
fragments are used by Chimera to compare them to the frag-
ments of the deployed casemodel. If additional fragments are
encountered in the request, a check for a run-time extension
is executed. First, the deployed case model is translated to
a Petri net and a mapping for the current case instance state

is generated in the fashion of run-time compliance checking.
Next, a new sub-net is generated for the newly added frag-
ment, and an initial marking is generated. Since both fCM
models and the translated Petri nets are modular in nature,
the sub-net for the newly added fragment is integrated into
the Petri net. In contrast to run-time compliance checking
of a deployed model, we consider two different sources, the
deployed model and the adapted model, which we merge
into a single formal model rather than considering only the
deployed model. This way, it is possible to check if adding
a new fragment to a running case instance violates a given
compliance rule.

6.2 Evaluation

Model-based compliance checking promises to detect viola-
tions at design-time. This is desirable for companies since the
model can be corrected before it is implemented. In partic-
ular, process models with a flexible behavior, such as fCM,
may contain compliance violations that remain unnoticed
by humans. Therefore, semi-automatic compliance checking
presents a value to companies. In this section, we evaluate the
feasibility and efficiency of our approach by (i) applying it to
a computer-aided translation use case and (ii) by empirically
evaluating the performance of our implementation.

6.2.1 Application to a Document Translation Service Use
Case

We selected a professional translation service use case
that uses computer-aided translation (CAT) tools. Informa-
tion systems are widely applied in translation management
because they improve the translators’ efficiency and the
translations’ quality. However, required functionality is often
distributed among multiple services [55]. The translator can
use and manually connect these tools as desired. Produc-
tion case management can be used to efficiently coordinate
work that involves the different systems while maintaining
the flexibility required by the translators.
Evaluation goal and method. By applying our compliance
checking approach to a real-world use case, we aim to eval-
uate the effectiveness. Therefore, we elicit and design a
process model, verify the model against a set of compliance
rules, and iterate the model until it is compliant.

We consulted a booklet by European commission [55] to
get a first impression of the use case. Afterward, we con-
ducted interviews with a translator to derive a case model
describing the CAT process. The translator’s experience is
based on her work at a french translation agency and a Ger-
man online retailer using the CAT tool SDL Trados. We
validated the model with the translator in a separate session.
Next,we checkedwhether themodel is compliant. Therefore,
we interviewed the expert again to elicit a set of compliance
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rules related to the process logic. The set is limited to a few
rules relevant for the use case to illustrate the effectiveness
of our approach and might be incomplete. The rules have
been formalized manually. Surprisingly, our initial model—
although validated—was not compliant. In two additional
iterations, the model was adapted to satisfy all elicited com-
pliance rules. The final model was again validated with the
translator.

Translation is knowledge-intensive workmostly driven by
the translator’s experience. However, there are crucial con-
straints and desirable guidelines to deliver good translations.
In an interview, we gathered a list of compliance rules that
should be satisfied by each translation. We then translated
the rules to temporal logic formulas using LTL. All rules and
their translation are listed in Table 1 in the column “rules”.

We verified the process model against each rule limiting
each fragment to five instances and measured the perfor-
mance (as end-to-end latency). Note that in this case, five
instances are enough to capture all possible sequences of
activities. In fact, most fragments will be executed at most
once. Increasing the limit, e.g., to 100, has no significant
impact on the performance. However, this is due to the pecu-
liarities of this case model. For the impact of the limit on
different case models see Sect. 6.2.2.
Resulting fCM model. Figure 12 depicts the fragments of the
case model. For every job, the translator decides whether
to accept or reject it (f1). Every accepted job needs to be
translated. The translator can optionally query the translation
memory (TM) to automatically insert known translations for
text blocks (f3). Next, the job is translated to one or multi-
ple segments by executing the fragment segmentation (f2).
The TM is a data base that stores past translation and that
is used to (a) reduce the work necessary to translate a new
text and to (b) stay consistent with regard to past transla-
tions. Regardless whether f3 has been executed or not, the
translation can be continued. The translation is started f4,
segments are translated in one or multiple steps f5, before
the translation is finalized f4. Once the translation is com-
plete, the translator must update the TM. This can be done
semi-automatically, by 1. aligning the translation to the orig-
inal text (f6), 2. verifying the alignment (f6), and 3. using the
alignment to update the TM (f7). Alternatively, the translator
can update the TM manually (f8).
Compliance checking results. Since the Petri net is merely
an internal representation of the system, we do not provide
a translation for the CAT example here. A user can only
influence the case model and limit the number of fragment
instances. The performance measures for compliance check-
ing the CAT example are reported in the column duration of
Table 1.We adapted themodel twice to satisfy all compliance
rules.

In the initial model (v1),7 themanual translation consisted
only of the activity translate segment and not of fragment f4.
Furthermore, each segment was a separate data object cre-
ated by repeatedly executing a fragment create segment. Rule
R2 requires that translate segment once for each segment (as
often as create segment). However, fCM has no mechanism
to quantify data objects. Each condition is evaluated on a sin-
gle object. Thus, it was possible to execute translate segment
only once even in presence of multiple segments. In version
v2, all segments were merged by a single object created in a
single step and translated in one or multiple steps. The trans-
lator verified, that the segments are created in a single activity
whose result cannot be used before all segments have been
created. The activity, however, can be paused and resumed.

The new version v2, contained a new flaw: The translation
was still represented by a single activity that can be executed
repeatedly to start, continue, and finalize the translation. This
was done by using different input and output-sets. However,
fCM supports nomechanism to indicate that eventually a cer-
tain output set is chosen. Consequently, traces in which the
translation was never finalized were possible. This violates
rule R2. We resolved the issue by splitting the translation
into two fragments and three activities. Fragment f5 can be
executed repeatedly to translate segments, but the execution
is framed by the activities start translation and finalize trans-
lation, which are executed exactly once in each case. While
translate segment can still be executed arbitrary often, we set
an upper limit for the number of fragment instances (e.g., 5).
Not later than this number is reached, finalize translation can
and will be executed. The final model (see Fig. 12) complies
to all rules.

6.2.2 Empirical Evaluation of Performance

One of the major concerns when it comes to model-based
compliance checking is feasibility [54]. Model checking for
Petri nets is, in general, an EXPSPACE problem [14]. The
concurrent execution and flexibility of fragment-based case
models leads to an exponential growth of the state space,
called state explosion. Therefore, the questions whether our
approach’s performance is feasible or not arises. In the fol-
lowing, we provide empirical results from the verification of
case models of different complexity. We investigate the case
model, the size of the resulting Petri nets, the complexity of
its behavior (size of the state space), as well as the perfor-
mance of checking compliance.

For our empirical performance evaluation, we use the
example in Fig. 3 as well as two extensions of the model.
With the extension, physicians can adapt and change the
report arbitrary often before it is considered to be final. This

7 Initial model at https://bptlab.github.io/ds2020-data-driven-case-
management-compliance/#the-cat-example-model.
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Fig. 12 Fragments of a case model describing the process of computer-aided translation
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Table 1 Compliance rules for the CAT example in both natural language and temporal logic as well as performance measures; the number of
instance for each fragment is limited to 5

No. Rule Time (in ms)

R1 If a job gets rejected, no further actions are possible 232

G((job[rejected]>0)→G(accept job[running]=0 AND translate segment[running]=0...))

R2 A case cannot be closed before all segments are translated 164

G(X(terminationConditions[fired]>0)→(segments[in translation]=0 AND segment[created] = 0))

R3 The TM cannot be updated automatically if the alignment is unverified 129

G((alignment[created]>0)→X(update TM automatically[running]=0))

R4 Segment can only be created until the translation is started 176

G((translation[in progress]>0)→(create segment[running]=0))

R5 If a case gets accepted, the TM must eventually be updated 145

G((job[accepted]>0)→F(update TM automatically[running]>0 OR update TM manually[running]>0))

The elicited rules are incomplete and limited to those related to the process model

amend
reportreport

[draft]

finalize
reportreport

[draft]

report

[ready]

f9: update

f10: finalization

Fig. 13 Additional fragments for the emergency ward process

potential infinite loop increases the complexity of the model.
We add two activities to manifest the change: In the first ver-
sion, we add a single fragment (see Fig. 14) that starts with a
decision (exclusive gateway) followed by the two activities
on alternative branches. In the second version, we add two
separate fragments (see Fig. 13).

The complexity of the case model variants and their Petri
net formalization is given in Table 2. We assess the com-
plexity by looking at the structural elements. For the case
model, we count the fragments, activities, gateways, data
classes/data objects, and data states. For the Petri net, we use
the number of places and transitions. However, rather than
looking at the structural complexity, we are interested in the
behavior.

Therefore, we compare their behavioral complexity in the
size of state space and its impact on compliance checking.
For each variant, we check whether each case will eventually
terminate:

F(terminationConditions[fired] > 0).

amend
report report

[draft]

finalize
report

report

[draft]

report

[ready]

f9: update Report

Fig. 14 Additional fragment offering the decision to amend or finalize
the report

Table 2 Complexity of the case model and Petri nets given as the num-
ber of fragments, activities, gateways, data objects, data states, as well
as places and transitions (from left to right)

Case model variant |F | |A| |G| |C | QC |P| |T |
Original 6 12 0 4 13 28 54

Decision 7 14 1 4 14 36 62

Fragments 8 14 0 4 14 32 61

Wemeasure the end-to-end/roundtrip time for the variants
and different bounds for the number of fragment instances.
These tests were performed on a consumer laptop using an
Intel Core i5 430M processor and 8 GiB of RAM, running
a 64-bit Debian 10 with kernel 4.9.0. When measuring the
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Table 3 Number of reachable
states and performance
measurements for different
variants and limits

Case model Limit |States| Satisfied Roundtrip Model checking

Original (Fig. 3) 1 43 � 34 ms 31 ms

Decision (Fig. 14) 1 87 × 157 ms 29 ms

Fragments (Fig. 13) 1 78 � 31 ms 35 ms

Original (Fig. 3) 5 467 � 127 ms 115 ms

Decision (Fig. 14) 5 8515 × 27 ms 31 ms

Fragments (Fig. 13) 5 3010 � 836 ms 785 ms

Original (Fig. 3) 10 2167 � 3334 ms 2853 ms

Decision (Fig. 14) 10 132, 540 × 29 ms 30 ms

Fragments (Fig. 13) 10 25, 305 – Aborted 62,116 ms

Original (Fig. 3) 20 12, 317 – Aborted 145,291 ms

Decision (Fig. 14) 20 2, 729, 665 × 28 ms 34 ms

Fragments (Fig. 13) 20 268, 795 – Aborted Out of memory

roundtrip time,8 we configured LoLA to cancel after 60 sec-
onds to prevent it from exhausting available resources (main
memory). Additionally to the roundtrip, we measured the
time required for the compliance checking without a time
limit (separate run).

6.3 Discussion

In our evaluation, the performance of our approach ranges
from around 30 ms to cases which cannot be verified at all.
The result depends on the size of the state space that is inves-
tigated, which in turn depends on the complexity of the case
model and on the assumptionsmade.Whilemodels that allow
few repetitions and little concurrency of fragments (Sect.
6.2.1) can be verified with relaxed assumption, i.e., a fixed
but high number of fragment instances, others are complex
and require strict assumptions (Sect. 6.2.2).

In most cases, however, even a low boundary of allowed
fragment instances—strong assumption—still leads to the
same result as a relaxed assumption. Any limit, be it high or
low, can change the result of the compliance checking. Look-
ing at the emergency example that may update or finalize
the report based on a decision (using an exclusive gateway),
we see that it may not reach a termination condition. This
happens if the report is only updated but never finalized.
However, assuming the Petri net is fair,9 each case will even-
tually terminate properly if no other assumptions, such as
limiting the instances, are made. This cannot be assessed by
themodel checker. Thus, our assumption limiting the number
of fragment instances can invalidate the result of the com-
pliance checking, but will lead to a correct result in most
cases.

8 Roundtrip time: how long does it take from sending a request in the
frontend to receiving the response?
9 The fairness property states that every transition that can fire will
eventually fire.

We evaluated the usefulness by applying our approach
to the real world case of a computer aided-transition (Sect.
6.2.1). This evaluation was limited to a single use case. Still,
the application demonstrates that fCM models may contain
subtle errors, even though we, experts in fCMmodeling, cre-
ated the models. Our approach helped us to design a model
conforming to all compliance rules.

However, the model checker may run out of memory for
very large and highly concurrent models. Additionally, an
organization usually has a set of compliance rules. While
checking an individual rule is fast, evaluating many rules
may be too slow for an interactive approach. Thus, our
approach may not be applicable to all case models and all
organizations. However, adaptations are possible, such as an
asynchronous batch mode testing a set of rules and reporting
the result.

In general, our model checking approach can handle the
complexity of real world case models under certain assump-
tions. The interactive mode allows verifying rules and adapt
the model right away if necessary. This proves to be effective
in detecting and correcting errors in the model.

7 Conclusion

Traditional compliance checking allows companies to ver-
ify processes against compliance rules. However, they lack
support for flexible processes. We presented an approach to
check flexible processes modeled using the fragment-based
case management approach. Our work allows checking pro-
cess specifications and running instances against compliance
rules.

Our approach enables organizations tomodel flexible pro-
cesses in an activity-centric and mostly imperative manner,
but at the same time, assert its integrity with declarative com-
pliance rules. This is desirable since processes are commonly
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specified in activity-centric models (e.g., using the de facto
industry standard BPMN) while being subject to declara-
tive business rules [47]. Therefore, we present a Petri net
formalization for case models, which extends existing for-
malization for process models. Using a model checker and
optionally run-time information, users can verify their case
models against rules.

A single fragment in fragment-based case management
(fCM) is similar to a single process model in BPMN. This
allowed us to build on existing compliance checking meth-
ods [2]. It also allows to extend our approach to handle a set
of BPMN process models that are connected through shared
data or communication.

However, our approach has some limitations. For one,
it does not support users eliciting, modeling, and manag-
ing compliance rules. This limitations can be resolved by
integrating our framework in a compliance management
application. Furthermore, the rules are limited to CTL* rules
regarding the order of activities, the running state of activ-
ities, and data object states. Many compliance, however,
require detailed information about time and data attributes,
which we do not support since they are not included in the
model. Other approaches show how information about data
attributes can be incorporated in processes models, e.g., by
defining pre- and post-conditions of activities [8], constraints
for states [41], or decisions [17,29]. However, including
attribute-level informationwould increase the size of the state
space drastically.

Model checking is a computationally expensive task.
Although not encountered during evaluation, the state space
of case models can grow to an infeasible size, especially
if it contains many concurrent fragments and despite the
counter measure presented in this paper. Parallelization and
state-space reduction technique may improve the model ver-
ification further. Furthermore, model checkers usually report
a violated property through a counter example or witness
path. However, there may be more than one explanation for a
violation. LoLA, the model checker used in our framework,
is no exception: only one explanation is provided [48]. This
may lead to a situation in which a violation is resolved but the
property may still not hold. Iterative verification is necessary
but may be tedious.

Finally, we tested the effectiveness of our approach with
the help of a use case, but so far we did not test the usability of
our approach and tool. In this regard, the approach requires
further improvement: visual languages for compliance rules
should be incorporated [4,30] and the overall user experi-
ence should be improved. After such improvements, future
work may evaluate the usefulness, e.g., by using the frame-
work presented in [11]. Furthermore, we focused on single
case models and isolated cases. However, many knowledge-
intensive processes are coupled: they share data, are subject to
global constraints, or show batch processing behavior. These

aspects have been subject to research investigating instance-
spanning [15,33] constraints and batch processing [44]. In
future work, we plan to extend our approach to handle mul-
tiple cases including shared data objects and batch behavior.
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