Skip to main content
Log in

Hydrothermal preparation of crystalline lithium niobate photocatalysts for effective degradation of dye-containing contaminated wastewater by ultraviolet to visible light irradiation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study investigates the synthesis and photocatalytic properties of lithium niobate. X-ray diffraction (XRD) analysis reveals that a 48-h synthesis yields lithium niobate with a superior crystalline structure compared to 24-h and 12-h samples, evidenced by a smaller full width at half maximum (FWHM). Optimal Nb2O5/LiOH ratios of 3:5.7 result in a pure lithium niobate phase, while deviations lead to Nb2O5 or unidentified phases, corroborated by SEM observations of square lithium niobate structures at the ideal ratio and irregular forms at others. Under UV irradiation in the first hour, lithium niobate exhibits rapid degradation of methylene blue at 82.04%, twice as fast as TiO2, surpassing the efficiency of TiO2. In addition, lithium niobate significantly outperformed TiO2 in degrading methyl blue up to 67.14% under visible LED irradiation during the first hour, while TiO2 showed no degradation effect. This demonstrates its exceptional degradation characteristics and potential for enhanced photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Mehrkhah, K. Goharshadi, E.K. Goharshadi, H.-S. Sajjadizadeh, ChemistrySelect (2023). https://doi.org/10.1002/slct.202204386

    Article  Google Scholar 

  2. R. Mehrkhah, M.M. Ghafurian, H. Niazmand, E. Goharshadi, O. Mahian, Adv. Nanofluid Heat. Transf. (2022). https://doi.org/10.1016/B978-0-323-88656-7.00009-X

    Article  Google Scholar 

  3. R. Mehrkhah, E.K. Goharshadi, E. Lichtfouse, H.S. Ahn, S. Wongwises, W. Yu, O. Mahian, Environ. Chem. Lett. 21, 285 (2023). https://doi.org/10.1007/s10311-022-01501-1

    Article  CAS  Google Scholar 

  4. L. Wang, Wu. Jinsheng, Inorg. Chem. Commun. 129, 108619 (2021). https://doi.org/10.1016/j.inoche.2021.108619

    Article  CAS  Google Scholar 

  5. S. Nahar, M. Zain, A.A.H. Kadhum, H.A. Hasan, M. Hasan, Materials 10(6), 629 (2017). https://doi.org/10.3390/ma10060629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Hong, K.-H. Cho, V. Presser, Su. Xiao, Curr. Opin. Green Sustain. Chem. 13, 100644 (2022). https://doi.org/10.1016/j.cogsc.2022.100644

    Article  CAS  Google Scholar 

  7. A. Benzaouak, I. Ellouzi, F. Ouanji, N. Touach, M. Kacimi, M. Ziyad, M.E. Mahi, E.M. Lotfi, Colloids Surf A Physicochem Eng Asp 553, 586 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.011

    Article  CAS  Google Scholar 

  8. S. Wang, W. Zhang, F. Jia, H. Fu, T. Liu, X. Zhang, B. Liu, A. Núñez-Delgado, N. Han, J. Environ. Manag. 292, 1127 (2021). https://doi.org/10.1016/j.jenvman.2021.112763

    Article  CAS  Google Scholar 

  9. S. Tawkaew, Y. Fujishiro, S. Yin, T. Sato, Colloids Surf A Physicochem Eng Asp 179, 139 (2001). https://doi.org/10.1016/S0927-7757(00)00649-X

    Article  CAS  Google Scholar 

  10. H.O. Tugaoen, P. Herckes, K. Hristovski, P. Westerhoff, Appl. Catal. B Environ. 220, 597 (2018). https://doi.org/10.1016/j.apcatb.2017.08.078

    Article  CAS  Google Scholar 

  11. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011). https://doi.org/10.1021/jp204364a

    Article  CAS  PubMed  Google Scholar 

  12. L. Liu, Y. Li, Aerosol Air Qual. Res. 14, 453 (2014). https://doi.org/10.4209/AAQR.2013.06.0186

    Article  CAS  Google Scholar 

  13. B. Zielińska, E. Borowiak-Palen, R.J. Kalenzuk, J. Phys. Chem. Solids 69, 236 (2008). https://doi.org/10.1016/j.jpcs.2007.09.001

    Article  CAS  Google Scholar 

  14. R.C. Miller, A. Savage, Appl. Phys. Lett. 9, 169 (1966). https://doi.org/10.1063/1.1754695

    Article  CAS  Google Scholar 

  15. R.K. Nath, M.F.M. Zain, A.A.H. Kadhum, Catal. Rev. Sci. Eng. 56, 175 (2014). https://doi.org/10.1080/01614940.2013.872013

    Article  CAS  Google Scholar 

  16. C.D. Fierro-Ruiz, O. Sánchez-Dena, E.M. Cabral-Larquier, J.T. Elizalde-Galindo, R. Farías, Crystals 8(3), 108 (2018). https://doi.org/10.3390/cryst8030108

    Article  CAS  Google Scholar 

  17. P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, L.M. Eng, Appl. Phys. Lett. 105, 122906 (2014). https://doi.org/10.1063/1.4896579

    Article  CAS  Google Scholar 

  18. X.Y. Liu, K. Kitamura, K. Terabe, H. Hatano, N. Ohashi, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2759472

    Article  Google Scholar 

  19. X. Wang, W. Yan, Y. Zhang, L. Zhang, L. Shi, Y. Huang, M. Wu, X. Wang, H. Chen, J. Am. Ceram. Soc. 100, 739 (2017). https://doi.org/10.1111/jace.14571

    Article  CAS  Google Scholar 

  20. X. Li, S. Wang, H. An, G. Dong, J. Feng, T. Wei, Y. Ren, J. Ma, Appl. Surf. Sci. 539, 148257 (2021). https://doi.org/10.1016/j.apsusc.2020.148257

    Article  CAS  Google Scholar 

  21. B. Zielinska, Mater. Sci. 37, 911 (2014). https://doi.org/10.1007/s12034-014-0025-2

    Article  CAS  Google Scholar 

  22. H.W. Fu, Y. Song, Y.Q. Wu, H.T. Huang, G.Z. Fan, J. Xu, Z.S. Li, Z.G. Zou, Appl. Phys. Lett. 112, 073901 (2018). https://doi.org/10.1063/1.5021377

    Article  CAS  Google Scholar 

  23. X. Li, C. He, D. Dai, S. Zuo, X. Yan, C. Yao, C. Ni, Appl. Nanosci. 10, 3477 (2020). https://doi.org/10.1007/s13204-020-01443-6

    Article  CAS  Google Scholar 

  24. K.P. Petrov, L. Goldberg, W.K. Burns, R.F. Curl, F.K. Tittle, Opt. Lett. 21, 86 (1996). https://doi.org/10.1364/OL.21.000086

    Article  CAS  PubMed  Google Scholar 

  25. D. Richter, Appl. Phys. B 67(3), 347 (1998). https://doi.org/10.1007/s003400050514

    Article  CAS  Google Scholar 

  26. R.K. Nath, M.F.M. Zain, A.A.H. Kadhum, A.B.M.A. Kaish, Constr. Build. Mater. 54, 384 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.072

    Article  Google Scholar 

  27. N. Touach, V.M. Ortiz-Martínez, M.J. Salar-García, A. Benzaouak, F. Hernández-Fernández, A.P. de Ríos, M.E. Mahi, E.M. Lotfi, Particuology 34, 147 (2017). https://doi.org/10.1016/j.partic.2017.02.006

    Article  CAS  Google Scholar 

  28. R.K. Nath, M.F.M. Zain, A. A. H. Kadhum (2013). https://doi.org/10.1155/2013/686497

  29. H. Xu, Y. Li, M. Ding, W. Chen, K. Wang, C. Lu, A.C.S. Sustain, Chem. Eng. 6, 7042 (2018). https://doi.org/10.1021/ACSSUSCHEMENG.8B00917

    Article  CAS  Google Scholar 

  30. J. Zhao, N. Li, R. Yu, Z. Zhao, J. Nan, Chem. Eng. J. 349, 530 (2018). https://doi.org/10.1016/j.cej.2018.05.124

    Article  CAS  Google Scholar 

  31. A. Salabat, F. Mirhoseini, F.H. Nouri, J. Iran. Chem. Soc. 20, 599 (2023). https://doi.org/10.1007/s13738-022-02693-7

    Article  CAS  Google Scholar 

  32. Y. Rilda, D. Pernando, S. Arief, S. Syukri, R. Refinel, A. Agustien, H. Pardi, J. Iran. Chem. Soc. 19, 2023 (2022). https://doi.org/10.1007/s13738-021-02439-x

    Article  CAS  Google Scholar 

  33. Z. Munawar, S. Ghazanfar, H.M. Asif, M.A. Khan, M. Sirajuddin, M. Tariq, J.H. Shirazi, A. Haider, J. Iran. Chem. Soc. 20, 2245 (2023). https://doi.org/10.1007/s13738-023-02824-8

    Article  CAS  Google Scholar 

  34. G. Liu, S. You, M. Ma, H. Huang, N. Ren, Environ. Sci. Technol. 50, 11218 (2016). https://doi.org/10.1021/acs.est.6b03455

    Article  CAS  PubMed  Google Scholar 

  35. W. Xu, R. Wang, X. Zhen, W. Zhang, X. Chen, Z. Wang, Ferroelectrics 253, 153 (2001). https://doi.org/10.1080/00150190108008453

    Article  CAS  Google Scholar 

  36. E. Cantelar, J.A. Sanz-GarcmHa, F. CussoH, J. Cryst, J. Cryst. Growth 205, 196 (1999). https://doi.org/10.1016/S0022-0248(99)00239-0

    Article  CAS  Google Scholar 

  37. Yu. Ji, X. Liu, Mater. Lett. 61, 355 (2006). https://doi.org/10.1016/j.matlet.2006.04.087

    Article  CAS  Google Scholar 

  38. A.R. Kamali, D.J. Fray, Ceram. Int. 40, 1835 (2014). https://doi.org/10.1016/j.ceramint.2013.07.085

    Article  CAS  Google Scholar 

  39. M. Stock, S. Dunn, J. Phys. Chem. C 116(39), 20854 (2012). https://doi.org/10.1021/jp305217z

    Article  CAS  Google Scholar 

  40. Y. Al-Douri, C.H. Voon, A. Bouhemadou, M. Ameri, Optik 172, 519 (2018). https://doi.org/10.1016/j.ijleo.2018.07.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yen Yeh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, M.Y., Chen, YJ., Chang, S.H. et al. Hydrothermal preparation of crystalline lithium niobate photocatalysts for effective degradation of dye-containing contaminated wastewater by ultraviolet to visible light irradiation. J IRAN CHEM SOC 21, 943–949 (2024). https://doi.org/10.1007/s13738-024-02966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02966-3

Keywords

Navigation