Skip to main content
Log in

Experimental and theoretical investigation on structure, toxicity, and DNA interaction of turmeric-coated cobalt ferrite nanocomposites

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A comprehensive investigation was performed on the structural, toxicity, and DNA interaction of the co-precipitated turmeric@CoFe2O4 nanoparticles (NPs). In addition to the FT-IR and TGA analyses, the magnetic hysteresis loop of the nanocomposite was simulated using the Monte Carlo method as a new approach to confirm the interaction between the turmeric biomolecules and the surface of NPs. Scanning electron microscopy illustrated the small clusters of NPs with an approximately uniform size distribution. Moreover, the in vivo analyses of the toxicity and histopathological studies on the kidney, liver, and testis tissues in control and treated groups revealed no significant effects on the studied organs. Multi-spectroscopic DNA binding investigations of the NPs were carried out by DNA viscosity, UV–visible, and fluorescence spectroscopies. All the experimental results showed an impressive upsurge in the viscosity of CT-DNA. Besides, fluorimetric investigations by methylene blue and Hoechst 33,258 as fluorescence probes established the intercalative binding nature of the NPs to CT-DNA. The thermodynamic factors (ΔH°˃0 and ΔS° > 0) were calculated from the temperature dependence data, designated that hydrophobic forces showed a chief role in the binding of the coated NPs to CT-DNA. This biocompatible nanocomposite has considerable potential for magnetic drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Fan, B. Li, Z. Shi, L. Zhao, K. Wang, D. Qiu, A fibrous morphology silica-CoFe2O4 nanocarrier for anti-cancer drug delivery. Ceram. Int. 44, 2345–2350 (2018). https://doi.org/10.1016/j.ceramint.2017.10.201

    Article  CAS  Google Scholar 

  2. F. Ahmad, X. Liu, Y. Zhou, H. Yao, An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio). Aquat. Toxicol. 1(166), 21–28 (2015)

    Article  Google Scholar 

  3. P.H. Linh, N.X. Phuc, L.V. Hong, L.L. Uyen, N.V. Chien, P.H. Nam, N.T. Quy, H.T.M. Nhung, P.T. Phong, I.-J. Lee, Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 460, 128–136 (2018). https://doi.org/10.1016/j.jmmm.2018.03.065

    Article  ADS  CAS  Google Scholar 

  4. X.N. Pham, T.P. Nguyen, T.N. Pham, T.T.N. Tran, T.V.T. Tran, Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045010 (2016). https://doi.org/10.1088/2043-6262/7/4/045010

    Article  ADS  CAS  Google Scholar 

  5. J.E. Forsyth, S. Nurunnahar, S. Shariful Islam, M. Baker, M. Dalia Yeasmin, M. Saiful Islam, S.F. Rahman, N.M. Ardoina, P.J. Winchg, S.P. Lubye, Turmeric means “yellow” in Bengali: lead chromate pigments added to turmeric threaten public health across Bangladesh. Environ. Res. (2019). https://doi.org/10.1016/j.envres.2019.108722

    Article  PubMed  Google Scholar 

  6. E. Mehran, S. Farjami Shayesteh, M. Sheykhan, Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder. Chin. Phys. B 25, 107504–107509 (2016). https://doi.org/10.1088/1674-1056/25/10/107504

    Article  ADS  CAS  Google Scholar 

  7. E. Shaabani, S.M. Amini, S. Kharrazi, R. Tajerian, Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed. J. 4, 115–125 (2017). https://doi.org/10.22038/NMJ.2017.8413

    Article  CAS  Google Scholar 

  8. K.K. Cheng, P.S. Chan, S. Fan, S.M. Kwan, K.L. Yeung, Yì-Xi ang J Wang, A H L Chow, E X Wu, L Baum, Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44, 155–172 (2015). https://doi.org/10.1016/j.biomaterials.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  9. F. Jafari, H. Baghayi, P. Lavaee, F. Hadizadeh, F. Soltani, H. Moallemzadeh, S. Mirzaei, S.M. Aboutorabzadeh, R. Ghodsi, Design, synthesis and biological evaluation of novel benzo-and tetrahydrobenzo-[h] quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem. 15(164), 292–303 (2019). https://doi.org/10.1016/j.ejmech.2018.12.060

    Article  CAS  Google Scholar 

  10. R. Jastrzab, M. Nowak, M. Skrobańska, A. Tolińska, M. Zabiszak, M. Gabryel, Ł Marciniak, M. Kaczmarek, DNA as a target for lanthanide (III) complexes influence. Coord. Chem. Rev. 382, 145–159 (2019). https://doi.org/10.1016/j.ccr.2018.12.018

    Article  CAS  Google Scholar 

  11. A.P. Tiwari, S.J. Ghosh, S.H. Pawar, Biomedical applications based on magnetic nanoparticles: DNA interactions. Anal. Methods 7, 10109–11012 (2015). https://doi.org/10.1039/C5AY02334C

    Article  CAS  Google Scholar 

  12. C. Bisio, M. Nocchetti, F. Leroux, Recent developments in intercalation compounds: chemistry and applications. Dalton Trans. 47, 2838–2840 (2018). https://doi.org/10.1039/C8DT90035C

    Article  CAS  PubMed  Google Scholar 

  13. A. Bayrami, S. Alioghli, S.R. Pouran, A. Habibi-Yangjeh, A. Khataee, S. Ramesh, A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial and oxidative activity evaluation. Ultrason. Sonochem. 1(55), 57–66 (2019). https://doi.org/10.1016/j.ultsonch.2019.03.010

    Article  CAS  Google Scholar 

  14. R. Singla, S. Soni, V. Patial, P.M. Kulurkar, In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int. J. Biol. Macromol. 105, 45–55 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.109

    Article  CAS  PubMed  Google Scholar 

  15. J. Marmur, A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208–218 (1961). https://doi.org/10.1016/S0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  16. M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, A further examination of the molecular weight and size of desoxypentose nucleic acid. J. Am. Chem. Soc. 76, 3047–3053 (1954). https://doi.org/10.1021/ja01640a067

    Article  CAS  Google Scholar 

  17. S. Mirzaee, S. Farjami Shayesteh, S. Mahdavifar, Synthesis and characterization of cubic omega-3-coated cobalt ferrite nanoparticles. J. Supercond. Nov. Magn. 27, 1781–1785 (2014). https://doi.org/10.1007/s10948-014-2512-5

    Article  CAS  Google Scholar 

  18. R. Sahu, J. Saxena, Ultraviolet-visible and fourier transform infrared spectroscopic studies on non-conventional species of curcuma. Indian J. Adv. Chem. Sci. 2, 300–302 (2014)

    CAS  Google Scholar 

  19. D. Peddis, F. Orrù, A. Ardu, C. Cannas, A. Musinu, G. Piccaluga, Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: influence of molecular costing. Chem. Mater. 24, 1062–1071 (2012). https://doi.org/10.1021/cm203280y

    Article  CAS  Google Scholar 

  20. C. Xu, Z.Y. Li, P.M. Hui, Monte Carlo studies of hysteresis curves in magnetic composites with fine magnetic particles. J. Appl. Phys. 89, 3403 (2001). https://doi.org/10.1063/1.1348326

    Article  ADS  CAS  Google Scholar 

  21. A.B. De Carvalho, Í.P. de Souza, L. Maria, I. de Andrade, E.F. Binatti, K.K. Pedroso, W.X.C. Oliveira, E.C. Pereira-Maia, P.P. Silva-Caldeira, Novel copper (II) coordination polymer containing the drugs nalidixic acid and 8-hydroxyquinoline: evaluation of the structural, magnetic, electronic, and antitumor properties. Polyhedron 156, 312–319 (2018). https://doi.org/10.1016/j.poly.2018.09.046

    Article  CAS  Google Scholar 

  22. Z. Mirzaei-kalar, In vitro binding interaction of atorvastatin with calf thymus DNA: multispectroscopic, gel electrophoresis and molecular docking studies. J. Pharm. Biomed. Anal. 16(1), 101–109 (2018). https://doi.org/10.1016/j.jpba.2018.08.033

    Article  CAS  Google Scholar 

  23. S. Kashanian, J. Ezzati, N. Dolatabadi, In vitro studies on calf thymus DNA interaction and 2-tert -butyl-4-methylphenol food additive. Eur. Food Res. Technol. 230, 821–825 (2010). https://doi.org/10.1089/dna.2009.0906

    Article  CAS  Google Scholar 

  24. U. Yıldız, A. Şengül, I. Kandemir, F. Cömert, S. Akkoç, B. Coban, The comparative study of the DNA binding and biological activities of the quaternized dicnq as a dicationic form and its platinum (II) heteroleptic cationic complex. Bioorg. Chem. 87, 70–77 (2019). https://doi.org/10.1016/j.bioorg.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  25. A. Chakraborty, A.K. Panda, R. Ghosh, I. Roy, A. Biswas, Depicting the DNA binding and photo-nuclease ability of anti-mycobacterial drug rifampicin: a biophysical and molecular docking perspective. Int. J. Biol. Macromol. 127, 187–196 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.034

    Article  CAS  PubMed  Google Scholar 

  26. Q. Guo, Z. Zhang, Y. Song, S. Liu, W. Gao, H. Qiao, L. Guo, J. Wang, Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. Chemosphere 168, 599–605 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.019

    Article  ADS  CAS  PubMed  Google Scholar 

  27. T. Sarwar, M.A. Husain, S.U. Rehman, H.M. Ishqi, M. Tabish, Multi-spectroscopic and molecular modelling thymus DNA. Mol. Biosyst. 11, 522–531 (2015). https://doi.org/10.1039/C4MB00636D

    Article  CAS  PubMed  Google Scholar 

  28. N. Shahabadi, M. Falsafi, F. Feizi, R. Khodarahmi, Functionalized of γ-Fe2O3@SiO2 nanoparticles with antiviral drug zidovudine: synthesis, characterization, in vitro cytotoxicity and DNA interaction studies. RSC Adv. 6, 73605–73616 (2016). https://doi.org/10.1039/C6RA16564H

    Article  ADS  CAS  Google Scholar 

  29. L. Tolosa, I. Gryczynski, L.R. Eichhorn, J.D. Dattelbaum, F.N. Castellano, G. Rao, J.R. Lakowicz, Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal. Biochem. 267, 114–120 (1999). https://doi.org/10.1006/abio.1998.2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G.L. Eichhorn, Y.A. Shin, Interaction of metal ions with polynucleotides and related compounds XII. The relative effect of various metal ions on DNA helicity. J. Am. Chem. Soc. 90, 7323–7328 (1968). https://doi.org/10.1021/ja01028a024

    Article  CAS  PubMed  Google Scholar 

  31. F. Ahmadi, A.A. Alizadeh, N. Shahabadi, M. Rahimi-nasrabadi, Study binding of Al–curcumin complex to ds-DNA monitoring by multispectroscopic and voltammetric techniques, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 1466–1474 (2011). https://doi.org/10.1016/j.saa.2011.05.002

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the University of Mohaghegh Ardabili for the generous financial support of this research.

Funding

This study was funded by the University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharareh Mirzaee.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, S., Mirzaei-Kalar, Z., Bayrami, A. et al. Experimental and theoretical investigation on structure, toxicity, and DNA interaction of turmeric-coated cobalt ferrite nanocomposites. J IRAN CHEM SOC 21, 387–398 (2024). https://doi.org/10.1007/s13738-023-02931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02931-6

Keywords

Navigation