Skip to main content
Log in

Structural, physico-chemical properties of a hybrid material based on Anderson-type polyoxomolybdates

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new organic–inorganic hybrid compound based on a rare β-isomer of Anderson polyoxomolybdates cluster with mixed cations, ammonium and hexamethylenetetramine has been synthesized by the slow-evaporation method. The hybrid material was characterized by single crystal X-ray diffraction, infrared spectroscopy, UV-Visible spectroscopy and thermogravimetric analysis. Hirshfeld surface analysis helps to investigate all the intermolecular interactions within the structure. (C6H14N4)2(NH4)2[β-HSbMo6O24]·8H2O crystallizes in an orthorhombic system and Pnma space group, with a = 23.6649(6) Å, b = 19.5394(5) Å, c = 8.6683(2) Å, α = β = γ = 90 (°) and Z = 4. The structure is deposited in the Cambridge Crystallographic Data Center (CCDC) (deposition number CCDC 2184536). The new hybrid organic–inorganic polyoxometalates based material three-dimensional structure is shaped by the connection of the structure components with N–H···N, N–H···O, N–H···Ow, Ow–H···O hydrogen bonds types and their interactions. The infrared spectrum fully confirms the X-ray crystal structure. The UV-Vis spectrum shows two absorption bands with an optical energy gap of 4 eV, consequently the hybrid material is classified as an insulator. Thermogravimetric and differential thermal analysis was used to study thermal stability of the hybrid organic–inorganic compounds. Hirshfeld surface fingerprint graphics showed several types of intermolecular interactions, where hydrogen bonds are the majority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the Cambridge Crystallographic Data Center. CCDC No. 2184536 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by e-mailing data_request@ccdc.cam.ac.uk. or by contacting the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: C44 122333603.

References

  1. J.-H. Kruse, M. Langer, I. Romanenko, I. Trentin, D. Hernández-Castillo, L. González, F.H. Schacher, C. Streb, Adv. Funct. Mater. 32, 2208428 (2022)

    Article  CAS  Google Scholar 

  2. M.I.S. Veríssimo, D.V. Evtuguin, MTSR Gomes. Front. Chem. 10, 840657 (2022)

    Article  Google Scholar 

  3. Z. Khoshkhan, M. Mirzaei, H. Eshtiagh-Hosseini, M. Izadyar, J.T. Mague, M. Korabik, Polyhedron. 194, 114903 (2021)

    Article  CAS  Google Scholar 

  4. M. Daraie, M. Mirzaei, M. Bazargan, V.S. Amiri, B.A. Sanati, M.M. Heravi, Sci. Rep. 12(1), 12004 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Malmir, M.M. Heravi, Z. Yekke-Ghasemi, M. Mirzaei, Sci. Rep. 12(1), 11573 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Babaei Zarch, M. Mirzaei, M. Bazargan, S.K. Gupta, F. Meyer, J.T. Mague, Dalton Trans. 50(42), 15047 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. M. Akbari, M. Mirzaei, A. Amiri, Microchem. J. 170, 106665 (2021)

    Article  CAS  Google Scholar 

  8. R. Khajavian, V. Jodaian, F. Taghipour, J.T. Mague, M. Mirzaei, Molecules 26(19), 5994 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Tahmasebi, M. Mirzaei, A. Frontera, Inorganica Chim. Acta. 523, 120410 (2021)

    Article  CAS  Google Scholar 

  10. S. Derakhshanrad, M. Mirzaei, C. Streb, A. Amiri, C. Ritchie, Inorg. Chem. 60, 1472 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. M. Bazargan, M. Mirzaei, A. Amiri, J.T. Mague, Inorg. Chem. 62, 56 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. A. Kondinski, Chem. Model. 16, 39 (2021)

    Article  CAS  Google Scholar 

  13. P. Wu, Y. Wang, B. Huang, Z. Xiao, Nanoscale 13, 7119 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. A. Ogawa, H. Yamato, U. Lee, H. Ichida, A. Kobayashi, Y. Sasaki, Acta Crystallogr. Commun. 44, 1879 (1988)

    Google Scholar 

  15. U. Lee, Y. Sasaki, Bull. Korean Chem. Soc. 15, 37 (1994)

    Article  CAS  Google Scholar 

  16. H.C. Joo, K.M. Park, U. Lee, Acta. Crystallogr. C Cryst. Struct. Commun. 50, 1659 (1994)

    Article  Google Scholar 

  17. J. Zhang, Y. Huang, J. Hao, Y. Wei, Inorg. Chem. Front. 4, 1215 (2017)

    Article  CAS  Google Scholar 

  18. Q. Li, Y. Wei, Chem. Commun 57, 3865 (2021)

    Article  CAS  Google Scholar 

  19. M. Heravi, M. Mirzaei, Polyoxometalate-Based Hybrids and their Applications, 1st edn. (Elsevier, USA, 2023), pp.45–56

    Google Scholar 

  20. A. Amiri, M. Mirzaei, Metal-Organic Frameworks in Analytical Chemistry, 1st edn. (Royal Society of Chemistry, UK, 2023)

    Google Scholar 

  21. Y. Ren, M. Wang, X. Chen, B. Yue, H. He, J. Mater. Sci. 8, 1545 (2015)

    CAS  Google Scholar 

  22. M. Dhifi, S. Thabet, A. Harchani, A. Haddad, J. Iran. Chem. Soc. 16, 777 (2019)

    Article  CAS  Google Scholar 

  23. Z. Han, Y. Zhao, J. Peng, A. Tian, Y. Feng, Q. Liu, J. Solid State Chem. 178, 1386 (2005)

    Article  CAS  Google Scholar 

  24. T. Bouallegui, A. Harchani, N. Dege, A. Haddad, B. Ayed, J. Mol. Struct. 1166, 195 (2018)

    Article  CAS  Google Scholar 

  25. Stoe Cie, X – area (Version 1.18), (2002).

  26. G.M. Sheldrick, SHELXS-97 (Program for crystal structure refinement. University of Göttingen, Germany, 1997)

    Google Scholar 

  27. M. I. Aroyo, International Tables for Crystallography. A, Space-group symmetry.

  28. G.M. Sheldrick, SHELXL-97 (Program for crystal structure refinement. University of Göttingen, Germany, 1997)

    Google Scholar 

  29. K. Brandenburg, H. Putz, Diamond Crystal Impact GbR (Bonn, Germany, 1999)

    Google Scholar 

  30. M.A. Spackman, J.J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm. 4, 378 (2002)

    Article  CAS  Google Scholar 

  31. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer 3.0 (University of Western Australia, Perth, 2012)

    Google Scholar 

  32. W.H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 30, 1195 (1974)

    Article  CAS  Google Scholar 

  33. I. D. Brown (2002) The Chemical Bond in Inorganic Chemistry–The Bond Valence Model, IUCr Monographs on Crystallography, No. 12. Oxford University Press, Oxford

  34. T. Arumuganathan, A. Srinivasarao, T. Vijay Kumar, K. Das, Samar. Chem. Sci. J. 120, 95 (2008)

    Article  CAS  Google Scholar 

  35. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, towards quantitative analysis of intermolecular interactions with hirshfeld surfaces. Chem. Comm. 37, 3814 (2007)

    Article  Google Scholar 

  36. M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. Cryst. Eng. Comm. 11, 19 (2009)

    Article  CAS  Google Scholar 

  37. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta. Crystallogr. B. 60, 627 (2004)

    Article  PubMed  Google Scholar 

  38. C.D. Tabong, A.M. Ondoh, D.M. Yufanyi, J. Foba, Mater. Sci. Res. 4, 1927 (2015)

    Google Scholar 

  39. S. Thabet, M. Ayed, B. Ayed, A. Haddad, J. Mol. Struct. 1075, 26 (2014)

    Article  CAS  Google Scholar 

  40. B. Xu, Z. Peng, Y. Weia, D.R. Powellb, Chem. Comm. 20, 2562 (2003)

    Article  Google Scholar 

  41. H. Park, W. Choi, Catal. Today. 101, 291 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TB, ND and BA. The first draft of the manuscript was written by [full name] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Thamer Bouallegui.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships, which may be considered as potential competing interests

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouallegui, T., Dege, N. & Ayed, B. Structural, physico-chemical properties of a hybrid material based on Anderson-type polyoxomolybdates. J IRAN CHEM SOC 20, 2373–2382 (2023). https://doi.org/10.1007/s13738-023-02845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02845-3

Keywords

Navigation