Skip to main content

Advertisement

Log in

Recent trends in Grubbs catalysis toward the synthesis of natural products: a review

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A number of natural and biologically active compounds can be synthesized via ruthenium catalysis. As ruthenium is the cheapest noble metal and can be extensively used to synthesize a variety of catalysts, particular attention has been made in the synthesis of chemotherapeutic agents, polymers, biopolymers and agrochemicals through this catalysis. Ruthenium-based catalysts are well famous because of their broad range of functional group, air and moisture tolerance. Different organic reactions such as alkylation, arylation, isomerization and olefin metathesis are efficiently carried out in the presence of these catalysts within short reaction time. In 1992, Robert H. Grubbs first time introduced ruthenium-based catalyst, known as Grubbs first-generation catalyst (G-1) to carry out olefin metathesis effectively. Later on, Grubbs second-generation G-2, third-generation catalyst G-3 and Hoveyda–Grubbs catalysts such as HG-1 and HG-2 were also obtained by changing different ligands with ruthenium. In this review, recent advances in the synthesis of ruthenium-based Grubbs catalysts and their usage in natural product synthesis via olefin metathesis are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Fig. 3
Scheme 19
Fig. 4
Scheme 20
Fig. 5
Scheme 21
Scheme 22
Fig. 6
Scheme 23
Fig. 7
Scheme 24
Fig. 8
Scheme 25
Fig. 9
Scheme 26
Scheme 27
Fig. 10
Scheme 28
Scheme 29
Fig. 11
Scheme 30
Fig. 12
Scheme 31
Fig. 13
Scheme 32
Fig. 14
Scheme 33
Fig. 15
Scheme 34
Fig. 16
Scheme 35
Fig. 17
Scheme 36
Scheme 37
Fig. 18
Scheme 38
Fig. 19
Scheme 39
Scheme 40
Scheme 41
Fig. 20
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Fig. 21
Scheme 46
Scheme 47
Scheme 48
Fig. 22
Scheme 49
Fig. 23
Scheme 50
Scheme 51
Fig. 24
Scheme 52
Fig. 25
Scheme 53
Fig. 26
Scheme 54

Similar content being viewed by others

References

  1. Q. Yao, A soluble polymer-bound ruthenium carbene complex: A robust and reusable catalyst for ring-closing olefin metathesis. Angew. Chem. Ed. 39, 3896–3898 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21

    Article  CAS  Google Scholar 

  2. R.H. Grubb, Olefin metathesis. Tetrahedron 60, 7117–7140 (2004). https://doi.org/10.1016/j.tet.2004.05.124

    Article  CAS  Google Scholar 

  3. A.K. Chatterjee, T.L. Choi, D.P. Sanders, R.H. Grubbs, A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 125, 11360–11370 (2003). https://doi.org/10.1021/ja0214882

    Article  CAS  PubMed  Google Scholar 

  4. J.G. Boiteau, P. Van de Weghe, J. Eustache, A new, ring closing metathesis-based synthesis of (−)-Fumagillol. Org Lett 3, 2737–2740 (2001). https://doi.org/10.1021/ol016343

    Article  CAS  PubMed  Google Scholar 

  5. Y. Chen, M.M. Abdellatif, K. Nomura, Olefin metathesis polymerization: Some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron 74, 619–643 (2018). https://doi.org/10.1016/j.tet.2017.12.041

    Article  CAS  Google Scholar 

  6. R. Akhtar, A.F. Zahoor, B. Parveen, M. Suleman, Development of environmental friendly synthetic strategies for Sonogashira cross coupling reaction: an update. Synth. Commun. 49, 167–192 (2019). https://doi.org/10.1080/00397911.2018.1514636

    Article  CAS  Google Scholar 

  7. R. Akhtar, A.F. Zahoor, Transition metal catalyzed Glaser and Glaser-Hay coupling reactions: scope, classical/green methodologies and synthetic applications. Synth. Commun. 50, 3337–3368 (2020). https://doi.org/10.1080/00397911.2020.1802757

    Article  CAS  Google Scholar 

  8. M. Yousaf, A.F. Zahoor, R. Akhtar, M. Ahmad, S. Naheed, Development of green methodologies for Heck, Chan-Lam, Stille and Suzuki cross-coupling reactions. Mol. Divers 24, 821–839 (2020). https://doi.org/10.1007/s11030-019-09988-7

    Article  CAS  PubMed  Google Scholar 

  9. I. Munir, A.F. Zahoor, N. Rasool, S.A.R. Naqvi, K.M. Zia, R. Ahmad, Synthetic applications and methodology development of Chan-Lam coupling: a review. Mol. Divers 23, 215–259 (2019). https://doi.org/10.1007/s11030-018-9870-z

    Article  CAS  PubMed  Google Scholar 

  10. M. Westhus, E. Gonthier, D. Brohm, R. Breinbauer, An efficient and inexpensive scavenger resin for Grubbs’ catalyst. Tetrahedron Lett. 45, 3141–3142 (2004). https://doi.org/10.1016/j.tet.2004.02.083

    Article  CAS  Google Scholar 

  11. M. Arisawa, A. Nishida, M. Nakagawa, Preparation of nitrogen-containing heterocycles using ring-closing metathesis (RCM) and its application to natural product synthesis. J. Org. Chem. 691, 5109–5121 (2006). https://doi.org/10.1016/j.jorganchem.2006.08.009

    Article  CAS  Google Scholar 

  12. P. Schwab, R.H. Grubbs, J.W. Ziller, Synthesis and applications of RuCl2 (CHR’)(PR3)2: the influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc. 118(1), 100–110 (1996). https://doi.org/10.1021/ja952676d

    Article  CAS  Google Scholar 

  13. C.W. Lee, R.H. Grubbs, Stereoselectivity of macrocyclic ring-closing olefin metathesis. Org. Lett. 2, 2145–2147 (2000). https://doi.org/10.1021/ol006059s

    Article  CAS  PubMed  Google Scholar 

  14. H. Park, H.K. Lee, E.H. Kang, T.L. Choi, Controlled cyclopolymerization of 4,5-disubstituted 1,7-octadiynes and its application to the synthesis of a dendronized polymer using Grubbs catalyst. J. Polym. Sci. A Polym. Chem. 53, 274–279 (2015). https://doi.org/10.1002/pola.27317

    Article  CAS  Google Scholar 

  15. R. Bujok, M. Bieniek, M. Masnyk, A. Michrowska, A. Sarosiek, H. Stepowska, K. Grela, Ortho- and para- substituted Hoveyda-Grubbs carbenes. An improved synthesis of highly efficient metathesis initiators. J. Org. Chem. 69, 6894–6896 (2004). https://doi.org/10.1021/jo049222w

    Article  CAS  PubMed  Google Scholar 

  16. J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni, Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9, 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457

    Article  CAS  Google Scholar 

  17. O.M. Ogba, N.C. Warner, D.J. O’Leary, R.H. Grubbs, Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018). https://doi.org/10.1039/C8CS00027A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G.C. Vougioukalakis, R.H. Grubbs, Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010). https://doi.org/10.1021/cr9002424

    Article  CAS  PubMed  Google Scholar 

  19. E. Sundby, L. Perk, T. Anthonsen, A.J. Aasen, T.V. Hansen, Synthesis of (+)-goniothalamin and its enantiomer by combination of lipase catalyzed resolution and alkene metathesis. Tetrahedron 60, 521–524 (2004). https://doi.org/10.1016/j.tet.2003.10.102

    Article  CAS  Google Scholar 

  20. S.T. Nguyen, R.H. Grubbs, Synthesis and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc. 11, 9858–9859 (1993). https://doi.org/10.1021/ja00074a086

    Article  Google Scholar 

  21. R. Dorta, R.A. Kelly, S.T. Nolan, Cross metathesis allowing the conversion of a ruthenium idenylidene complex into Grubbs’ catalyst. Adv. Synth. Catal. 346, 917–920 (2004). https://doi.org/10.1002/adsc.200404047

    Article  CAS  Google Scholar 

  22. P. Schwab, M.B. France, J.W. Ziller, R.H. Grubbs, A series of well-defined metathesis catalysts synthesis of [RuCl2(=CHRʹ)(PR3)2] and its reactions. Angew. Chem. Int. Ed. Engl. 34, 2039–2041 (1995). https://doi.org/10.1002/anie.199520391

    Article  CAS  Google Scholar 

  23. M.A.O. Volland, B.F. Straub, I. Gruber, F. Rominger, P. Hofmann, Facile synthesis of a ruthenium carbene complex with a cis-chelating diphosphinoethane ligand. J. Org. Chem. 617–618, 288–291 (2001)

    Article  Google Scholar 

  24. R.H. Grubbs, S. Chang, Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998). https://doi.org/10.1016/s0040-4020(97)10427-6

    Article  CAS  Google Scholar 

  25. M. Scholl, S. Ding, C.W. Lee, R.H. Grubbs, Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1, 953–956 (1999). https://doi.org/10.1021/ol990909q

    Article  CAS  PubMed  Google Scholar 

  26. A.M. McKinty, C. Laund, D.W. Stephan, A tridentate-dithiolate ruthenium alkylidene complex: an olefin metathesis catalyst activated by BCl3. Organometallics (2013). https://doi.org/10.1021/om400794u

    Article  Google Scholar 

  27. G.O. Wilson, K.A. Porter, H. Weissman, S.R. White, N.R. Sottos, J.S. Moore, Stability of second generation Grubbs’ alkylidenes to primary amines: formation of novel ruthenium-amine complex. Adv. Synth. Catal. 351, 1817–1825 (2009). https://doi.org/10.1002/adsc.200900134

    Article  CAS  Google Scholar 

  28. T. Wang, Q. Xie, W. Guo, S. Wu, H. Zhang, Synthesis and evaluation of naphthalene-1,8-dithiolate chelating ruthenium carbene catalyst for Z-stereoretentive olefin metathesis. J. Org. Chem. 880, 62–67 (2019). https://doi.org/10.1016/j.jorganchem.2018.10.035

    Article  CAS  Google Scholar 

  29. A. Hryniewicka, A. Kozlowska, S. Witkowski, New nitrochromenylmethylidene-containing ruthenium metathesis catalyst. J. Org. Chem. 701, 87–92 (2012). https://doi.org/10.1016/j.jorganchem.2011.12.024

    Article  CAS  Google Scholar 

  30. H. Hennig, Aqueous-phase organometallic catalysis-concepts and applications. Z. Phys. Chem. 213, 114–115 (1999). https://doi.org/10.1524/zpch.1999.213

    Article  Google Scholar 

  31. S.H. Hong, R.H. Grubbs, Highly active water-soluble olefin metathesis catalyst. J. Am. Chem. Soc. 128, 3508–3509 (2006)

    Article  CAS  Google Scholar 

  32. J.O. Krause, O. Nuyken, K. Wurst, Buchmeiser, Synthesis and activity of homogeneous and heterogeneous ruthenium-based metathesis catalysts containing electron-withdrawing ligands. Chem. Eur. J. 10, 777–784 (2004). https://doi.org/10.1002/chem.200305031

    Article  CAS  PubMed  Google Scholar 

  33. A.R. Hlil, S. Moncho, R. Tuba, K. Elsaid, G. Szarka, E.N. Brothers, R.H. Grubbs, M. Al-Hashimi, H.S. Bazzi, Synthesis and catalytic activity of supported acenaphthoimidazolylidene N-heterocyclic carbene ruthenium complex for ring closing metathesis (RCM) and ring opening metathesis polymerization (ROMP). J. Catal. 344, 100–107 (2016). https://doi.org/10.1016/j.jcat.2016.08.019

    Article  CAS  Google Scholar 

  34. E. Borré, F. Caijo, C. Crévisy, M. Mauduit, New library of aminosulfonyl-tagged Hoveyda-Grubbs type complexes: synthesis, kinetic studies and activity in olefin metathesis transformations. Beilstein J. Org. Chem. 6, 1159–1166 (2010). https://doi.org/10.3762/bjoc.6.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.A. Love, J.P. Morgan, T.M. Trnka, R.H. Grubbs, A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angew. Chem. Int. Ed. 41, 4207–4209 (2002). https://doi.org/10.1002/1521-3757(20021104)114:21%3c4207::AID-ANGE4207%3e3.0.CO;2-G

    Article  Google Scholar 

  36. H. Zhang, Y. Yao, R. Sun, C. Sun, F. Liu, Y. Liu, M. Guo, S. Wang, K. You, Thermally stable pseudo-third-generation Grubbs ruthenium catalysts with pyridine-phosphinimine ligand. Catal. Commun. 49, 43–46 (2014). https://doi.org/10.1016/j.catcom.2014.01.033

    Article  CAS  Google Scholar 

  37. J. Balogh, A.R. Hlil, H.L. Su, Z. Xi, H.S. Bazzi, J.A. Gladysz, An analogue of Grubbs third-generation catalyst with fluorophilic pyridine ligands: fluorous/organic phase-transfer activation. ChemCatChem 8, 125–128 (2016). https://doi.org/10.1002/cctc.201500913

    Article  CAS  Google Scholar 

  38. D. Nadano, M. Iwasaki, S. Endo, K. Kitajima, S. Inoue, Y. Inoue, A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs. J. Biol. 261, 11550–11557 (1986)

    CAS  Google Scholar 

  39. S. Inoue, S.L. Lin, T. Chang, S.H. Wu, C.W. Yao, T.Y. Chu, Y. Inoue, Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. 273, 27199–27204 (1998). https://doi.org/10.1074/jbc.273.42.27199

    Article  CAS  Google Scholar 

  40. S.D. Burke, E.A. Voight, Formal synthesis of (+)-3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) via desymmetrization by ring closing metathesis. Org. Lett. 3, 237–240 (2001). https://doi.org/10.1021/ol/0068871

    Article  CAS  PubMed  Google Scholar 

  41. C. Festa, S. De Marino, V. Sepe, M.V. D’Auria, G. Bifulco, C. Débitus, A. Zampella, Solomonamides A and B, new anti-inflammatory peptides from Theonella swinhoei. Org. Lett. 13, 1532–1535 (2011). https://doi.org/10.1021/ol200221n

    Article  CAS  PubMed  Google Scholar 

  42. I. Cheng-Sánchez, C. García-Ruíz, F. Sarabia, An olefin metathesis approach towards the solomonamides. Tetrahedron Lett. 57, 3392–3395 (2016). https://doi.org/10.1016/j.tetlet.2016.06.081

    Article  CAS  Google Scholar 

  43. D.L. Wood, L.E. Browne, B. Ewing, K. Lindahl, W.D. Bedard, P.E. Tilden, P.R. Hughes, Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone. Science 192, 896–898 (1976). https://doi.org/10.1126/science.1273574

    Article  CAS  PubMed  Google Scholar 

  44. J.P. Vité, R.F. Billings, C.W. Ware, K. Mori, Southern pine beetle: enhancement or inhibition of aggregation response mediated by enantiomers of endo-brevicomin. Naturwissenschaften 72, 99–100 (1985). https://doi.org/10.1007/bf00508146

    Article  Google Scholar 

  45. S.D. Burke, N. Muller, C.M. Beaudry, Desymmetrization by ring-closing metathesis leading to 6,8-dioxabicyclo[3.2,1]octanes: A new route for the synthesis of (+)-exo- and endo- brevicomin. Org. Lett. 1, 1827–1829 (1999). https://doi.org/10.1021/ol9910971

    Article  CAS  PubMed  Google Scholar 

  46. J.I. Kobayashi, D. Watanabe, N. Kawasaki, M. Tsuda, Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge. J. Org. Chem. 62, 9236–9239 (1997). https://doi.org/10.1021/jo9715377

    Article  CAS  Google Scholar 

  47. M. Tsuda, J.I. Kobayashi, Structures and biogenesis of manzamines and related alkaloids. Heterocycles 46, 765–794 (1997). https://doi.org/10.3987/rev-97-sr5

    Article  CAS  Google Scholar 

  48. A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Indenylidene complex of ruthenium: optimized synthesis, structure elucidation and performance as catalysts for olefin metathesis-application to the synthesis of the ADE-ring system of nakadomarin A. Chem Eur. J. 7, 4811–4820 (2001). https://doi.org/10.1002/1521-3765(20011119)7:22

    Article  PubMed  Google Scholar 

  49. K. Sugawara, Y. Nishiyama, S. Toda, N. Komiyama, M. Hatori, T. Moriyama, T. Oki, Lactimidomycin, a new glutarimide group antibiotic. J. Antibiot. 45, 1433–1441 (1992). https://doi.org/10.7164/antibiotics.45.1433

    Article  CAS  Google Scholar 

  50. J. Ju, S.R. Rajski, S.K. Lim, J.W. Seo, N.R. Peters, F.M. Hoffmann, B. Shen, Lactimidomycin, iso-migrastatin and related glutarimide-containing 12-membered macrolides are extremely potent inhibitors of cell migration. J. Am. Chem. Soc. 131, 1370–1371 (2009). https://doi.org/10.1021/ja808462p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Gallenkamp, A. Fürstner, Stereoselective synthesis of E, Z-configured 1,3-dienes by ring-closing metathesis. application to the total synthesis of lactimidomycine. J. Am. Chem. Soc. 133, 9232–9235 (2011). https://doi.org/10.1021/ja2031085

    Article  CAS  PubMed  Google Scholar 

  52. K. Micoine, A. Fürstner, Concise total synthesis of the potent translation and cell migration inhibitor lactimidomycin. J. Am. Chem. Soc. 132(40), 14064–14066 (2010). https://doi.org/10.1021/ja107141p

    Article  CAS  PubMed  Google Scholar 

  53. S. Samwel, S.J. Mdachi, M.H. Nkunya, B.N. Irungu, M.J. Moshi, B. Moulton, B.S. Luisi, Cleistenolide and cleistodienol: Novel bioactive constituents of Cleistochlamys kirkii. Nat. Prod. Commun. 2, 737–741 (2007). https://doi.org/10.1177/1934578X0700200706

    Article  CAS  Google Scholar 

  54. M.H.H. Nkunya, Unusual metabolites from some Tanzanian indigenous plant species. Pure Appl. Chem. 77, 1943–1955 (2005). https://doi.org/10.1351/pac200577111943

    Article  CAS  Google Scholar 

  55. D.C. Babu, J.J.P. Selavam, D.K. Reddy, V. Shekhar, Y. Venkateswarlu, Stereoselective total synthesis of (-)-cleistenolide. Tetrahedron 67, 3815–3819 (2011). https://doi.org/10.1016/j.tet.2011.03.107

    Article  CAS  Google Scholar 

  56. H. Fukumoto, T. Esumi, J. Ishihara, S. Hatakeyama, Total synthesis of (±)-erythravine based on ring closing dienyne metathesis. Tetrahedron Lett. 44, 8047–8049 (2003). https://doi.org/10.1016/j.tetlet.2003.09.059

    Article  CAS  Google Scholar 

  57. G. Sabitha, B. Vangala, S.S.S. Reddy, J. Yadav, Total synthesis of (+)-cryptocaryalactone and a diastereoisomer of (+)-strictifolion via ring-closing metathesis (RCM) and olefin cross-metathesis (CM). Helv. Chim. Acta 93, 329–338 (2010). https://doi.org/10.1002/hlca.200900170

    Article  CAS  Google Scholar 

  58. J.S. Yadav, M.R. Kumar, G. Sabitha, Stereoconvergent synthesis of the C1–C11 and C12–C24 fragments of (−)-macrolactin-A. Tetrahedron Lett. 49, 463–466 (2008). https://doi.org/10.1016/j.tetlet.2007.11.107

    Article  CAS  Google Scholar 

  59. S.B. Mahato, K.A. Siddiqui, G. Bhattacharya, T. Ghosal, K. Miyahara, M. Sholichin, T. Kawasaki, Structure and stereochemistry of phaseolinic acid: a new acid from Macrophomina phaseolina. J. Nat. Prod. 50, 245–247 (1987). https://doi.org/10.1021/np50050a024

    Article  CAS  Google Scholar 

  60. B.K. Park, M. Nakagawa, A. Hirota, M. Nakayama, Methylenolactocin, a novel antitumor antibiotic from Penicillium sp. J. Antibiot. 41, 751–758 (1988). https://doi.org/10.7164/antibiotics.41.751

    Article  CAS  Google Scholar 

  61. N. Selvakumar, P.K. Kumar, K.C.S. Reddy, B.C. Chary, Synthesis of substituted butenolides by the ring closing metathesis of two electron deficient olefins: a general route to the natural products of paraconic acids class. Tetrahedron Lett. 48, 2021–2024 (2007). https://doi.org/10.1016/j.tetlet.2007.01.053

    Article  CAS  Google Scholar 

  62. I. Jacquemond-Collet, S. Hannedouche, N. Fabre, I. Fourasté, C. Moulis, Two tetrahydroquinoline alkaloids from Galipea officinalis. Phytochemistry 51, 1167–1169 (1999). https://doi.org/10.1016/S0031-9422(99)00032-1

    Article  CAS  Google Scholar 

  63. I. Jacquemond-Collet, F. Benoit-Vical, M. Valentin, A. Stanislas, E. Mallié, M. Fourasté, Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis. Planta Med. 68, 68–69 (2002). https://doi.org/10.1055/s-2002-19869

    Article  CAS  PubMed  Google Scholar 

  64. C. Theeraladanon, M. Arisawa, M. Nakagawa, A. Nishida, Total synthesis of (+)-(S)-angustureine and the determination of the absolute configuration of the natural product angustureine. Tetrahedron Asymm. 16, 827–831 (2005). https://doi.org/10.1016/j.tetasy.2004.12.022

    Article  CAS  Google Scholar 

  65. N.R. Guz, P. Lorenz, F.R. Stemitz, New coumarins from Harbouria trachypleura: isolation and synthesis. Tetrahedron Lett. 42, 6491–6494 (2001). https://doi.org/10.1016/S0040-4039(01)01355-7

    Article  CAS  Google Scholar 

  66. A. Kucherenko, M.T. Flavin, W.A. Boulanger, A. Khilevich, R.L. Shone, J.D. Rizzo, Z.Q. Xu, Novel approach for synthesis of (±)-calanolide A and its anti-HIV activity. Tetrahedron Lett. 36, 5475–5478 (1995). https://doi.org/10.1016/0040-4039(95)01059-Q

    Article  CAS  Google Scholar 

  67. T.N. Van, S. Debenedetti, N.D. Kimpe, Synthesis of coumarins by ring-closing metathesis using Grubbs catalyst. Tetrahedron Lett. 44, 4199–4201 (2003). https://doi.org/10.1016/S0040-4039(03)00902-X

    Article  CAS  Google Scholar 

  68. B. Kesteleyn, N. De Kimpe, L. Van Puyvelde, Total synthesis of two naphthoquinone antibiotics, psychorubrin and pentalongin, and their C(1)-substituted alkyl and aryl derivatives. J. Org. Chem. 64, 1173–1179 (1999). https://doi.org/10.1021/jo9811975

    Article  CAS  Google Scholar 

  69. B. Kesteleyn, N. De Kimpe, L. Van Puyvelde, Synthesis of two naphthoquinone antibiotics pentalongin and psychorubrin. Synthesis 1999, 1881–1883 (1999). https://doi.org/10.1055/s-1999-3613

    Article  Google Scholar 

  70. S. Claessens, D. Naidoo, D. Mulholland, L. Verschaeve, J. van Staden, N. De Kimpe, Synthesis of pyranonaphthoquinone antibiotics involving the phthalide annulation strategy. Synlett 2006, 0621–0623 (2006). https://doi.org/10.1055/s-2006-926248

    Article  CAS  Google Scholar 

  71. T.N. Van, N.D. Kimpe, Synthesis of pyranonaphthoquinone antibiotics involving the ring closing metathesis of avinyl ether. Tetrahedron Lett. 45, 3443–3446 (2004). https://doi.org/10.1016/j.tetlet.2004.03.008

    Article  CAS  Google Scholar 

  72. E. Dorta, A.R. Dıaz-Marrero, M. Cueto, L. D’Croz, J.L. Maté, J. Darias, Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen from Laurencia obtusa. Tetrahedron Lett. 45, 7065–7068 (2004). https://doi.org/10.1016/j.tetlet.2004.07.125

    Article  CAS  Google Scholar 

  73. J.D. Martin, C. Perez, J.L. Ravelo, Enantioselective ring construction: Synthesis of halogenated marine natural spiro [5.5] undecane sesquiterpenes. J. Am. Chem Soc. 108, 7801–7811 (1986). https://doi.org/10.1021/ja00284a052

    Article  CAS  PubMed  Google Scholar 

  74. D.E. White, I.C. Stewart, R.H. Grubbs, B.M. Stoltz, The catalytic asymmetric total synthesis of Elatol. J. Am. Chem. Soc. 130, 810–811 (2000). https://doi.org/10.1021/ja710294k

    Article  CAS  Google Scholar 

  75. M. Ouedraogo, H. Carreyre, C. Vandebrouck, J. Bescond, G. Raymond, I.P. Guissou, J. Marrot, Structure elucidation of a dihydropyranone from Tapinanthus dodoneifolius. J. Nat. Prod. 70, 2006–2009 (2007). https://doi.org/10.1021/np070355x

    Article  CAS  PubMed  Google Scholar 

  76. S.E. Drewes, B.M. Sehlapelo, M.M. Horn, R. Scott-Shaw, P. Sandor, 5,6-Dihydro-α-pyrones and two bicyclic tetrahydro-α-pyrone derivatives from Cryptocarya latifolia. Phytochemistry 38, 1427–1430 (1995). https://doi.org/10.1016/0031-9422(94)00828-H

    Article  CAS  Google Scholar 

  77. B. Chinnababu, S.P. Reddy, C.B. Rao, K. Rajesh, Y. Venkateswarlu, Stereoselective total synthesis of Dodoneine. Helvetica Chem. Acta 93, 1960–1966 (2010). https://doi.org/10.1002/hlca.200900478

    Article  CAS  Google Scholar 

  78. T. El-Elimat, H.A. Raja, C.S. Day, W.L. Chen, S.M. Swanson, N.H. Oberlies, Greensporones: resorcylic acid lactones from an aquatic Halenospora sp. J. Nat. Prod. 77, 2088–2098 (2014). https://doi.org/10.1021/np500497r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. K. Tadpetch, L. Jeanmard, V. Rukachaisirikul, Total synthesis of greesporone C. Tetrahedron Lett. 58, 3453–3456 (2017). https://doi.org/10.1016/j.tetlet.2017.07.074

    Article  CAS  Google Scholar 

  80. G. Lang, M.I. Mitova, G. Ellis, S. van der Sar, R.K. Phipps, J.W. Blunt, M.H. Munro, Bioactivity profiling using HPLC/microtiter-plate analysis: application to a New Zealand marine alga-derived fungus, Gliocladium sp. J. Nat. Prod. 69, 621–624 (2006). https://doi.org/10.1021/np0504917

    Article  CAS  PubMed  Google Scholar 

  81. J.S. Yadav, V. Vardhan, S. Das, Total synthesis of 4-ketoclonostachydiol. Synthesis 46, 2347–2352 (2014). https://doi.org/10.1055/s-0033-1339121

    Article  CAS  Google Scholar 

  82. S. Ohta, M.M. Uy, M. Yanai, E. Ohta, T. Hirata, S. Ikegami, Exiguolide, a new macrolide from the marine sponge Geodia exigua. Tetrahedron Lett. 47, 1957–1960 (2006). https://doi.org/10.1016/j.tetlet.2006.01.062

    Article  CAS  Google Scholar 

  83. M.S. Kown, S.K. Woo, S.W. Na, E. Lee, Total synthesis of (+)-exiguolide. Angew. Chem. Int. Ed 47, 1733–1735 (2008). https://doi.org/10.1002/anie.200705018

    Article  CAS  Google Scholar 

  84. F. Echeverri, V. Arango, W. Quiñones, F. Torres, G. Escobar, Y. Rosero, R. Archbold, Passifloricins, polyketides α-pyrones from Passiflora foetida resin. Phytochemistry 56, 881–885 (2001). https://doi.org/10.1016/S0031-9422(00)00478-7

    Article  CAS  PubMed  Google Scholar 

  85. W. Cardona, W. Quiñones, F. Echeverri, Leishmanicidal activity of passifloricin A and derivatives. Molecules 9, 666–672 (2004). https://doi.org/10.3390/90800666

    Article  CAS  PubMed  Google Scholar 

  86. S. Chandrasekhar, C. Rambabu, A.S. Reddy, Asymmetric synthesis of (+)-passifloricin A and its 6-epimer. Tetrahedron Lett. 49, 4476–4478 (2008). https://doi.org/10.1016/j.tetlet.2008.05.070

    Article  CAS  Google Scholar 

  87. D. Stærk, A.K. Lykkeberg, J. Christensen, B.A. Budnik, F. Abe, J.W. Jaroszewski, In vitro cytotoxic activity of phenanthroindolizidine alkaloids from cynanchum v incetoxicum and tylophora t anakae against drug-sensitive and multidrug-resistant cancer cells. J. Nat. Prod. 65, 1299–1302 (2002). https://doi.org/10.1021/np0106384

    Article  CAS  PubMed  Google Scholar 

  88. S. Lebrun, A. Couture, E. Deniau, P. Grandclaudon, Total syntheses of (±)-cryptopleurine, (±)-antofine and (±)-deoxypergularinine. Tetrahedron 55, 2659–2670 (1999)

    Article  CAS  Google Scholar 

  89. S. Kim, J. Lee, T. Lee, H.G. Park, D. Kim, First asymmetric total synthesis of (-)-antofine by using an enantioselective catalytic phase transfer alkylation. Org. Lett. 5, 2703–2706 (2003). https://doi.org/10.1021/ol0349007

    Article  CAS  PubMed  Google Scholar 

  90. I. Shiina, H. Fujisawa, T. Ishii, Stereoselective total synthesis of cephalosporolide D. Heterocycles 52, 1105–1123 (2000). https://doi.org/10.3987/com-99-s85

    Article  CAS  Google Scholar 

  91. X.P. Fang, J.E. Anderson, X.X. Qiu, J.F. Kozlowski, C.J. Chang, J.L. McLaughlin, Gonioheptolides A and B: Novel eight-membered-ring lactones from Goniothalamus giganteus (Annonaceae). Tetrahedron 49, 1563–1570 (1993). https://doi.org/10.1016/S004-04020(01)80344-6

    Article  CAS  Google Scholar 

  92. K.R. Buszek, N. Sato, Y. Jeong, Total synthesis of octalactin A via ring-closing metathesis reaction. Tetrahedron Lett. 43, 181–184 (2002). https://doi.org/10.1016/S0040-4039(01)02078-0

    Article  CAS  Google Scholar 

  93. N. Asano, H. Kuroi, K. Ikeda, H. Kiz, Y. Kameda, A. Kato, Fleet GW New polyhydroxylated pyrrolizidine alkaloids from Muscari armeniacum: structural determination and biological activity. Tetrahedron Asymm. 11, 1–8 (2000). https://doi.org/10.1016/S0957-4166(99)00508-X

    Article  CAS  Google Scholar 

  94. R.J. Nash, L.E. Fellows, J.V. Dring, G.W. Fleet, A. Girdhar, N.G. Ramsden, A.M. Scofield, Two alexines [3-hydroxymethyl-1,2,7-trihydroxypyrrolizidines] from Castanospermum australe. Phytochemistry 29, 111–114 (1990). https://doi.org/10.1016/0031-9422(90)89022-2

    Article  CAS  Google Scholar 

  95. D.L. Taylor, R. Nash, L.E. Fellows, M.S. Kang, A.S. Tyms, Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one stereoisomer. Antivir Chem Chemother 3, 273–277 (1992). https://doi.org/10.1177/095632029200300504

    Article  CAS  Google Scholar 

  96. L. Rambaud, P. Compain, O.R. Martin, First total synthesis of (+)-hyacinthacine A2. Tetrahedron Asymm. 12, 1807–1809 (2001). https://doi.org/10.1016/S0957-4166(01)00324-X

    Article  CAS  Google Scholar 

  97. D. Abate, W.R. Abraham, Antimicrobial metabolites from Lentinus crinitus. J. Antibiot. 47, 1348–1350 (1994). https://doi.org/10.7164/antibiotics.47.1348

    Article  CAS  Google Scholar 

  98. D.C. Harrowven, M.C. Laucas, P.D. Howes, A total synthesis of (±)-1-Desoxyhypnophilin: using ring closing metathesis for the construction of cyclic enones. Tetrahedron Lett. 41, 8985–8987 (2000). https://doi.org/10.1016/S0040-4039(00)01595-1

    Article  CAS  Google Scholar 

  99. N. Oku, K. Takada, R.W. Fuller, J.A. Wilson, M.L. Peach, L.K. Pannell, K.R. Gustafson, Isolation, structural elucidation, and absolute stereochemistry of enigmazole A, a cytotoxic phosphomacrolide from the Papua New Guinea marine sponge Cinachyrella enigmatica. J. Am. Chem. Soc. 132, 10278–10285 (2010). https://doi.org/10.1021/ja1016766

    Article  CAS  PubMed  Google Scholar 

  100. S. Hirota, K. Isozaki, Y. Moriyama, K. Hashimoto, T. Nishida, S. Ishiguro, G.M. Tunio, Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998). https://doi.org/10.1126/science.279.5350.577

    Article  CAS  PubMed  Google Scholar 

  101. K. Sakurai, M. Sasaki, H. Fuwa, Total synthesis of (-)-enigmazole A. Angew. Chem. Int. Ed. 57, 5143–5146 (2018). https://doi.org/10.1002/anie.201801561

    Article  CAS  Google Scholar 

  102. T.C. McMorris, R. Lira, P.K. Gantzel, M.J. Kelner, R. Dawe, Sesquiterpenes from the Basidiomycete Omphalotus i lludens. J. Nat. Prod. 63, 1557–1559 (2000). https://doi.org/10.1021/np9904760

    Article  CAS  PubMed  Google Scholar 

  103. G. Liu, D. Romo, Total synthesis of (+)-omphadiol. Angew. Chem. Int. Ed. 50, 7537–7540 (2011). https://doi.org/10.1002/anie.201102289

    Article  CAS  Google Scholar 

  104. M.I. Aguilar, F. Giral, O. Espejo, Alkaloids from the flowers of Erythrina americana. Phytochemistry 20, 2061–2062 (1981). https://doi.org/10.1016/0031-9422(81)84079-4

    Article  CAS  Google Scholar 

  105. H. Fukumoto, K. Takahashi, J. Ishihara, S. Hatakeyama, Total synthesis of (+)-β-erythroidine. Angew. Chem. Int. Ed. 45, 2731–2134 (2006). https://doi.org/10.1002/anie.2006002109

    Article  CAS  Google Scholar 

  106. U. Renner, P. Kernweisz, Alkaloide ausSchizozygia caffaeoides (Boj.) Baill. Experientia 19, 244–246 (1963). https://doi.org/10.1007/BF02151358

    Article  CAS  PubMed  Google Scholar 

  107. Y. Miura, N. Hayashi, S. Yokoshima, Total synthesis of (-)-isoschizogamine. J. Am. Chem. Soc. 134, 11995–11997 (2012). https://doi.org/10.1021/ja305856q

    Article  CAS  PubMed  Google Scholar 

  108. S. Kobayashi, K. Tsuchiya, T. Harada, M. Nishide, T. Kurokawa, T. Nakagawa, K. Kobayashi, Pironetin, a novel plant growth regulator produced by Streptomyces sp. NK10958. J. Antibiot. 47, 697–702 (1994). https://doi.org/10.7164/antibiotics.49.173

    Article  CAS  Google Scholar 

  109. C. Bressy, J.P. Vors, S. Hillebrand, S. Arseniyadis, J. Cossy, Asymmetric total synthesis of the immunosuppressant (-)-pironetin. Angew. Chem. Int. Ed. 47, 10137–10140 (2008). https://doi.org/10.1002/anie.200802423

    Article  CAS  Google Scholar 

  110. D.G. Corley, M.S. Tempesta, M.M. Iwu, Convulsant alkaloids from Dioscorea dumetorum. Tetrahedron Lett. 26, 1615–1618 (1985)

    Article  CAS  Google Scholar 

  111. A. Rückert, P.H. Deshmukh, S. Blechert, Catalytic enantioselective total synthesis of (+)-dumetorine by ring-rearrangement metathesis. Tetrahedron Lett. 47, 7977–7981 (2006). https://doi.org/10.1016/j.tetlet.2006.08.114

    Article  CAS  Google Scholar 

  112. M. Dochnahl, S.R. Schulz, S. Blechert, Enantioselective total synthesis of (-)-trans-Dendrochrysine via a ring- rearrangement metathesis approach. Synlett. 16, 2599–2601 (2007). https://doi.org/10.1055/s-2007-986672

    Article  CAS  Google Scholar 

  113. S. Mill, C. Hootelé, Alkaloids of Andrachne aspera. J. Nat. Prod. 63, 762–764 (2000). https://doi.org/10.1021/np9905214

    Article  CAS  PubMed  Google Scholar 

  114. P.R. Krishna, G. Dayaker, A stereoselective total synthesis of (-)-andrachcinidine via an olefin metathesis protocol. Tetrahedron Lett. 48, 7279–7282 (2007). https://doi.org/10.1016/j.tetlet.2007.08.053

    Article  CAS  Google Scholar 

  115. K. Kito, R. Ookura, S. Yoshida, M. Namikoshi, T. Ooi, T. Kusumi, New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. Org. Lett. 10, 225–228 (2008). https://doi.org/10.1021/ol702598q

    Article  CAS  PubMed  Google Scholar 

  116. S. Díaz-Oltra, C.A. Angulo-Pachón, J. Murga, M. Carda, J.A. Marco, Stereoselective synthesis of the cytotoxic 14-membered macrolide aspergillide A. J. Org. Chem. 75, 1775–1778 (2010). https://doi.org/10.1021/jo9027038

    Article  CAS  PubMed  Google Scholar 

  117. B.R. Kammari, N.K. Bejjanki, N. Kommu, Total synthesis of decytospolides A, B and a formal synthesis of Aspergillide A starting from D-mannitol via tandem/domino reactions by Grubb’s catalysts. Tetrahedron Asymm. 26, 296–303 (2015). https://doi.org/10.1016/j.tetasy.2015.01.014

    Article  CAS  Google Scholar 

  118. A.J. Cavalheiro, M. Yoshida, 6-[ω-arylalkenyl]-5, 6-dihydro-α-pyrones from Cryptocarya moschata (Lauraceae). Phytochemistry 53, 811–819 (2000). https://doi.org/10.1016/s0031942299005324

    Article  CAS  PubMed  Google Scholar 

  119. S. Zschocke, J. Van Staden, Cryptocarya species-substitute plants for Ocotea bullata A pharmacological investigation in terms of cyclooxygenase-1 and-2 inhibition. J. Ethnopharmacol. 71, 473–478 (2000). https://doi.org/10.1016/S0378874100001835

    Article  CAS  PubMed  Google Scholar 

  120. G. Sabita, S.S.S. Reddy, J.S. Yaday, Stereoselective total synthesis of cryptopyranmoscatone A1. Tetrahedron Lett. 52, 2407–2409 (2011). https://doi.org/10.1016/j.tetlet.2011.02.107

    Article  CAS  Google Scholar 

  121. A. Hisham, M. Toubi, W. Shuaily, M.A. Bai, Y. Fujimoto, Cardiobutanolide, a styryl lactone from Goniothalamus cardiopetalus. Phytochemistry 62, 597–600 (2003). https://doi.org/10.1016/s0031-94220200536-8

    Article  CAS  PubMed  Google Scholar 

  122. M.C. Zafra-Polo, B. Figadère, T. Gallardo, J. Tormo, D. Cortes, Natural acetogenins, synthesis and mechanisms of action. Phytochemistry 48, 1087–1117 (1998). https://doi.org/10.1016/s0031-94229700917-5

    Article  CAS  Google Scholar 

  123. P.R. Krishna, E.S. Kumar, Olefin cross-metathesis based approach for stereoselective total synthesis of (+)-cardiobutanolide. Tetrahedron Lett. 50, 6676–6679 (2009). https://doi.org/10.1016/j.tetlet.2009.09.077

    Article  CAS  Google Scholar 

  124. S. Kadota, J.K. Prasain, J.X. Li, P. Basnet, H. Dong, T. Tani, T. Namba, Blepharocalyxins A and B, novel diarylheptanoids from Alpinia blepharocalyx, and their inhibitory effect on NO formation in murine macrophages. Tetrahedron Lett. 37, 7283–7286 (1996). https://doi.org/10.1016/0040-40399601649-8

    Article  CAS  Google Scholar 

  125. H.M. Ko, D.G. Lee, M.A. Kim, H.J. Kim, J. Park, M.S. Lah, E. Lee, Total synthesis of (-)-Blepharocalyxin D. Org. Lett. 9, 141–144 (2007). https://doi.org/10.1021/ol0627956

    Article  CAS  PubMed  Google Scholar 

  126. A. Cutignano, G. Nuzzo, D. D’Angelo, E. Borbone, A. Fusco, A. Fontana, Mycalol: a natural lipid with promising cytotoxic properties against human anaplastic thyroid carcinoma cells. Ang. Chem. 125, 9426–9430 (2013). https://doi.org/10.1002/ange.201303039

    Article  Google Scholar 

  127. B. Seetharamsingh, P.R. Rajamohanan, D.S. Reddy, Total synthesis and structural revision of Mycalol, an anticancer natural product from the marine source. Org. Lett. 17, 1652–1655 (2015). https://doi.org/10.1021/acs.orglett.5b00345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to GC University, Faisalabad, for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, T., Zahoor, A.F., Rasool, N. et al. Recent trends in Grubbs catalysis toward the synthesis of natural products: a review. J IRAN CHEM SOC 19, 2131–2170 (2022). https://doi.org/10.1007/s13738-021-02463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02463-x

Keywords

Navigation