Skip to main content
Log in

Organotin (IV) complexes derived from Schiff base 1,3-bis[(1E)-1-(2-hydroxyphenyl)ethylidene] thiourea: synthesis, spectral investigation and biological study to molecular docking

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A novel Schiff base-derived organotin (IV) complexes have been synthesized by reacting 1, 3-bis [(1E)-1-(2-hydroxyphenyl) ethylidene]thiourea (which in turn obtained by condensing thiourea with ortho-hydroxyacetophenone) with diorganotin chlorides in methanol under stirring conditions. The synthesized compounds have been characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn), and Mass spectrometry. The results of the spectral study revealed that the ligand act as a tri-dentate in the complexes. Biological screenings demonstrate that the complexes possess significant activity against various bacterial and fungal strains while molecular docking has shown an intercalative mode of binding. The anti-angiogenic property was evaluated using CAM assay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. S.H. Sumrra, M. Ibrahim, S. Ambreen, M. Imran, M. Danish, F.S. Rehmani, Synthesis, spectral characterization, and biological evaluation of transition metal complexes of bidentate N, O donor Schiff bases. Bioinorg. Chem. Appl. (2014). https://doi.org/10.1155/2014/812924

    Article  PubMed  PubMed Central  Google Scholar 

  2. N. Galic, Z. Cimerman, V. Tomisic, Spectrometric study of tautomeric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu (II). Spectrochim Acta A Mol. Biomol. Spectrosc. spectrochim Acta A. 71(4), 1274–1280 (2008). https://doi.org/10.1016/j.saa.2008.03.029

    Article  CAS  Google Scholar 

  3. M.H. Hamid, A.N. Said, A.H. Mirza, M.R. Karim, M. Arifuzzaman, M.A. Ali et al., Synthesis, structures and spectroscopic properties of some tin (IV) complexes of the 2-acetylpyrazine Schiff bases of S-methyl-and S-benzyldithiocarbazates. Inorganica Chim. Acta. 453, 742–750 (2016). https://doi.org/10.1016/j.ica.2016.09.038

    Article  CAS  Google Scholar 

  4. E.N. Md Yusof, T.B. Ravoof, E.R. Tiekink, A. Veerakumarasivam, K.A. Crouse, M.I. Mohamed Tahir, H. Ahmad, Synthesis, characterization and biological evaluation of transition metal complexes derived from N, S bidentate ligands. Int. J. Mol. Sci. 16(5), 11034–11054 (2015). https://doi.org/10.3390/ijms160511034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N.A. Oztas, G. Yenisehirli, N. Ancın, S.G. Oztaş, Y. Ozcan, S. Ide, Synthesis, characterization, biological activities of dimethyltin (IV) complexes of Schiff bases with ONO-type donors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(5), 929–935 (2009). https://doi.org/10.1016/j.saa.2008.12.023

    Article  CAS  PubMed  Google Scholar 

  6. J. Devi, J. Yadav, Recent advancements in organotin (IV) complexes as potential anticancer agents. Anti-Cancer Agents Med. Chem. 18(3), 335–353 (2018). https://doi.org/10.2174/1871520617666171106125114

    Article  CAS  Google Scholar 

  7. J. Devi, S. Pachwania, Recent advancements in DNA interaction studies of organotin (IV) complexes. Inorg. Chem. Commun. 91, 44–62 (2018). https://doi.org/10.1016/j.inoche.2018.03.012

    Article  CAS  Google Scholar 

  8. R. Joshi, N. Pandey, R. Tilak, S.K. Yadav, H. Mishra, S. Pokharia, New triorganotin (IV) complexes of quinolone antibacterial drug sparfloxacin: Synthesis, structural characterization, DFT studies and biological activity. Appl. Organomet. Chem. 32(5), e4324 (2018). https://doi.org/10.1002/aoc.4324

    Article  CAS  Google Scholar 

  9. F. Shaheen, M. Sirajuddin, S. Ali, P.J. Dyson, N.A. Shah, M.N. Tahir, Organotin (IV) 4-(benzo [d][1, 3] dioxol-5-ylmethyl) piperazine-1-carbodithioates: Synthesis, characterization and biological activities. J Organomet. Chem. 856, 13–22 (2018). https://doi.org/10.1016/j.jorganchem.2017.12.010

    Article  CAS  Google Scholar 

  10. J.O. Adeyemi, D.C. Onwudiwe, Organotin (IV) dithiocarbamate complexes: Chemistry and biological activity. Molecules 23(10), 2571 (2018). https://doi.org/10.3390/molecules23102571

    Article  CAS  PubMed Central  Google Scholar 

  11. M. Sankarganesh, J.D. Raja, K. Sakthikumar, R.V. Solomon, J. Rajesh, S. Athimoolam et al., New bio-sensitive and biologically active single crystal of pyrimidine scaffold ligand and its gold and platinum complexes: DFT, antimicrobial, antioxidant, DNA interaction, molecular docking with DNA/BSA and anticancer studies. Bioorg. Chem. 81, 144–156 (2018). https://doi.org/10.1016/j.bioorg.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  12. M.S. Agiorgiti, A. Evangelou, P. Vezyraki, S.K. Hadjikakou, V. Kalfakakou, I. Tsanaktsidis et al., Cytotoxic effect, antitumour activity and toxicity of organotin derivatives with ortho-or para-hydroxy-benzoic acids. Med. Chem. Res. 27(4), 1122–1130 (2018). https://doi.org/10.1007/s00044-018-2135-7

    Article  CAS  Google Scholar 

  13. P.G. Avaji, C.V. Kumar, S.A. Patil, K.N. Shivananda, C. Nagaraju, Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem. 44(9), 3552–3559 (2009). https://doi.org/10.1016/j.ejmech.2009.03.032

    Article  CAS  PubMed  Google Scholar 

  14. M. Jain, V. Singh, R.V. Singh, Biologically potent sulphonamide imine complexes of organotin (IV): Synthesis, spectroscopic characterization and biological screening. J. Iran Chem. Soc. 1(1), 20–27 (2004). https://doi.org/10.1007/BF03245766

    Article  CAS  Google Scholar 

  15. Z. Asadi, Kinetic studies of the interaction between organotin (IV) chlorides and tetraaza Schiff bases: synthesis and characterization of some novel tin (IV) Schiff base complexes. Int. J. Chem. Kinet. 43(5), 247–254 (2011). https://doi.org/10.1002/kin.20552

    Article  CAS  Google Scholar 

  16. L. Pellerito, L. Nagy, Organotin (IV) n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 224(1–2), 111–150 (2002). https://doi.org/10.1016/S0010-8545(01)00399-X

    Article  CAS  Google Scholar 

  17. S.K. Bharti, S.K. Patel, G. Nath, R. Tilak, S.K. Singh, Synthesis, characterization, DNA cleavage and in vitro antimicrobial activities of copper (II) complexes of Schiff bases containing a 2, 4-disubstituted thiazole. Transit. Met. Chem. 35(8), 917–925 (2010). https://doi.org/10.1007/s11243-010-9412-8

    Article  CAS  Google Scholar 

  18. J.O. Adeyemi, D.C. Onwudiwe, A.C. Ekennia, C.P. Anokwuru, N. Nundkumar, M. Singh, E.C. Hosten, Synthesis, characterization and biological activities of organotin (IV) diallyldithiocarbamate complexes. Inorganica Chim. Acta. 485, 64–72 (2019). https://doi.org/10.1016/j.ica.2018.09.085

    Article  CAS  Google Scholar 

  19. Q.K. Panhwar, S. Memon, Synthesis, characterization and antioxidant study of Tin (II)–rutin complex: Exploration of tin packaging hazards. Inorg. Chim. Acta 407, 252–260 (2013). https://doi.org/10.1016/j.ica.2018.09.085

    Article  CAS  Google Scholar 

  20. M. Sirajuddin, S. Ali, V. McKee, M. Sohail, H. Pasha, Potentially bioactive organotin (IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur. J. Med. Chem. 84, 343–363 (2014). https://doi.org/10.1016/j.ejmech.2014.07.028

    Article  CAS  PubMed  Google Scholar 

  21. Y. Yang, M. Hong, L. Xu, J. Cui, G. Chang, D. Li, C.Z. Li, Organotin (IV) complexes derived from Schiff base N’-[(1E)-(2-hydroxy-3-methoxyphenyl) methylidene] pyridine-3-carbohydrazone: Synthesis, in vitro cytotoxicities and DNA/BSA interaction. J. Organomet. Chem. 804, 48–58 (2016). https://doi.org/10.1016/j.jorganchem.2015.12.041

    Article  CAS  Google Scholar 

  22. M. Sirajuddin, S. Ali, V. McKee, S. Zaib, J. Iqbal, Organotin (IV) carboxylate derivatives as a new addition to anticancer and antileishmanial agents: design, physicochemical characterization and interaction with Salmon sperm DNA. RSC Adv. 4(101), 57505–57521 (2014). https://doi.org/10.1039/C4RA10487K

    Article  CAS  Google Scholar 

  23. M. Kumar, Z. Abbas, H.S. Tuli, A. Rani, Organotin complexes with promising therapeutic potential. Curr. Pharmacol. Rep. 6, 1–5 (2020). https://doi.org/10.1007/s40495-020-00222-9

    Article  CAS  Google Scholar 

  24. Y.X. Tan, Z.J. Zhang, Y. Liu, J.X. Yu, X.M. Zhu, D.Z. Kuang, W.J. Jiang, Synthesis, crystal structure and biological activity of the Schiff base organotin (IV) complexes based on salicylaldehyde-o-aminophenol. J Mol. Struct. 5(1149), 874–881 (2017). https://doi.org/10.1016/j.molstruc.2017.08.058

    Article  CAS  Google Scholar 

  25. R. Karvembu, S. Hemalatha, R. Prabhakaran, K. Natarajan, Synthesis, characterization and catalytic activities of ruthenium complexes containing triphenylphosphine/triphenylarsine and tetradentate Schiff bases. Inorg. Chem. Commun. 6(5), 486–490 (2003). https://doi.org/10.1016/S1387-7003(03)00021-2

    Article  CAS  Google Scholar 

  26. J. Devi, J. Yadav, N. Singh, Synthesis, characterisation, in vitro antimicrobial, antioxidant and anti-inflammatory activities of diorganotin (IV) complexes derived from salicylaldehyde Schiff bases. Res. Chem. Intermed. 45(7), 3943–3968 (2019). https://doi.org/10.1007/s11164-019-03830-3

    Article  CAS  Google Scholar 

  27. W. Rehman, A. Badshah, S. Khan, Synthesis, characterization, antimicrobial and antitumor screening of some diorganotin (IV) complexes of 2-[(9H-Purin-6-ylimino)]-phenol. Eur. J. Med. Chem. 44(10), 3981–3985 (2009). https://doi.org/10.1016/j.ejmech.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  28. J. Devi, J. Yadav, D. Kumar, D.K. Jindal, B. Basu, Synthesis, spectral analysis and in vitro cytotoxicity of diorganotin (IV) complexes derived from indole-3-butyric hydrazide. App. Organomet. Chem. 34(10), e5815 (2020). https://doi.org/10.1002/aoc.5815

    Article  CAS  Google Scholar 

  29. J.O. Adeyemi, D.C. Onwudiwe, E.C. Hosten, Organotin (IV) complexes derived from N-ethyl-N-phenyldithiocarbamate: Synthesis, characterization and thermal studies. J. Saudi Chem. Soc. 22(4), 427–438 (2018). https://doi.org/10.1016/j.jscs.2017.08.004

    Article  CAS  Google Scholar 

  30. M.H. Sainorudin, N.M. Sidek, N. Ismail, M.Z. Rozaini, N.A. Harun, T.N. Anuar, A.A. Azmi, F. Yusoff, Synthesis, Characterization and Biological Activity of Organotin (IV) Complexes featuring di-2-ethylhexyldithiocarbamate and N-methylbutyldithiocarbamate as Ligands. GSTF J. Chem. Sci. (J Chem). 2(1), 1–9 (2015). https://doi.org/10.7603/s40837-015-0002-3

    Article  CAS  Google Scholar 

  31. J. Kovacic, The C=N stretching frequency in the infrared spectra of Schiff’s base complexes—I Copper complexes of salicylidene anilines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 23(1), 183–187 (1967)

    Article  Google Scholar 

  32. A. Saxena, J.P. Tandon, K.C. Molloy, J.J. Zuckerman, Tin (IV) complexes of tridentate schiff bases having ONS donor systems. Inorganica Chim. Acta. 1(63), 71–74 (1982). https://doi.org/10.1016/S0020-1693(00)81894-0

    Article  Google Scholar 

  33. N. Muhammad, Z. Ur-Rehman, S. Shujah, A. Shah, S. Ali, A. Meetsma, Z. Hussain, Syntheses, structural characteristics, and antimicrobial activities of new organotin (IV) 3-(4-bromophenyl)-2-ethylacrylates. J. Coord. Chem. 65(21), 3766–3775 (2012). https://doi.org/10.1080/00958972.2012.718076

    Article  CAS  Google Scholar 

  34. P. Charisiadis, V.G. Kontogianni, C.G. Tsiafoulis, A.G. Tzakos, M. Siskos, I.P. Gerothanassis, 1H-NMR as a structural and analytical tool of intra-and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 19(9), 13643–13682 (2014). https://doi.org/10.3390/molecules190913643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Singh, P.V. Dharampal, Synthesis, spectroscopic studies, and in vitro antifungal activity of organosilicon (IV) and organotin (IV) complexes of 4-amino-5-mercapto-3-methyl-S-triazole Schiff bases. Phosphorus, Sulfur, Silicon Relat. Elem. 183(11), 2784–2794 (2008). https://doi.org/10.1080/10426500802013577

    Article  CAS  Google Scholar 

  36. J. Wagler, U. Böhme, E. Brendler, B. Thomas, S. Goutal, H. Mayr, B. Kempf, G.Y. Remennikov, G. Roewer, Switching between penta-and hexacoordination with salen-silicon-complexes. Inorg. Chim. Acta. 358(14), 4270–4286 (2005). https://doi.org/10.1016/j.ica.2005.03.036

    Article  CAS  Google Scholar 

  37. R. Malhotra, S. Kumar, K.S. Dhindsa. Synthesis spectral, Redox and antimicrobial activity of metal complexes. Indian J. Chem. 1993;32:457.http://nopr.niscair.res.in/bitstream/123456789/43835/1/IJCA%2032A%285%29%20457-459.pdf.

  38. L. Mishra, V.K. Singh. Synthesis, structural and antifungal studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes with new Schiff bases bearing benzimidazoles http://nopr.niscair.res.in/handle/123456789/43838

  39. Y. Anjaneyulu, R.P. Rao, Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu (II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 16(2), 257–272 (1986). https://doi.org/10.1080/00945718608057530

    Article  CAS  Google Scholar 

  40. Z.H. Chohan, A. Scozzafava, C.T. Supuran, Zinc complexes of benzothiazole-derived Schiff bases with antibacterial activity. J. Enzy. Inhib. Med. Chem. 18(3), 259–263 (2003). https://doi.org/10.1080/1475636031000071817

    Article  CAS  Google Scholar 

  41. A. Chilwal, P. Malhotra, A.K. Narula, Synthesis, characterization, thermal, and antibacterial studies of organotin (IV) complexes of indole-3-butyric acid and indole-3-propionic acid. Phosphorus, Sulfur, Silicon Relat. Elem. 189(3), 410–421 (2014). https://doi.org/10.1080/10426507.2013.819871

    Article  CAS  Google Scholar 

  42. M.A. Affan, M.A. Salam, F.B. Ahmad, R.B. Hitam, F. White, Triorganotin (IV) complexes of pyruvic acid-N (4)-cyclohexylthiosemicarbazone (HPACT): synthesis, characterization, crystal structure and in vitro antibacterial activity. Polyhedron 33(1), 19–24 (2012). https://doi.org/10.1016/j.poly.2011.11.021

    Article  CAS  Google Scholar 

  43. K. Govindarasu, E. Kavitha, Structural, vibrational spectroscopic studies and quantum chemical calculations of n-(2, 4-dinitrophenyl)-L-alanine methyl ester by density functional theory. J. Mol. Struct. 1088, 70–84 (2015). https://doi.org/10.1016/j.molstruc.2015.02.008

    Article  CAS  Google Scholar 

  44. Y. Gilad, H. Senderowitz, Docking studies on DNA intercalators. J. Chem. Inf. Model. 54(1), 96–107 (2014). https://doi.org/10.1021/ci400352t

    Article  CAS  PubMed  Google Scholar 

  45. N. Minovski, A. Perdih, M. Novic, T. Solmajer, Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential inhibitors against Mycobacterium tuberculosis. J. Comput. Chem. 34(9), 790–801 (2013). https://doi.org/10.1002/jcc.23205

    Article  CAS  PubMed  Google Scholar 

  46. D.R. Boer, A. Canals, M. Coll, DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans. 3, 399–414 (2009). https://doi.org/10.1039/B809873P

    Article  Google Scholar 

  47. M. Baginski, F. Fogolari, J.M. Briggs, Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J. Mol. Biol. 274(2), 253–267 (1997). https://doi.org/10.1006/jmbi.1997.1399

    Article  CAS  PubMed  Google Scholar 

  48. C. Rehn, U. Pindur, Molecular modeling of intercalation complexes of antitumor active 9-aminoacridine and a [d, e]-anellated isoquinoline derivative with base paired deoxytetranucleotides. Monatsh. Chem. 127(6–7), 645–658 (1996). https://doi.org/10.1007/BF00817256

    Article  CAS  Google Scholar 

  49. M.J. Waring, C. Bailly, The purine 2-amino group as a critical recognition element for binding of small molecules to DNA. Gene 149(1), 69–79 (1994). https://doi.org/10.1016/0378-1119(94)90414-6

    Article  CAS  PubMed  Google Scholar 

  50. D. Kashyap, V.K. Garg, H.S. Tuli et al., Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules 9(5), 174 (2019). https://doi.org/10.3390/biom9050174

    Article  CAS  PubMed Central  Google Scholar 

  51. H.S. Tuli, M.J. Tuorkey, F. Thakral et al., Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol. 10, 1336 (2019). https://doi.org/10.3389/fphar.2019.01336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D. Kashyap, A. Sharma, H.S. Tuli et al., Molecular targets of celastrol in cancer: Recent trends and advancements. Critical Rev. Oncol. Hematol. 128, 70–81 (2018). https://doi.org/10.1016/j.critrevonc.2018.05.019

    Article  Google Scholar 

  53. D. Kashyap, G. Kumar, A. Sharma et al., Mechanistic insight into carnosol-mediated pharmacological effects: Recent trends and advancements. Life Sci. 169, 27–36 (2017). https://doi.org/10.1016/j.lfs.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  54. H.S. Tuli, D. Kashyap, A.K. Sharma, S.S. Sandhu, Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci. 135, 147–157 (2015). https://doi.org/10.1016/j.lfs.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  55. D. Kashyap, H.S. Tuli, A.K. Sharma, Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 146, 201–221 (2016). https://doi.org/10.1016/j.lfs.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  56. W.L. Armarego and C.L.L. Chai. Purification of Laboratory Chemicals, Butterworth-Heinemann, 2013.

  57. A.I. Vogel, A.R. Tatchell, B.S. Furnis, A.J. Hannaford, P.W. Smith, Vogel’s Textbook of Practical Organic Chemistry (Harlow Longman, London, 1989)

    Google Scholar 

  58. M.A. Ali, S.E. Livingstone, D.J. Phillips, Metal chelates of dithiocarbazic acid and its derivatives. VI. Antiferromagnetic and ferromagnetic interactions in some copper (II) complexes of salicylaldehyde and acetylacetone Schiff bases derived from s-methyldithiocarbazate. Inorganica Chim Acta. 7, 179–186 (1973). https://doi.org/10.1016/S0020-1693(00)94808-4

    Article  CAS  Google Scholar 

  59. M. Kumar, T.H.S. Pallvi, R. Khare, Synthesis, Characterization and Biological Studies of Novel Schiff Base viz. Bis-1,1’- (pyridine-2,6-diyldieth-1-yl-1-ylidene) biguanidine and Their Transition Metal Complexes. Asian J. Chem. 31, 799 (2019)

    Article  CAS  Google Scholar 

  60. J. Devi, M. Yadav, D. Kumar, L.S. Naik, D.K. Jindal, Some divalent metal (II) complexes of salicylaldehyde-derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem. 33(2), e4693 (2019). https://doi.org/10.1002/aoc.4693

    Article  CAS  Google Scholar 

  61. A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang, R.A. Friesner, Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 113(18), 2110–2142 (2013). https://doi.org/10.1002/qua.24481

    Article  CAS  Google Scholar 

  62. D. Josa, J. Rodríguez-Otero, E.M. Cabaleiro-Lago, M. Rellán-Piñeiro, Analysis of the performance of DFT-D, M05–2X and M06–2X functionals for studying π⋯π interactions. Chem. Phys. Lett. 557, 170–175 (2013). https://doi.org/10.1016/j.cplett.2012.12.017

    Article  CAS  Google Scholar 

  63. Y. Zhao, D.G. Truhlar, Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. J. Chem. Phys. 128(18), 184109 (2008). https://doi.org/10.1063/1.2912068

    Article  CAS  PubMed  Google Scholar 

  64. S. Chiodo, N. Russo, E. Sicilia, LANL2DZ basis sets recontracted in the framework of density functional theory. J. Chem. Phys. 125(10), 104107 (2006). https://doi.org/10.1063/1.2345197

    Article  CAS  PubMed  Google Scholar 

  65. Y. Yang, M.N. Weaver, K.M. Merz Jr., Assessment of the “6-31+ G**+ LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J. Phys. Chem. A 113(36), 9843–9851 (2009). https://doi.org/10.1021/jp807643p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. G. Macindoe, L. Mavridis, V. Venkatraman, M.D. Devignes, D.W. Ritchie, HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 38(2), W445–W449 (2010). https://doi.org/10.1093/nar/gkq311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A. Paul, S. Anbu, G. Sharma, M.L. Kuznetsov, B. Koch, M.F. da Silva, A.J. Pombeiro, Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper (II) complexes. Dalton Trans. 44(46), 19983–19996 (2015). https://doi.org/10.1039/C5DT02880A

    Article  CAS  PubMed  Google Scholar 

  68. S. Mukherjee, I. Mitra, R. Saha, S.R. Dodda, W. Linert, S.C. Moi, In vitro model reaction of sulfur containing bio-relevant ligands with Pt (II) complex: kinetics, mechanism, bioactivity and computational studies. RSC Adv. 5(94), 76987–76999 (2015). https://doi.org/10.1039/C5RA15740D

    Article  CAS  Google Scholar 

  69. J.W.M. Maas, F.A.C. Le Noble, G.A.J. Dunselman, A.F.P.M. de Goeij, H.A.J. Struyker Boudier, J.L.H. Evers, The chick embryo chorioallantoic membrane as a model to investigate the angiogenic properties of human endometrium. Gynecol. Obstetric Invest. 48(2), 108–112 (1999). https://doi.org/10.1159/000010150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Maharishi Markandeshwar trust-Ambala Haryana-India for laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest, regarding publishing this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Tuli, H.S., VAROL, M. et al. Organotin (IV) complexes derived from Schiff base 1,3-bis[(1E)-1-(2-hydroxyphenyl)ethylidene] thiourea: synthesis, spectral investigation and biological study to molecular docking. J IRAN CHEM SOC 19, 1923–1935 (2022). https://doi.org/10.1007/s13738-021-02430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02430-6

Keywords

Navigation