Skip to main content
Log in

Removal of sulfide from aqueous media by natural and copper modified eggshell biowaste

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This paper studied modification of the eggshell (ES) biowaste by drying, calcination, and changing the surface structure by copper ion for the removal of sulfide from water and wastewater. Characterization of the surface morphology was conducted by SEM and XRD techniques. Batch and column experiments were applied and several factors were studied to investigate the optimum conditions for improving the sulfide removal efficiency by the calcined (at 900 °C) copper modified eggshell biosorbent (CES-Cu-900). The results showed that the highest efficiency of sulfide removal by CES-Cu-900 biosorbent was at particle sizes in the range 76–630 μm, the temperature of biosorbent/adsorbate mixture was at 50 °C and the contact time was 48 h. The results also showed that the removal of sulfide increased with increasing biosorbent dose and sulfide initial concentration. At the optimum conditions, the maximum amount of sulfide removed was 6.75 mg/g of biosorbent. It was found that CES-Cu-900 biosorbent could be recovered and reused for the removal of the sulfide with 80% efficiency after washing the material. Results using CES-Cu-900 biosorbent column method showed a sulfide removal efficiency of 77% at a flow rate ≤ 1 mL/min of the eluent. The biosorbent material was applied to remove sulfide in real samples from different locations in the Gaza Strip, and the efficiency of sulfide removal at low concentration was in the range (45–50%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.G. Lu, Curr. Opin. Psychol. 32, 52 (2020). https://doi.org/10.1016/j.copsyc.2019.06.024

    Article  PubMed  Google Scholar 

  2. M.K. Hasan, A. Shahriar, K.U. Jim, Heliyon 5(8), e02145 (2019). https://doi.org/10.1016/j.heliyon.2019.e02145

    Article  PubMed  PubMed Central  Google Scholar 

  3. Y. Zhu, F. Xu, Q. Liu, M. Chen, X. Liu, Y. Wang, Y. Sun, L. Zhang, Sci. Total Environ. 662, 414 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.234

    Article  CAS  PubMed  Google Scholar 

  4. F. Hölker, T. Moss, B. Griefahn, W. Kloas, C.C. Voigt, D. Henckel, A. Hänel, P.M. Kappeler, S. Völker, A. Schwope, D. Franke, D. Uhrlandt, J. Fischer, C. Wolter, K. Tockner, Ecol. Soc. 15(4), 13 (2010)

    Article  Google Scholar 

  5. J. Khan, M. Ketzel, K. Kakosimos, M. Sørensen, S.S. Jensen, Sci. Total Environ. 634, 661 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.374

    Article  CAS  PubMed  Google Scholar 

  6. Y. Chae, Y.J. An, Environ. Pollut. 240, 387 (2018). https://doi.org/10.1016/j.envpol.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  7. B.D. Setiawan, O. Rizqi, N.F. Brilianti, H. Wasito, Sustain. Chem. Pharm. 10, 163 (2018). https://doi.org/10.1016/j.scp.2018.10.002

    Article  Google Scholar 

  8. J. Wang, C. Chen, Biotechnol. Adv. 27, 195 (2009). https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  9. A. Goyal, V.C. Srivastava, Chem. Eng. J. 325, 289 (2017). https://doi.org/10.1016/j.cej.2017.05.061

    Article  CAS  Google Scholar 

  10. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Environ. Pollut. 252, 352 (2019). https://doi.org/10.1016/j.envpol.2019.05.072)

    Article  CAS  PubMed  Google Scholar 

  11. F. Ishtiaq, H.N. Bhatti, A. Khan, M. Iqbal, A. Kausar, Int. J. Biol. Macromol. 147, 217 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.022

    Article  CAS  PubMed  Google Scholar 

  12. X. He, D.P. Yang, X. Zhang, M. Liu, Z. Kang, C. Lin, N. Jia, R. Luque, Chem. Eng. J. 369, 621 (2019). https://doi.org/10.1016/j.cej.2019.03.047

    Article  CAS  Google Scholar 

  13. J.O. Ighalo, A.G. Adeniyi, J.A. Adeniran, S. Ogunniyi, J. Clean. Prod. 283, Article 124566 (2020)

    Article  Google Scholar 

  14. M. Jamshaid, A.A. Khan, K. Ahmed, M. Saleem, Int. J. Biosci. 12(4), 223 (2018). https://doi.org/10.12692/ijb/12.4.223-240

    Article  CAS  Google Scholar 

  15. M. Dharwal, D. Parashar, M.S. Shuaibu, S.G. Abdullahi, S. Abubakar, B.B. Bala, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.496

    Article  Google Scholar 

  16. J. Carvalho, J. Araújo, F. Castro, Waste and Biomass Valorization 2(2), 157 (2011). https://doi.org/10.1007/s12649-010-9058-y

    Article  Google Scholar 

  17. C.M. Zhang, X.S. Luan, M. Xiao, J. Song, L. Lu, X. Xiao, Technology 44, 96 (2009). https://doi.org/10.1016/j.enzmictec.2008.10.010

    Article  CAS  Google Scholar 

  18. D. Jiménez, R. Martínez-Máñez, F. Sancenón, J.V. Ros-Lis, A. Benito, J. Soto, J. Am. Chem. Soc. 125(3), 9000 (2003). https://doi.org/10.1021/ja0347336

    Article  CAS  PubMed  Google Scholar 

  19. H. Liu, B. Zhang, Y. Liu, Z. Wang, L. Hao, Int. J. Hydrogen Energy 40(25), 8128 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.103

    Article  CAS  Google Scholar 

  20. K. Tang, S. An, M. Nemati, Bioresour. Technol. 101(21), 8109 (2010). https://doi.org/10.1016/j.biortech.2010.06.037

    Article  CAS  PubMed  Google Scholar 

  21. B. Zhang, J. Zhang, Y. Liu, C. Hao, C. Tian, C. Feng, Z. Lei, W. Huang, Z. Zhang, Int. J. Hydrogen Energy 38(33), 14348 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.131

    Article  CAS  Google Scholar 

  22. X. Xu, C. Chen, A. Wang, W. Guo, X. Zhou, D.J. Lee, N. Ren, J.S. Chang, J. Hazard. Mater. 264, 16 (2014). https://doi.org/10.1016/j.jhazmat.2013.10.056

    Article  CAS  PubMed  Google Scholar 

  23. J. Sun, X. Dai, Y. Liu, L. Peng, B.J. Ni, Chem. Eng. J. 309, 454 (2017). https://doi.org/10.1016/j.cej.2016.09.146

    Article  CAS  Google Scholar 

  24. I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal, A. Núñez-Delgado, J. Environ. Manag. 261, 110236 (2020). https://doi.org/10.1016/j.jenvman.2020.110236

    Article  CAS  Google Scholar 

  25. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, J. Mol. Liq. 284, 343 (2019). https://doi.org/10.1016/j.molliq.2019.04.012

    Article  CAS  Google Scholar 

  26. A. Mittal, R. Ahmad, I. Hasan, Desalin. Water Treat. 57(38), 17790 (2016). https://doi.org/10.1080/19443994.2015.1086900

    Article  CAS  Google Scholar 

  27. A. Mittal, R. Ahmad, I. Hasan, Desalin. Water Treat. 57(32), 15133 (2016). https://doi.org/10.1080/19443994.2015.1070764

    Article  CAS  Google Scholar 

  28. H.N. Bhatti, Z. Mahmood, A. Kausar, S.M. Yakout, O.H. Shair, M. Iqbal, Int. J. Biol. Macromol. 153, 146 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.306

    Article  CAS  PubMed  Google Scholar 

  29. A. Mittal, R. Ahmad, I. Hasan, Desalin. Water Treat. 57(42), 19820 (2016). https://doi.org/10.1080/19443994.2015.1104726

    Article  CAS  Google Scholar 

  30. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, J. Mol. Liq. 269, 855 (2018). https://doi.org/10.1016/j.molliq.2018.08.104

    Article  CAS  Google Scholar 

  31. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, J. Mol. Liq. 314, 113642 (2020). https://doi.org/10.1016/j.molliq.2020.113642

    Article  CAS  Google Scholar 

  32. R. Ahmad, I. Hasan, A. Mittal, Desalin. Water. Treat. 58, 144 (2017). https://doi.org/10.5004/dwt.2017.0414

    Article  CAS  Google Scholar 

  33. J. Mittal, V. Thakur, A. Mittal, Ecol. Eng. 60, 249 (2013). https://doi.org/10.1016/j.ecoleng.2013.07.025

    Article  Google Scholar 

  34. K. Vijayaraghavan, Y.S. Yun, Biotechnol. Adv. 26(3), 266 (2008). https://doi.org/10.1016/j.biotechadv.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  35. I.S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, J. Environ. Manag. 224, 288 (2018). https://doi.org/10.1016/j.jenvman.2018.07.066

    Article  CAS  Google Scholar 

  36. T.A. Hassan, V.K. Rangari, R.K. Rana, S. Jeelani, Ultrason. Sonochem. 20(5), 1308 (2013). https://doi.org/10.1016/j.ultsonch.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  37. A. Mittal, M. Teotia, R.K. Soni, J. Mittal, J. Mol. Liq. 223, 376 (2016)

    Article  CAS  Google Scholar 

  38. A.A. Hassan, Z.A. Salih, Euphrates J. Agric. Sci. 5(2), 11 (2013)

    Google Scholar 

  39. A. Laca, A. Laca, M. Díaz, J. Environ. Manag. 197, 351 (2017). https://doi.org/10.1016/j.jenvman.2017.03.088

    Article  CAS  Google Scholar 

  40. H. Daraei, A. Mittal, M. Noorisepehr, F. Daraei, Environ. Sci. Pollut. Res. 20(7), 4603 (2013). https://doi.org/10.1007/s11356-012-1409-8

    Article  CAS  Google Scholar 

  41. H. Daraei, A. Mittal, M. Noorisepehr, J. Mittal, Desalin. Water Treat. 53(1), 214 (2015). https://doi.org/10.1080/19443994.2013.837011

    Article  CAS  Google Scholar 

  42. J. Mittal, D. Jhare, H. Vardhan, A. Mittal, Desalin. Water Treat. 52(22–24), 4508 (2014). https://doi.org/10.1080/19443994.2013.803265

    Article  CAS  Google Scholar 

  43. K.Z. Elwakeel, A.M. Yousif, Water Sci. Technol. 61(4), 1035 (2010). https://doi.org/10.2166/wst.2010.005

    Article  CAS  PubMed  Google Scholar 

  44. H.J. Choi, S.M. Lee, Environ. Sci. Pollut. Res. 22(17), 13404 (2015). https://doi.org/10.1007/s11356-015-4623-3

    Article  CAS  Google Scholar 

  45. B. Kaur, S. Bhattacharya, Automotive dyes and pigments, in Handbook of Textile and Industrial Dyeing. (Elsevier, 2011), pp. 231–251. https://doi.org/10.1533/9780857094919.2.231

    Chapter  Google Scholar 

  46. E.N. Seyahmazegi, R. Mohammad-Rezaei, H. Razmi, Chem. Eng. Res. Des. 109, 824 (2016). https://doi.org/10.1016/j.cherd.2016.04.001

    Article  CAS  Google Scholar 

  47. A.F. Santos, A.L. Arim, D.V. Lopes, L.M. Gando-Ferreira, M.J. Quina, J. Environ. Manag. 238, 451 (2019). https://doi.org/10.1016/j.jenvman.2019.03.015

    Article  CAS  Google Scholar 

  48. S. Niju, K.M. Meera, S. Begum, N. Anantharaman, J. Saudi Chem. Soc. 18(5), 702 (2014). https://doi.org/10.1016/j.jscs.2014.02.010

    Article  CAS  Google Scholar 

  49. C.L. Chai, Development Polypropylene (Pp)-Modified Chicken Eggshell Composites. (UTAR University: Kampar, Negeri Perak, Malaysia, 2016), http://eprints.utar.edu.my/2037/1/PE-2016-1105263-1.pdf.

  50. S. Hu, Y. Wang, H.Y. Han, Biomass Bioenergy 35(8), 3627 (2011). https://doi.org/10.1016/j.biombioe.2011.05.009

    Article  CAS  Google Scholar 

  51. H.Z.L. Oukal, Adsorption of curcumin and silver-nanoparticles by using eggshells powder, in Chemistry. (AUG University: Gaza, Palestine, 2019) p. 77.

  52. M.M. Pedavoah, M. Badu, N.O. Boadi, J.A. Awudza, Green Sustain. Chem. 8, 208 (2018). https://doi.org/10.4236/gsc.2018.82015

    Article  CAS  Google Scholar 

  53. M.D. Putra, Y. Ristianingsih, R. Jelita, C. Irawan, I.F. Nata, RSC Adv. 7(87), 55547 (2017). https://doi.org/10.1039/C7RA11031F

    Article  CAS  Google Scholar 

  54. T. Zaman, M. Mostari, M.A.A. Mahmood, M.S. Rahman, Ceramica 64(370), 236 (2018). https://doi.org/10.1590/0366-69132018643702349

    Article  CAS  Google Scholar 

  55. N. Viriya-Empikul, P. Krasae, W. Nualpaeng, B. Yoosuk, K. Faungnawakij, Fuel 92(1), 239 (2012). https://doi.org/10.1016/j.fuel.2011.07.013

    Article  CAS  Google Scholar 

  56. H.J. Park, S.W. Jeong, J.K. Yang, B.G. Kim, S.M. Lee, J. Environ. Sci. 19(2), 1436 (2007). https://doi.org/10.1016/S1001-0742(07)60234-4

    Article  CAS  Google Scholar 

  57. S. Termkleebbuppa, S. Yodyingyong, J. Leelawattanachai, W. Triampo, N. Sanpo, J. Jitputti, D. Triampo, IOP Conf. Ser. Mater. Sci. Eng. 811(1), 01010 (2020). https://doi.org/10.1088/1757-899X/811/1/012010/pdf

    Article  Google Scholar 

  58. A. Jafari, M. Ghane, S. Arastoo, Afr. J. Microbiol. Res. 5(30), 5465 (2011). https://doi.org/10.5897/AJMR11.392

    Article  CAS  Google Scholar 

  59. T. Ghosh, A.B. Das, B. Jena, C. Pradhan, Front. Life Sci. 8(1), 47 (2015). https://doi.org/10.1080/21553769.2014.952048

    Article  CAS  Google Scholar 

  60. L. Burlibaşa, M.C. Chifiriuc, M.V. Lungu, E.M. Lungulescu et al., Arab. J. Chem. 13(2), 4180 (2020). https://doi.org/10.1016/j.arabjc.2019.06.015

    Article  CAS  Google Scholar 

  61. A. Ingle, M. Rai, IET Nanobiotechnol. 11(5), 546 (2016). https://doi.org/10.1049/iet-nbt.2016.0170

    Article  Google Scholar 

  62. T. Theivasanthi, M. Alagar, Arch. Phys. Res. 1(2), 112 (2010). https://arxiv.org/abs/1003.6068.

  63. P. Sen, J. Ghosh, A. Abdullah, P. Kumar, J. Chem. Sci. 115(5–6), 499 (2003). https://doi.org/10.1007/BF02708241

    Article  CAS  Google Scholar 

  64. N.P.S. Acharyulu, R.S. Dubey, V. Swaminadham, P. Kollu, R.L. Kalyani, S.V.N. Pammi, Int. J. Eng. Res. Technol. 3(4), 639 (2014)

    Google Scholar 

  65. L. Feng, R. Wang, Y. Zhang, S. Ji et al., J. Mater. Sci. 54(2), 1520 (2019). https://doi.org/10.1007/s10853-018-2885-0

    Article  CAS  Google Scholar 

  66. N.V. Suramwar, S.R. Thakare, N.T. Khaty, Int. J. Nano Dimens. 3(1), 75 (2012). https://doi.org/10.7508/IJND.2012.01.009

    Article  Google Scholar 

  67. K. Kannaki, P. Ramesh, D. Geetha, Int. J. Sci. Eng. Res. 3(9), 1 (2012), https://www.ijser.org/researchpaper/Hydrothermal-synthesis-of-CuO-Nanostructure-and-Their-Characterizations.pdf.

  68. J. Singh, M. Rawat, J. Bioelectron. Nanotechnol. (2016). https://doi.org/10.13188/2475-224X.1000003

    Article  Google Scholar 

  69. O.A.A. Eletta, O.A. Ajayi, O.O. Ogunleye, I.C. Akpan, J. Environ. Chem. Eng. 4(1), 1367 (2016). https://doi.org/10.1016/j.jece.2016.01.020

    Article  CAS  Google Scholar 

  70. R. Bhaumik, N.K. Mondal, B. Das, P. Roy, K.C. Pal, C. Das, A. Baneerjee, E.-J. Chem. 9(3), 1457 (2012). https://doi.org/10.1155/2012/790401

    Article  CAS  Google Scholar 

  71. A.H. Jendia, S. Hamzah, A.A. Abuhabib, N.M. El-Ashgar, Water Sci. Technol. Water Supply 20(7), 2514 (2020). https://doi.org/10.2166/ws.2021.033

    Article  CAS  Google Scholar 

  72. Z. Abd Ali, M. Ibrahim, H. Madhloom, Al-Nahrain Univ. Coll. Eng. J. 19(2), 186 (2016). https://nahje.com/index.php/main/article/view/12.

  73. R. Foroutan, R. Mohammadi, S. Farjadfard, H. Esmaeili, B. Ramavandi, G.A. Sorial, Adv. Powder Technol. 30(10), 2188 (2019). https://doi.org/10.1016/j.apt.2019.06.034

    Article  CAS  Google Scholar 

  74. D.D. Salman, W.S. Ulaiwi, N. Tariq, Int. J. Poult. Sci. 11(6), 391 (2012). https://doi.org/10.3923/IJPS.2012.391.396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Islamic University of Gaza for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizam M. El-Ashgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurrab, M.H., El-Ashgar, N.M. & El-Nahhal, I.M. Removal of sulfide from aqueous media by natural and copper modified eggshell biowaste. J IRAN CHEM SOC 18, 3477–3491 (2021). https://doi.org/10.1007/s13738-021-02288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02288-8

Keywords

Navigation