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Abstract
Chemometrics study that relates biological activity to physicochemical descriptors of a molecule and the prediction of 
absorption, distribution, metabolism, excretion and toxicity (ADMET) properties in advance are important steps in drugs 
discovery. In this study, a chemometrics approach was employed on some molecules (inhibitors) of norepinephrine transporter 
to assess their inhibitory potencies, interactions with the receptor and predict their ADMET/pharmacokinetic properties for 
identification of novel antipsychotic drugs. The molecules were optimized by using density functional theory at the basis set 
of B3LYP/6-31G*. The genetic function algorithm technique was used to generate a statistically significant model with a good 
correlation coefficient R2

Train = 0.952 Cross-validated coefficient Q2
cv = 0.870, and adjusted squared correlation coefficient 

R2
adj = 0.898. The molecular docking simulation using a neurotransmitter transporter receptor (PDB Code 2A65) revealed 

that three inhibitors (molecule No 38, 44 and 12) exhibited the highest binding affinity of − 10.3, − 9.9 and − 9.3 kcal/mol, 
respectively, were observed to inhibit the target by forming strong hydrogen bonds with hydrophobic interactions. The 
physicochemical and ADMET/pharmacokinetic properties result showed that these three molecules are orally bioavailable, 
high gastrointestinal absorption, good permeability and non-inhibitors of CYP3A4 and CYP2D6 except for molecule No 
38. Also, Molecules No 38 and 44 proved to be non-substrate of P-glycoprotein and nontoxicity to a human ether-a-go-go-
related gene with predicted hERG toxicity endpoints (pIC50 < 6) and low ADMET_Risk (< 7.0). The results of this study 
would provide physicochemical and pharmacokinetics properties needed to identify potent antipsychotic drugs and other 
relevant information in drug discovery.
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Introduction

Psychotic disorders are a group of serious illnesses that 
affect the mind, and a worldwide mental health challenge 
which occurred in a person whose mental functioning is 
impaired to interfere with their capacity to meet the basic 

demand of life [1]. Psychotic disorders are common to all 
countries and cause immense human suffering, social exclu-
sion, disability, poor quality of life, staggering economic and 
social costs. It is estimated that one in every four people has 
a mental disorder [2]. The combined costs of mental disor-
der, including loss of productivity, loss of earnings due to 
illness and social costs, are estimated to total at least USD 
113 billion annually [3]. The major depressive disorders 
(MDDs) had been estimated as the second-largest global 
burden among all diseases by 2030 which makes the discov-
ery of novel and efficacious antipsychotic drugs very urgent 
[4]. The symptoms of psychotic disorder include difficulty 
in concentrating, depressed mood, disrupted sleep pattern, 
anxiety, suspiciousness, withdrawer from family and friends, 
delusions, hallucinations, switching topics erratically and 
suicidal thoughts or action [5].
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Norepinephrine (NE) is a neurotransmitter, a crucial 
neurochemical messenger employed in central noradren-
ergic and peripheral sympathetic synapses [6] responsi-
ble for the reuptake of released norepinephrine (NE) into 
nerve terminals in the brain. Dysregulation of this neuro-
transmitter is associated with many debilitating psychotic 
disorders and mental illnesses [7]. Inhibition of the nor-
epinephrine transporter by NET inhibitors has emerged 
as important drug targets with a multitude of therapeutic 
potentials for the treatment of psychiatric disorders and 
mental diseases [8].

Insilco methods including quantitative structure–activ-
ity relationship studies (QSARs), molecular docking and 
absorption–distribution–metabolism–excretion–toxicity 
(ADMET) properties/pharmacokinetics studies are key steps 
employing in drug development and discovery processes [9]. 
Quantitative structure–activity relationship (QSAR) study 
finds correlations between biological activities and molecu-
lar descriptors of different classes of compound [10], molec-
ular docking simulation elucidates the interactions between 
the binding molecules, and ADMET/pharmacokinetics 
assessments provide adequate information on properties that 
influence absorption, distribution, metabolism, excretion and 
toxicity of a molecule [9]. It is worthy to note that computer-
assisted drug design using Insilco methodology has been of 
great importance in the identification and development of 
novel medications for the treatment of antipsychotic diseases 
and other ailments [11].

The aim of this study is to develop statistically acceptable 
quantitative structure activity relationship models, using 
molecular docking simulation to elucidate binding interac-
tions between the molecules and norepinephrine transporter 
(NET), biological target (receptor) and also to predict their 
adsorption–distribution–metabolism–excretion–toxicity 
(ADMET)/pharmacokinetics properties and subsequently 
compare the results obtained with that of known antipsy-
chotic drugs.

Materials and methods

Dataset collection and geometry optimization

A dataset comprised of 50 molecules of norepinephrine 
transporter (NET) inhibitors was collected from CHEMBL 
Database (www.ebi.ac.uk/chemb​l). The 2D structures of 
the molecules were generated by using ChemDraw ultra-
version 12.0. The 2D structures were subsequently imported 
into Spartan “14” version 1.4 for geometric optimizations 
[12] using the density functional theory (DFT) technique of 
B3LYP at 6-31G* basis set [13] to generate quantum chemi-
cal and molecular descriptors.

Division of dataset

The dataset of the studied molecules was partitioned into 
a training set used to develop the QSAR model and a test 
set employed for the external validation of the developed 
model [14] by using the Kennard stone algorithm approach 
[15] with “Dataset Division GUI 1.2” software.

Model building

A statistical analysis by genetic function approximation 
(GFA) techniques of the Material Studio software 8.0 ver-
sion was used to build the QSAR models. GFA has a dis-
tinctive attribute to select the basic function genetically 
generate better models than those made using stepwise 
regression techniques. The range of variations in this pop-
ulation gives better information on the quality of fit and 
importance of the descriptors [16]. Friedman’s lack of fit 
(LOF) was employed to evaluate the quality of the model 
as a method that measures the fitness of a model. LOF is 
estimated by this mathematical expression;

where c is the number of basic functions, d is the smoothing 
parameter, M is the number of samples in the training set, 
SSE is the sum of square error and p is the sum number of 
descriptors contained in the model.

Molecular descriptors calculation

Molecular descriptors (OD, ID, 2D and 3D descriptors) 
are arithmetical values that describe properties of mol-
ecules were calculated using paDel-Descriptor software 
2.20 version [17] in addition to quantum chemical descrip-
tors generated from the Spartan 14 software.

Assessing quality assurance of the model

Statistical parameters of the model were reviewed and 
evaluated to ascertain its fitting ability, reliability, predic-
tive ability, stability and robustness of the model generated 
[18]. The quality assurance of a developed model is guar-
anteed if the results agreed with global QSAR standard, 
i.e., R2 > 0.6, R2

pred > 0.5, Q2 > 0.6, P (95%) < 0.05, high 
value of F-test, low values of R2

random and Q2
random [14].

(1)LOF =
SEE

(1 − (C + d × p)∕M)2

http://www.ebi.ac.uk/chembl
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Validation of the model

Leave-one-out cross-validation technique was employed 
to determine the predictive power of the model. This was 
evaluated by using this mathematical expression;

where Ypred, Yexp and Y training symbolized the experimental, 
the predicted and mean values of experimental activity of 
training set compounds.

Also, the square of the correlation coefficient for the test 
set (R2

test) was evaluated for the predictive capacity of the 
developed model as part of the external validation tech-
nique. The closer the value of R2

test value to 1.0, the better 
the model. The R2

test is evaluated by using this mathematical 
equation;

where Ypred and Ytest are the predicted and experimental 
activity values of the test set compounds. Y training is the mean 
(average) activity value of the training set.

Y‑randomization test

Y-randomization is an important external validation tech-
nique to ascertain that a developed QSAR model is strong 
and reliable and is not inferred by luck [19]. Y-randomiza-
tion test is performed on the training dataset. The low values 
of R2 and Q2 is an indication that the model is very robust 
and highly reliable, and the CR2

P value of the model must 
be greater than 0.5 to pass the Y-randomization test. The 
CR2

P value is calculated by using this mathematical formula;

where CR2
P = coefficient of determination for Y-Randomi-

zation, R coefficient of correlation for Y-Randomization, Rr 
Average “R” of random models.

Degree of contribution of selected descriptors

The level of contribution of each descriptor in the model is 
determined by calculating its standardized regression coef-
ficients bj using this mathematical equation;

(2)Q2
cv
= 1 −

�
∑

(Ypred − Yexp)
2

∑

(Yexp − Y training)
2

�

(3)R2
test

= 1 −

∑
�

Ypredtest − Ytest
�2

∑
�

Ypredtest − Ytraining
�2

(4)cR2
p
= R × [R2 − (Rr)

2]2

(5)bj =
sjbj

Sy
= J = 1,… d

bj is the regression coefficient of descriptor j. Sj and Sy are 
the standard deviations for each descriptor and activity, 
respectively.

The descriptor of higher absolute standardized coefficient 
implies greater importance to the rest of molecular descriptors.

Multi‑colinearity evaluation

Multi-colinearity estimation among descriptors selected by 
GFA analysis is evaluated using the variance inflation factor 
(VIF) by the mathematical expression below;

where R2
ij is the correlation coefficient of the multiple 

regression between the descriptor i and the rest j descrip-
tors in the developed model [20].

Assessment of the applicability domain of the model

Evaluation of the applicability domain of a model is a signifi-
cant step to confirm that the developed model is capable to 
make a reliable prediction within the chemical space for which 
it was developed [21]. To describe the applicability domain of 
the QSAR model, the leverage approach was employed.

Leverage of a given dataset hi is defined by this mathemati-
cal expression;

where xi the descriptor row is a vector of the considered 
compound i and hi is the n × k descriptor matrix of the train-
ing set compound used to generate the model.

The warning leverage (h*) is the limit of normal values 
of × outliers and is expressed mathematically as

where n is the number of training compounds and p is the 
number of predictor variables (descriptors) in the model.

If the leverages hi < h* for the test compounds, it is consid-
ered being reliably predicted by the developed model.

The relevance area of the model in terms of chemical space 
is visualized by the plot of standardized residuals against lever-
age values (Williams plot).

Molecular docking simulation

The molecular docking simulation to elucidate the binding 
interactions between the ligands and the receptor was inves-
tigated using the crystal structure of LEUTAA (PDB Code: 

(6)VIFi =
1

1 − R2
ij

(7)Hi = xi(X
TX)−1XT

i

(8)h∗ =
3(p + 1)

n
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2A65), a bacterial homolog of Na+/Cl–-dependent neuro-
transmitter transporter [22].

Making of ligand and target

All the molecules were optimized and appropriately saved as 
PDB files. Subsequently, the crystal structure of LEUTAA, 
a bacterial homolog of Na+/Cl–-dependent neurotransmit-
ter transporter (receptor), was downloaded from the Protein 
Data Bank Web site (PDB codes 2A65).

Figure 1 displays the prepared structure of the receptor.
The docking of the prepared ligands with the receptor 

was carried out using AutoDock Vina version 4.0 of Pyrex 
software, while Discovery Studio software was used to visu-
alize the molecular interactions of the stable complex [23].

ADMET properties and pharmacokinetic 
studies

The absorption, distribution, metabolism, excretion and 
toxicity properties predictions, as well as pharmacokinetic 
evaluation, are major steps for drugs targeting the central 
nervous system (CNS) because the ability of CNS drugs to 
penetrate the blood–brain barrier is very critical in metab-
olism the drug. The ADMET properties predictions and 
pharmacokinetics study in advance are important methods 
to save the cost of drug discovery tremendously and also to 
provide “reality checks” and complimentary second opin-
ions for high throughput assays [24].

In this study, Simulation ADMET Predictor™ 9.0 soft-
ware, MedChem Designer™ software 5.0 version and 
SwissADME Web tools were utilized to evaluate ADMET/
pharmacokinetics properties, druglikeness and medicinal 

chemistry friendliness with proficient methods such as the 
BOILED-Egg, iLOGP and bioavailability radar [25].

Results and discussion

QSAR study was explored to investigate the structure–activ-
ity relationship of 50 compounds with distinguishing organic 
fragments acting as norepinephrine transporter (NET) inhib-
itors. The nature of models in a QSAR study is expressed 
by its fitting the data points through regression and making 
predictions of an isolated dataset.

QSAR on pKi of norepinephrine transporter (NET) 
inhibitors

A dataset of 50 compounds was divided into a training set 
of 36 compounds used in developing the model and a test 
set of 14 compounds was used to evaluate the predictive 
ability of the QSAR model for the inhibition of norepineph-
rine transporter. The predicted and experimental activities 
alongside their residual values are presented in Supplemen-
tary Table S1. The low residual values resulted from the 
experimental and predicted activities is an evidence that the 
developed model has good predictability.

The genetic algorithm–multiple linear regression (GA-
MLR) evaluation prompted the choice of six descriptors, 
which were eventually used to amassed a linear regression 
model for calculating pKi of norepinephrine transporter 
inhibitors within the chemical space of the model. The 
model with the best statistical significance was selected and 
represented by Eq. (10):

 N is the total number of the datasets, R2 is the squared cor-
relation coefficient and Q2

LOO is the squared cross-validation 
coefficients for leave one out. In the model, the number of 
ratio of training set data to the ratio number of descriptors 
present in the model was 6 and in agreement with the Topliss 
ratio [26]. This implies that the developed model obeyed the 
QSAR semiempirical rule of thumb [27].The name and the 
symbol of the descriptors, the standardized regression coef-
ficients (degree of contribution) and percentage contribution 

(10)

pKi = 2.788(ALogP)

+ 3.382(AATS7i) + 3.782(ATSC3p)

+ 2.234(IC2) − 5.147(GGI10)

+ 3.728(RDF75u) + 0.989

Ntrain = 36,R2
train

= 0.9156,R2
adjusted

= 0.8982,

Q2
LOO

= 0.8755,

Outliers > 3.0 = 0Ntest = 14,R2
test

= 0.5832

Fig. 1   Prepared structures of the receptor (PDB Code 2A65)
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of the descriptors are reported in Table 4. The combined 
presence of 2D and 3D descriptors in the developed model 
symbolized that these types of descriptors are able to char-
acterize the good antipsychotic properties of the molecules. 
The sign, magnitude and percentage contribution of each 
descriptor are not only to give very important information on 
the direction of influence of the descriptor but also pinpoint 
the strength of contribution to the activity of the molecule.

The results of the internal and external validations of the 
model were compiled to Occam’s razor rule [28]. Also, gen-
erally acceptable QSAR model validation criteria and the 
validated parameters of the model are presented in Table 1. 
The values of validation parameters of the model were in 
excellent agreement with the generally acceptable QSAR 
model as reported in Table 1. This confirmed the reliabil-
ity, stability and robustness of the developed model. Pear-
son’s correlation matrix and other statistical tools employed 
for validation of the model are reported in Table 2. The 
low value in correlation coefficients between each pair of 
descriptors (< 7.0) is a clear indication that there was no 
pronounced multi-collinearity among the descriptors in the 
developed model. The variance inflation factor (VIF) values 
reported in Table 2 were less than 10, and the t-statistics val-
ues were greater than 2 for all the descriptors. These are an 
excellent indications that the developed model was statisti-
cally significant, and the descriptors contributed appreciably 
to the model at a 95% level [29] and they were orthogonal.

The model generated was used to predict the test set data, 
and the results are reported in Supplementary Table S1. The 
predicted pKi values for the training and test sets were plot-
ted against the experimental pKi values as shown in Fig. 2. 
Similarly, the plot of the standardized residuals values for 
both the training and test sets against the leverage values of 
the descriptors in the model is shown in Fig. 3. It is clearly 
noticed from Supplementary Table S1, Fig. 2 and Fig. 3 that 
the calculated values for the pKi were in good agreement 
with those of the test set, as a result of this, no any form of 
error was observed in the model.

QSAR model validation

The internal coherence of the training set was established by 
using leave-one-out cross-validation technique to ascertain 
the strength and reliability of the developed model because 
the candid significance of a QSAR model is not merely their 
ability to mimic known activities of molecules set by their 
fitting power (R2), but above all is also their prospective for 
guessing biological activity accurately. The great value of 
Q2

LOO for pKi of NET inhibitors used (0.8755) proved well 
of a fully clad internal validation of the model.

The plot of experimental pKi values against predicted 
pKi values for the training set is presented in Fig. 4. The dis-
played linear relationship was observed in the plot between 
the experimental and predicted activities of the training set 

Table 1   QSAR model validation parameters [29]

Validation tools Interpretation Acceptable value Developed model 
value

Remarks

R2 Coefficient of determination ≥ 0.6 0.911 Pass
P (95%) Confidence interval at 95% confidence level < 0.05 2.446 Pass
Q2cv Cross-validation coefficient > 0.5 0.870 Pass
R2 − Q2cv Difference between R2 and Q ≤ 0.3 0.04 Pass
NExt testset Minimum number of external and test sets ≥ 5 14 Pass
R2

Testset Coefficient of determination of external and test set ≥ 0.5 0.5850 Pass
cR2

p Coefficient of determination for -randomization > 0.5 0.840 Pass
R2

adj Adjusted R-squared > 0.6 0.893 Pass
VIF Variance inflation factor < 10 1.4–4.4 Pass
t test t statistic value > 2 5–9 Pass

Table 2   Pearson’s correlation 
matrix and model quality 
assurance

ALogP AATS7i ATSC3p IC2 GGI10 RDF75u VIF t statistics p value

ALogP 1 1.5021 7.5604 2.47E08
AATS7i − 0.3321 1 1.4789 7.4649 3.16E−08
ATSC3p − 0.2592 − 0.2991 1 1.4376 9.4970 2.1E−10
IC2 − 0.2742 0.0487 0.0765 1 1.4177 5.8502 2.4E−06
GGI10 − 0.2382 0.0921 − 0.1711 0.5005 1 4.5022 − 9.5663 1.79E−10
RDF75u − 0.2940 0.2215 − 0.1337 0.4759 0.6377 1 4.3800 6.7912 1.87E−07
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(R2 = 0.911). The fact that all these results were in agree-
ment with QSAR validation criteria as presented in Table 1 
is confirmatory evidence of the reliability, robustness and 
stability of the developed model [29].

Figure 3 depicts the Williams plot of the NET dataset, in 
which the standardized residuals for each compound in the 
dataset were plotted against their leverage values, coming 
about to acknowledgment of likely outliers and outstanding 
molecules in the models.

The applicability domain is set up inside a defined 
domain where all the data points were within the bound-
ary ± 3 for residuals and a leverage threshold h* (h ∗= 3po∕n 
where po is the number of model parameters and n is the 
number of compounds) [19]. From the result, everyone of 
the molecules of the training set and test set for the dataset 
was observed to reside inside the domain (square area) and 

Fig. 2   Plot of predicted pKi 
values against experimental pKi 
values for training and test sets

Fig. 3   Williams plot for the 
dataset of pKi standardized 
residual against its descriptor 
space

Fig. 4   Plot of predicted pKi values against experimental pKi values 
for training
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no statistical value far from other compounds (outlier) with 
standardized residuals > 3 d for the dataset exist.

The percentage of contribution of each descriptor was 
calculated to determine the relative importance and the con-
tribution of every descriptor in the model. The degree of 
contribution of each descriptor and variance inflation fac-
tor (VIF) of the descriptor were estimated to evaluate the 
percentage and the significance of the contribution of the 
descriptors as reported in Tables 2 and 4, respectively. The 
descriptor GGI10 showed the highest contribution value 
(27.6%) in the model with VIF value of 4.502 as reported 
in the two Tables, but its contribution negatively affects 
the model as observed in Eq. (10) with negative regression 
coefficient.

The robustness and reliability of the model were evalu-
ated using Y-randomization test to ascertain whether the 
developed model is by chance correlation or not. The results 
of this test as reported in Table 3 were also in agreement 
with QSAR validation criteria reported in Table 1. This 
is proved that the developed model is robust, good and 
dynamic. The fact that cR2

p value > 0.5 reaffirms that the 
model possesses good quality assurance and that the model 
is not only inferred by chance but also very powerful.

Elucidation of descriptors in NET pKi model

By interpreting the molecular descriptors presented in the 
model (Table 4), it is possible to increase supportive chemi-
cal functional groups, fingerprints and pharmacophores into 
the activities of the NET inhibitors. Therefore, a sufficient 
interpretation of the QSAR results is reported as follows;

ALogP is a 2D-type molecular descriptor and the first in 
our QSAR model. It defined as Ghose–Crippen LogKow 
or Ghose–Crippen–Viswanathan octanol–water partition 

coefficient. (ALogP) is calculated from the AlogP model 
consisting of a regression equation based on the hydropho-
bicity contribution of 115 atom types [30, 31]. AlogP esti-
mates are provided only for compounds having atoms of 
types C, H, O, N, S, Se, P, B, Si and halogens.

Each atom in every structure is classified into one of the 
115 atom types. Then, estimated logP for any compound is 
given by:

where n is the number of an atom of type i and ai is the cor-
responding hydrophobicity constant. The list of the atom 
types with the corresponding hydrophobicity contributions 
is given under the list of atom-centered fragments. This 
descriptor tells us the higher the number of heteroatoms in 
a molecule, the higher the tendency for this molecule to be 
less hydrophobic. Since the percentage contribution of the 
descriptor in this model is 13%, it indicates that more than 
10% of the bioactivity of a lead molecule will improve the 
number of heteroatoms present be increased.

AATS7i and ATSC3p are defined as average 
Broto–Moreau autocorrelation—lag 7/weighted by first 
ionization potential, and centered Broto–Moreau autocor-
relation—lag 3/weighted by polarizabilities, respectively. 
They are both 2D autocorrelation descriptors and their 
respective percentage contribution to the models are given 
as 13 and 16.4%, respectively, in Table 2. The ATS descrip-
tor describes how a property is distributed along with the 
topological structure. It is a spatial autocorrelation on a 
molecular graph, which can be used to improve the activ-
ity of the compounds by altering the ionization potential 
and polarizability of the compounds. Since these molecular 
descriptors contributed positively to the model, the pKi val-
ues of the compounds can be improved by adding fragments 
to the compounds that can increase the polarity of the com-
pounds, thereby creating the charge stability of the ligands’ 
interaction with the binding sites. GGI10 is a topological 
charge descriptor defined as the topological charge index of 
order 10. GGI10 gave the highest contribution in the model, 

A logP =
∑

i

niai

Table 3   Y-randomization model 
parameters Average r 0.3599

Average r2 0.1363
Average Q2 − 0.3555
cRp2 0.8439

Table 4   Names of the model descriptors and their respective degree of contribution

Descriptor Descriptor name Type Degree of 
contribution

Percentage of 
contribution

ALogP Ghose–Crippen LogKow 2D 0.513 13.3
AATS7i Average Broto–Moreau autocorrelation—lag 7/weighted by first ionization potential 2D 0.500 13.0
ATSC3p Centered Broto–Moreau autocorrelation—lag 3/weighted by polarizabilities 2D 0.631 16.4
IC2 Information content index (neighborhood symmetry of two order) 2D 0.383 10.0
GGI10 Topological charge index of order 10 2D − 1.061 27.6
RDF75u Radial distribution function—075/unweighted 3D 0.756 19.7
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but since its contribution negatively affects the model, the 
steady reduction in this descriptor value can improve the 
Ki values of the dataset. The ability of topological charge 
indices to describe molecular charge distribution has been 
established by correlating them with the dipole moment of a 
heterogeneous set of hydrocarbons, so reducing the number 
of heterogeneous hydrocarbons presently correlated with the 
dipole moment of the molecule will lead to an increase in 
the bioactivity of the compounds.

IC2 is defined in Table 2 as the information content index 
(neighborhood symmetry of two order), and it is a 2D-type 
information content descriptor. It gave the least contribu-
tion to the model, but 10% contribution can be significant 
depending on the nature of the molecule. The IC2 molecular 
descriptor suggests that by introducing other bonds at that 
carbon, the structural complexity of the molecules will be 
increased and the Shannon entropy will also be increased, 
thereby easily activating the interactions of the molecule 
with the binding site.

RDF75u is an RDF descriptor (Radial Distribution Func-
tion descriptors), and this descriptor is based on the distance 
distribution in the geometrical representation of a molecule 
and constitutes a radial distribution function code (RDF 
code) that shows certain characteristics in common with the 
3D-MORSE code. The radial distribution function in this 
form meets all the requirements for a 3D descriptor, and it 
also provides further valuable information such as bond dis-
tances, ring types, planar and non-planar systems. This fact 
is the most valuable consideration for a computer-assisted 
code elucidation [32]. The positive regression coefficient of 
this descriptor in the model as contained Eq. (7) with the 
highest value of the degree of contribution as reported in 
Table 4 is a good indication of its influential contribution 
to the antipsychotic property with variation in the bond dis-
tance and ring types of the studied compounds.

Docking result

The docking result of this study is presented in terms of 
binding affinity (kcal/mol) as reported in Supplementary 
Table S1. All the ligands were docked into the active site 
of the receptor, using the crystal structure of LEUTAA 
(PDB: 2A65), a bacterial homolog of Na+/Cl–-dependent 

neurotransmitter transporter to elucidate binding interactions 
and mode of inhibition of the target [22].

The binding affinity of all the docked molecules ranges 
from − 5.0 to − 10.3 kcal/mol is reported in Supplemen-
tary Table S1. The molecule numbers 38, 44 and 12 were 
observed to have binding affinity of − 10.3, − 9.9 and 
9.3 kcal/mol, respectively, and when visualized and ana-
lyzed through the Discovery Studio Visualizer they found 
to be strongly bonded to the receptor by forming hydrogen 
bond and also displayed hydrophobic and electrostatic inter-
actions with the target except molecule 38 which could not 
form hydrogen bond with the receptor as reported in Table 5. 
The 2D and 3D binding interaction of molecule 12 and 44 is 
shown in Fig. 5. The amino acid residues in which molecule 
12 and 44 formed hydrogen bonds are GLN34 and LYS398 
with a bond length of 2.15 Å and 2.63 Å, respectively. The 
non-hydrogen bond formation displayed by molecule No 38 
may be due to its low activity (pKi = 5.084) compared to 
molecules 12 and 44 with higher activity pKi = 7.383 and 
44, pKi = 5.607, respectively. This may suggest that the 
activity of a molecule could influence the type of bonding 
interaction that would be observed with a biological target 
(receptor). However, the highest binding energy displayed by 
molecule 38 may be due to its large number of hydrophobic 
interactions and the electrostatic effect due to the presence 
of fluorine atom, Pi-Cation, Pi-Sigma, Pi-Pi-stacked, Pi-Pi-
T-shaped and Pi-Alkyl with amino acid residues (ILE491, 
ILE410, TRP406, TRP99, PHE494, ARG487, LEU464, 
ALA464, ILE472) as reported in Table 5.

Physicochemical evaluation of three molecules 
with highest binding affinity

Physicochemical property is an important attribute of a 
molecule which influences efficacy, safety or metabolism 
and can be predicted by using Lipinski’s rule of five (RO5); 
molecular mass < 500; hydrogen-bond donors (HBD) < 5; 
hydrogen-bond acceptors (HBA) < 10; and LogP < 5 [33]. 
The rule suggests that molecules, whose properties fell 
outside some of these boundaries, would be unlikely to 
become an orally bioavailable drug [34]. Other physico-
chemical properties were calculated using Simulation Plus 
ADMET Predictor™ 9.0. Only the molecule No 38 with 

Table 5   Type of interactions between the three ligands of higher binding affinity and the receptor

Molecule 
number

Binding affinity 
(kcal/mol)

Hydrogen bonding 
interactions

Hydrogen bond 
length (Å)

Hydrophobic interactions Electrostat-
ics interac-
tions

12 − 9.3 LYS398 2.15279 ILE111, ALA319, VAL154, LEU162, LEU400, LEU25
38 − 10.3 ILE491, ILE410, TRP406, TRP99, PHE494, ARG487, 

LEU464.ALA464, ILE472
PHE414

44 − 9.9 GLN34 2.62533 ILE475, TYR471, ILE245, LYS474, ARG30, ALA319 ASP404
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Fig. 5   Depict 2D and 3D binding interactions between the receptor and molecule number 12 and 44, respectively
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the highest binding energy (− 10.3) and lowest molecular 
weight (329.852 g/mol) among the three selected molecules 
is fully obeyed the RO5 while the molecule No 12 and 44 
have S + LogP values of 5.928 and 5.383 as reported in 
Table 6. Also, these molecules have a polar surface area 
less than 70 Å2 and the number of rotatable bonds (RTB) 
less than 10 except for molecule No 12 that has RTB of 12. 
These results informed that molecule No 38 and 44 would 
be orally bioavailable and with good permeability as poten-
tial antipsychotic agents [35]. More so, in addition to Log P 
as a parameter to measure lipophilicity of a substance, Log 
D which determines the effective lipophilicity a substance 
was estimated to determine the distribution of a molecule 
within the body [36]. A Log D value of 1 to 3 and a Log P 
value greater than 2 are required for a drug-like molecule to 
cross the blood–brain barrier (BBB) including CNS drugs 
[37]. These molecules have Log D values between 1–3 
except for molecule No 12 that has Log D value slightly 
above 3 (i.e., 3.236) as reported in Table 6. This result sug-
gests that these molecules possessed a good distribution 
profile, a property that influences transport processes, intes-
tinal absorption and membrane permeability [36]. All the 
results obtained for the physicochemical properties of the 
selected molecules were compared with that of methylphe-
nidate HCl, an approved drug of the antipsychotic disorder 
as reported in Table 6.

ADMET/pharmacokinetic properties of the selected 
three molecules

The ADMET/pharmacokinetic properties assessments 
were carried out using combined Simulation Plus ADMET 
Predictor™ 9.0 [33] and Swiss ADME tool with a profi-
cient method of Brain Or IntestinaL EstimateD permea-
tion method (BOILED-Egg) [38]. The obtained results for 
ADMET/pharmacokinetic properties presented in Table 7 
revealed that all the selected molecules possessed the attrib-
ute for central nervous system (CNS) blood–brain barrier 
(BBB) penetration and with high gastrointestinal (GI) 
absorption in comparison with their Log BB values. The 
BOILED-Egg depicted in Fig. 6 demonstrates the human 
intestinal absorption (HIA) and the brain access or penetra-
tion of a drug molecule. The white region and the yellow 
region (yolk) are equivalent to the area of the highest prob-
ability of being absorbed by the human gastrointestinal tract 
and highest probability to the brain access (penetration), 
respectively. It was observed that all three molecules and 
including methylphenidate HCl (an approved antipsychotic 
drug) lie within the yellow region (yolk). This is a clear 
indication that these molecules have a high probability to be 
absorbed by the gastrointestinal tract and permeate into the 
brain. More so, the PGP+ (substrates) and PGP− (non-sub-
strates) are symbolized by blue and red dots for molecules Ta
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assumed to be efflux or non-efflux from CNS by P−glyco-
protein, respectively. Molecule No 38 and 44 are PGP−, 
because of this, they are non-substrates while molecule 12 
and that of approved drug (Methylphenidate HCl) are PGP+, 
and hence, they are substrates of P−glycoprotein.

The effect of cytochrome P450 metabolism for CYP3A4 
and CYP2D6 being the most important forms in humans 
[39] was investigated using both Simulation Plus ADMET 
Predictor™ 9.0 and Swiss ADME tool. These molecules 
including methylphenidate HCl were found to be non-
inhibitors of CYP3A4 and CYP2D6 except for molecule 
No 38 that proved to the inhibitor of the enzymes. The 
ADMET risk and toxicity properties were predicted using 
Simulation Plus ADMET Predictor™ 9.0 as reported in 
Table 7. These molecules have ADMET_Risk values less 
than 7.0 except for molecule No 12. It has been reported 
that the best potential drug candidates have ADMET_Risk 
values less than 7.0 [40]. The cardiovascular toxicity was 
predicted using ADMET Predictor™ 9.0, and the obtained 
results are reported in Table 7. Certainly, a random block 
of cardiac human ether-a-go-go-related gene (hERG) chan-
nels by a variety of molecules is a major therapeutic chal-
lenge with profound impacts on human health [41]. Hence, 
molecules with hERG toxicity endpoints (pIC50 ≥ 6) are 
likely to exhibit some hERG toxicity [33]. Luckily enough, 
all the three molecules and including the approved drug 
(Methylphenidate HCl) have predicted toxicity endpoints 
(pIC50 ≥ 6) except for molecule No 12 that has toxicity end-
points (pIC50 = 6.866).

The effect of cytochrome P450 metabolism for CYP3A4 
and CYP2D6 being the most important forms in humans 
[39] was investigated using both Simulation Plus ADMET 
Predictor™ 9.0 and Swiss ADME tool. These molecules 
including methylphenidate HCl were found to be non-inhib-
itors of CYP3A4 and CYP2D6 except for molecule No 38 
that proved to the inhibitor of the enzymes. The ADMET 
risk and toxicity properties were predicted using Simula-
tion Plus ADMET Predictor™ 9.0 as reported in Table 7. 
These molecules have ADMET_Risk values less than 7.0 
except for molecule No 12. It has been reported that the 
best potential drug candidates have ADMET_Risk values 
less than 7.0 [40]. The cardiovascular toxicity was predicted 
using ADMET Predictor™ 9.0, and the obtained results are 
reported in Table 7. Certainly, a random block of cardiac 
human ether-a-go-go-related gene (hERG) channels by a 
variety of molecules is a major therapeutic challenge with 
profound impacts on human health [41]. Hence, molecules 
with hERG toxicity endpoints (pIC50 ≥ 6) are likely to exhibit 
some hERG toxicity [33]. Luckily enough, all the three mol-
ecules and including the approved drug (Methylphenidate 
HCl) have predicted toxicity endpoints (pIC50 ≥ 6) except for 
molecule No 12 that has toxicity endpoints (pIC50 = 6.866).
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Conclusions

This study addressed quantitative structure–activity relation-
ship (QSAR), elucidative binding interactions between the 
molecules of norepinephrine transporter (NET) inhibitors 
and the receptor as well as the predictive adsorption–distribu-
tion–metabolism–excretion–toxicity (ADMET)/pharmacoki-
netics properties of the inhibitors. The result of the QSAR 
modeling was reliable and robust and also satisfied the OECD 
criteria for model development. The results of internal valida-
tion (Q2cv = 0.870) and that of external validation (R2

Pred 0.58) 
suggested the good predictive ability of the model. The results 
obtained for molecular docking simulation revealed that mole-
cules 38, 44 and 12 have the highest binding affinity of − 10.3, 
− 9.9 and − 9.3 kcal/mol, respectively, and were found to be 
firmly bonded to the receptor with the formation of strong 
hydrogen bonds and hydrophobic interactions of the amino 
acids of the targets. The physicochemical properties evalua-
tions revealed that the selected three molecules with highest 
binding energy are orally bioavailable and have good perme-
ability attributes while ADMET properties/pharmacokinetics 
assessments suggested that these molecules have high chance 
to be absorbed by the gastrointestinal tract and permeate into 

the brain as potential antipsychotic agents evidenced from 
BOILED-Egg diagram. It is hoped these recognized inhibitors 
would be employed to develop and design novel antipsychotic 
agents with improved potencies.
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