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Abstract
CLIP-based text-to-image retrieval has proven to be very effective at the interactive video retrieval competition Video Browser
Showdown 2022, where all three top-scoring teams had implemented a variant of a CLIP model in their system. Since the
performance of these three systems was quite close, this post-evaluation was designed to get better insights on the differences
of the systems and compare the CLIP-based text-query retrieval engines by introducing slight modifications to the original
competition settings. An extended analysis of the overall results and the retrieval performance of all systems’ functionalities
shows that a strong text retrieval model certainly helps, but has to be coupled with extensive browsing capabilities and other
query-modalities to consistently solve known-item-search tasks in a large-scale video database.

Keywords Interactive video retrieval · Video browsing · Video content analysis · Content-based retrieval · Evaluations

1 Introduction

Multimodal AI models, which learn relationships between
natural language and images, have significantly improved
automatic image content understanding and visual informa-
tion retrieval in the last few years. One popular example of
such a model is CLIP [1] (Contrastive Language-Image Pre-
training), which has not only successfully demonstrated its
great performance in matching text with images, but also
it has been successfully used for image and video retrieval
competitions. For instance, the top performing teams at the
Video Browser Showdown (VBS) [2–4] competition, as well
as at the Lifelog Search Challenge (LSC) [5], were all rely-
ing on CLIP models when building their retrieval engines.
Interestingly, however, their performance in solving specific
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queries in these competitions was quite varying and the same
task was not always solved by all the teams.

In this paper, we evaluate the CLIP-based retrieval perfor-
mance of the top three systems that participated in the Video
Browser Showdown (VBS) 2022 competition [2].We set up a
dedicated VBS-like competition with about 60 KIS (known-
item search) tasks that needed to be solved by the teams. In
order to level out user-based performance impact and test
the three retrieval systems rather than individual users, each
system is tested with four independent users. Additionally,
in the first 45 s the teams were not allowed to change the text
of the KIS query, and have to use the same text that is pro-
vided by the competition moderators. This specific setting
allowed both, to measure system-level performance and find
differences in the CLIP-based approaches.

We evaluate the three systems with several performance
metrics (correct item rank, achieved VBS score, query
frequency and mAP) and discuss the differences of the
employed retrieval systems, which all operate on the same
data to solve the same tasks.

Our results show that even though Visione has the best
performing text-to-image search engine, vibro, the winning
system of the Video Browser Showdown 2022 was able
to secure the first place in this extended evaluation due to
three main factors: one superuser with an outstanding per-
formance, the support of extended browsing capabilities, and

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13735-024-00325-9&domain=pdf


   15 Page 2 of 13 International Journal of Multimedia Information Retrieval            (2024) 13:15 

the use of a general-purpose nearest neighbor search model
for image-based similarity queries. However, on a team-
wide level, the performance differences between vibro and
CVhunter (second place) are not statistically significant
and a much larger amount of KIS tasks would have been
needed to distinguish these two teams. This results indicate
that even though a strong text-query method is capable of
solving a large number of tasks, other features like image-
based searches and visual browsing are very important to
achieve a consistency in solving video-based known-item-
search tasks.

2 Related work

2.1 Interactive retrieval benchmarks

During the last decades, several highly recognized competi-
tions emerged that provide benchmark datasets and unified
evaluation procedures such that the participating approaches
can be compared and ranked. For example, NIST organizes
a respected TRECVID benchmark [6] focusing on different
types of tasks likeAdhoc search,Video toText orDeepVideo
Understanding. The MediaEval benchmark [7] is another
example of activities toward multimedia task description and
standardization of evaluation methodology. Other compe-
titions focus primarily on task categories, where not only
ranking models but also good user interfaces are necessary
for better performance. Out of many possible task categories
[8], known-item search tasks became well established at
the Video Browser Showdown [3, 9] and Lifelog Search
[10, 11] challenges. Both competitions define known-item
search tasks over a large dataset and organize annual meet-
ings at the InternationalConference onMultimediaModeling
(MMM) and the ACM International Conference on Multi-
media Retrieval (ICMR), respectively. The VBS challenge is
the most related evaluation competition to this paper as the
same dataset, task category, similar setting and evaluation
procedures were used for the presented study. Furthermore,
it was based on the results of VBS 2022 [2] that the top three
systems were identified. The authors of the systems agreed
to participate in a more comprehensive evaluation to reveal
more insights to the performance of the systems and analyze
the effect of different users.

One comparison of top-performing VBS teams was con-
ducted previously [12], where SOMHunter and vitrivr,
the two best-performing tools of VBS 2020 competition,
were evaluated. In that study,SOMHunter significantly out-
performed vitrivr, mainly due to the better text-to-image
ranking model in combination with the used search strategy.
Also, the authors conducted a bootstrap analysis to estimate
the size of the study that would be necessary to reliably dis-
tinguish the best and the second-best team. In particular, to

achieve a 95% confidence interval, approx; 20–25 tasks were
solved by 4–6 participants, or approx; 40 tasks solved by
2 participants were suggested. The dynamic nature of the
field is shown by the fact that none of the tools mentioned is
among the top 3 tools in the VBS 2022 competition. The
currently evaluated tools have evolved in terms of query
modalities, underlying retrieval models, as well as visual-
ization options. Compared to the previous study, we altered
the task settings and performed more in-depth analysis of
user behavior, including usage statistics for various query
paradigms. Finally, all three tools evaluated in this paper are
much more similar in terms of the text-to-image retrieval
model, which resulted in smaller performance differences.

2.2 Description of the systems

Even though the performance of the video search systems
vibro [13], CVHunter [14] and Visione [15] was quite
similar in the VBS 2022, the video browsing tools have sig-
nificant differences regarding their supported query modal-
ities, underlying ranking models, presentation of retrieval
results and browsing capabilities. However, the general
approach of splitting up videos into segments (shots) and
defining a representative frame (image) for each segment is
used by all three systems with small differences in this pro-
cedure.

Considering all search related features of the three sys-
tems, the query types can be grouped as Text, Image,
Temporal,Multimodal andOther. Starting with Text, all sys-
tems support rich text inputs by leveraging text-to-image
models like CLIP [1]. vibro uses OpenAI’s ResNet50x16
[16] CLIP-trained model and reduces the dimensionality of
the 768-dimensional embeddings to 512 via PCA-whitening
[17]. Additionally, the output is further quantized to byte-
scale (INT8).While these stepsmight harm the text-to-image
retrieval results, the memory footprint is greatly reduced.
CVHunter also uses a CLIP-based model, the ViT-L/14
[18] variant that performed well in many benchmarks in
the original paper. Visione is using a combination of two
mutimodal joint embedding models: TERN [19] (for text-
to-image retrieval) and CLIP2video [20] (for text-to-video
retrieval).

Image-queries play an important role in vibro, since
any image presented on the UI can be double-clicked to
perform a new image-based search. A Swin-L@384 [21]
model, pre-trained with ImageNet21k [22] (classification)
was fine-tuned for content-based image retrieval with the
ProxyAnchor loss function [23] and a combination of pub-
licly available datasets with a total of over 100k classes.
Furthermore, a simple binarization with threshold = 0 per
dimension was used to obtain memory efficient image
embeddings. CVHunter uses the image embeddings from
their CLIP model for image-as-example queries and imple-
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mented a Bayesian relevance feedback approach introduced
in PicHunter [24]. A temporal variant of the model was
supported as well [25]. Visione supports both visual and
semantic similarity queries. The GEM [26] features are used
to support visual similarity search. The features extracted
usingCLIP2video [20] are used to retrieve video clips that are
semantically similar to a query video segment, while TERN
[19] are used for searching video keyframes that are seman-
tically similar to a query image.

Temporal-queries can be formulated for two consecutive
shots with vibro, where each shot can be described by text
or an image. CVHunter supports description of two tempo-
rally close video segments, where the relevance score of the
first segment is combined with the relevance score of the best
following segment within a search window. This aggregation
can be further updated with temporal relevance feedback
[25]. Visione uses a temporal quantization approach for
combining two different queries and select results tempo-
rally close each other. Specifically, videos are divided into
intervals of T = 21 seconds, and the best results for each
query in each interval are retained. Only result pairs from the
same video and with a temporal distance smaller than 12s
are then displayed in the UI.

TheOther querymodality category groups less commonly
used features of the three systems. For vibro this includes
color-based searches, i.e., a user can do multi-colored draw-
ings on any selected image to modify the color layout of
the image. CVHunter supports only text and image (kNN
or relevance feedback) search. Visione also supports object
and color-based queries. In the UI there is a canvas where the
user can place objects and colors appearing in a target scene.
To support this kind of query, three pre-trained object detec-
tors (VfNet [27], Mask R-CNN [28], Faster R-CNN [29])
and two chip-based color naming [30, 31] are indexed.

On top of that, the vibro and Visione systems support
merging of the previously describedmodalities (Multimodal-
queries). However, for the case of vibro this was not
used during this evaluation. Visione enables users to per-
form multimodal searches by combining textual queries and
object/color-based queries. For instance, a user can specify
objects in an image (e.g., a person and a dog) while also pro-
viding a textual description (e.g., “aman and a dog running in
a park”). Moreover, users can issue two multimodal queries
together to perform a temporal search, where the first query
describes what happened before the second query.

vibro has twoways to display results of the current query.
The first one is a simple list, arranged in scan-line order,
sorted by the relevance to the query of each displayed item.
The second one is the same result-list arranged on a 2D-
grid with a SOM-like [32] algorithm, FLAS [33], using
a combination of the image embeddings and a low-level
descriptor to include color information in this sorting. The
most relevant item will always be in the center. All items

represent keyframes of all videos and none of the above dis-
play methods aggregate those keyframes into videos, leading
to up to 1.7 million ranked items but only the most relevant
10,000 keyframes are displayed. In addition, vibro supports
exploration of the entire keyframe collection by using of
an exploration graph [13]. CVHunter allows to show top
ranked selected frames or top ranked frames accompanied
with their video context. For each displayed frame, it is pos-
sible to use playback of sampled video frames or show the
whole video summary. Users can press a number on numeric
keyboard to limit the number of displayed result set frames
from each video. In the browsing interface of Visione, the
search results are organized by videos, presenting one row
per video containing up to 20 frames. The order of these
video rows and the frames within them is determined by the
retrieval model’s scores. Each frame in the row has a menu
that offers various options to the user. These options include
conducting similarity searches, viewing the entire video start-
ing from the selected frame, or getting a preview of the video
around the chosen frame.

2.3 CLIP-based video retrieval

The effectiveness of CLIP-based video retrieval is a well
studied phenomenon and many different works use CLIP
to produce video-level descriptors [20, 34–36]. The com-
mon idea of this field of research is to extract embeddings
with CLIP-trained visual encoders from sub-sampled frames
of each video (e.g. one frame per second) and then aggre-
gate those frame-level embeddings to a single, video-level
embedding. Those descriptors therefore allowmore complex
action-based textual queries. A simple aggregation method
would be mean-pooling, but can be improved as seen in
[20, 34, 35]. CLIP2Video [20] proposes to use a trainable
transformer network [37] to achieve video-level features and
XCLIP [34] presents a multi-grained contrastive learning
module, to enhance the importance of frames that have a
high affinity to some single words of the query sentence.
Both methods start with CLIP pre-trained visual and textual
encoders but fine-tune those networks in combination with
the training of the weights of the newly introduced mod-
ules. Bain et. al. show that a parameter free, query-specific
pooling approach can achieve very good results and outper-
forms CLIP2Video’s transformer-based aggregation, which
used 19 million parameters. However, the downside of this
approach is that all frame-level visual embeddings have to
be stored to compute relevance scores for each textual query.
This scores are then used to create a weighted-average pool-
ing to form a query-specific video-level descriptor. Due to
the nature of the V3C dataset and the VBS tasks, where
short sequences have to be found in rather long videos, initial
tests of the CVHunter and vibro teams showed that video
retrievalmodels where only beneficial in specific taskswhere
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Table 1 Information on the 12
participants

User Active VBS Passive VBS Experience with KIS tasks Overall score

vibro1 – � � 69.1

vibro2 � � � 93.5

vibro3 � � � 83.9

vibro4 – – – 86.0

cvhunter1 – – – 75.0

cvhunter2 � – � 84.0

cvhunter3 � � � 85.8

cvhunter4 – – � 85.6

visione1 � � � 84.2

visione2 – � � 78.0

visione3 � – � 86.5

visione4 � � � 85.4

Active VBS indicates participation as one of the two competition users. Passive VBS participation stands for
working on the system, when it took part in a VBS competition

actions where required to be described. However, in most
task scenarios, it is more important to query particular easily
distinguishable objects. This can better be achieved with the
standard image-text CLIP models. To keep the memory foot-
print low, both teams have therefore decided to omit video
level embeddings in their respective systems.

3 Extended evaluation

3.1 Differences to the VBS competition

The three introduced systems achieved very similar results
at the main VBS competition. In order to get more detailed
insights on their differences, we decided to introduce some
changes in this extended evaluation. For reference, the typical
VBS competition settings are described in [9].

Usually, a participating system is represented by up to two
individual users at the main VBS event. If one user solves
the current task, the team gets assigned a score and the sec-
ond user does not longer have to solve the task. Those two
users are often highly experienced in solving video retrieval
tasks with their respective systems and usually compliment
each other. Since this team-wide aggregation of performance
makes it difficult to analyze user specific behavior and perfor-
mance, we omitted this default aggregation in this evaluation.
Each team was asked to assign four users, the information
about the users’ experience can be found in Table 1.

Even though three types of tasks have to be solved at the
main VBS event, the next change was to solely focus on
the visual known-item-search (v-KIS) task category. This
allowed us to perform a much higher volume of tasks, 57
compared to 10 at the VBS22 event for this particular cat-
egory. The main purpose of the higher task volume was
to obtain a much larger sample size and thus be able to

draw more reliable conclusions about the performance of
the respective systems.

The last change was the introduction of a predefined
textual query and the restriction not to change this initial
text for the first 45 s of each task. Since all three systems
used differentCLIP-based text-to-image retrievalmodels,we
wanted to reduce the variance introduced by user-formulated
queries and focus on a fair comparison of the systems’ text-
to-image retrieval performance. Furthermore, we hoped to
gain insights on the browsing capabilities of the systems and
the performance of retrieval models from other modalities
such as image-as-example queries. Restricting the reformu-
lation of text forced users to use other features of their video
retrieval system, resulting in a more comprehensive evalua-
tion process.

3.2 Setup and execution

The entire extended evaluation was conducted in a fully
remote setting with DRES [38], a system for interactive mul-
timedia retrieval evaluations. Since DRES has also been used
at the Video Browser Showdown since 2020, the API com-
munication has already been implemented for all of the three
evaluated systems. The modified v-KIS tasks were displayed
in the web-browser interface of DRES. Each task consists
of one short segment of a single video from the V3C1 or
V3C2 data sets [39] and a textual description of this clip.
The users had a maximum of 300s per task and each task is
rated with a scoring function that assigns 0 to 100 points if
a correct submission appears within the task time limit. The
score consists of 50 points for solving a task, (300 − t)/6
points based on elapsed submission time t , and a penalty for
wrong submissions x · |WS|, with x = 10 (one tenth of the
maximum number of points).
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Fig. 1 Part of speech tagging analysis of the predefined queries

3.3 Task formulation

The target segments for the visual KIS tasks were selected
following the established procedure described in [40]. While
traditionally, visual KIS queries are typically 15–20s long,
we wanted to have more short queries in this experiment.
Thus, the selected queries have amean duration of 8.2 s (stan-
dard deviation 4.2 s) and range from 2.6 to 21s.

For defining the predefined text queries to be initially used
by the participants, an attempt was made to form a sentence
with subject, predicate and object, and to add adjectives,
quantifiers, etc. when necessary for a good description. The
aim was to give a factual description of the main contents
of the scene without being too specific, i.e., not as detailed
as would be required for a textual KIS query. This should
produce a result set after the initial query that is still large
enough to use the browsing capabilities of the systems. Two
VBS experts created the queries, each starting with queries
for half of the tasks and the other reviewing and refining
them. If necessary, details of the queries were discussed and
jointly reformulated.

We performed an analysis of the predefined text queries
using part-of-speech (POS) tagging from NLTK [41], using
a coarser grouping (10 types) of the POS tags. The queries
range in length from 3 to 16 words, and the typical query
contains 3 nouns and 1–2 verbs. A plot of the POS tags is
shown in Fig. 1.

4 Analysis

During the system evaluation, each teammaintained a record
of user queries and the corresponding results for each task.
In this section, we present a comprehensive analysis of these

logs to gain a more in-depth understanding of system perfor-
mance and user-interaction during the KIS tasks.

The logs are structured in JSON format, and each log
contains details such as the team user identifier, timestamp,
query description, and a list of ranked items retrieved by the
systems for each specific query. To ensure data accuracy, we
verified the consistency and synchronization of timestamps
with the DRES local time and we filtered out records not
related to active tasks. However, it is essential to acknowl-
edge that circumstances beyond our control may have led to
incomplete logs. For instance, Visione encountered issues
recording logs of a single user in two tasks where the user did
not submit any results. Furthermore, teams logged retrieved
results up to a maximum rank of 10,000, but in certain cases,
especially when using filters, the maximum rank may be less
than 10,000 in the log files. As a result, the analysis using
these logs should be considered an estimation of the system
performance.

4.1 Overall results

Let us start with a simple binary metric, namely whether the
user was able to solve a given task within the time limit.
Of the 228 user-task pairs in total, vibro, CVHunter and
Visione users managed to solve 199, 198, and 198 tasks,
respectively. We can therefore conclude that there were no
significant differences w.r.t. binary solved tasks metric and
focus on the capability of individual tools to provide correct
answers quickly and reliably.

For this, we used the same metric as in the VBS compe-
tition, denoted as VBS score. First, we focused on results,
if all users solved the tasks independently. The mean per-
user VBS scores were 73.02, 72.58, and 73.38 for vibro,
CVHunter and Visione users (no statistically significant
differences were found). Finally, we focused on the same
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Fig. 2 Distribution of VBS scores for each system user over all the
tasks, the results for “user” = “team” are VBS scores when users of the
same system are treated as a unique team. The red line is the median
score over all the 12 users

scenario as in VBS competitions, i.e., all users of a single
tool play as a team, and the score of the fastest team member
(who found the correct solution for the task) is considered as
the team score. With these settings, the mean per-team VBS
scores were 87.85, 85.77, and 78.84 for vibro, CVHunter
and Visione. The differences were statistically significant
between vibro and Visione (p value: 0.006 w.r.t. one-sided
paired t test), and betweenCVHunter andVisione (p value:
0.049).

We also conducted a bootstrap analysis to verify the sig-
nificance of the results and to estimate the necessary study
sizes to reliably distinguish the performance of individual
approaches. In particular, we draw k tasks, 1 ≤ k ≤ 200
with repetition and calculated total per-team VBS scores for
these tasks. Then, we evaluated whether each team was bet-
ter than the other two. For each k, the task selection was
repeated 500 times, and we report the percentage of cases,
where one teamwas better than the other. Results of the boot-
strap analysis confirmed the t test values when we sampled
the same volume of tasks as in the actual volume of evaluated
tasks (i.e., k = 57). For these settings, vibrowas better than
CVHunter in 82%of cases and better thanVisione in 100%
of cases, while CVHunter was better than Visione in 95%
of cases. The minimal necessary size of the study to reliably
distinguish between vibro and Visione (w.r.t. 95% confi-
dence) was ∼ 20 tasks. In order to estimate the necessary
size of the study, where we can reliably distinguish vibro
and CVHunter, one would need to extend far beyond the
size of the conducted study. In particular, the bootstrap anal-
ysis suggests that the required study size would be ∼ 160
tasks.

4.2 Individual users versus system as a team

Figure 2 displays the distribution of VBS scores for each user
within each system, as well as the team scores computed

based on the collective performance of users within the same
system, acting as a unified team. The calculation of the team
score takes into account the time of the first correct score sub-
mission of a team member, while at the same time imposes
a penalty for all incorrect submissions of a team member
before the first correct submission. A noticeable observation
is that both vibro and CVHunter systems have a user (user
1 in both cases)who achieved significantly lower scores com-
pared to other teammembers. In the case of CVHunter, this
discrepancy can be attributed to the fact that cvhunter1 was
a novice user. As for vibro1, it appears that this user encoun-
tered difficulties in resolving the queries. For visione, the
distribution of scores among users ismore evenly distributed,
although visione2 fell slightly behind compared to its team
members. This could be due to the fact that visione2 had no
prior competition experience, despite having contributed to
the system development. Furthermore, it is worth noting that
vibro secured the first position both as a single user (vibro2)
and as a team. On the other hand, Visione achieved the sec-
ond position as a single user (visione3), but ranked third as
a team, behind CVHunter.

Figure 3 presents the difference between the cumula-
tive VBS score of each user and the average cumulative
score for each system in the competition. We can observe
that the vibro system has two users whose performance
closely approaches the average score, an outstanding “supe-
ruser” (vibro2) who significantly outperforms the average,
and another user (vibro1) who performs significantly worse
than the rest of the team. Similarly, the CVHunter sys-
tem exhibits a user (cvhunter1 who was a novice user) who
achieved a significantly lower score compared to the oth-
ers, while the overall performance of the remaining users is
relatively consistent. In contrast, theVisione system demon-
strates a more stable performance across all its users, with
only a slight divergence observed in the final queries. In par-
ticular, this deviation was most evident with visione2, the
only teammemberwith no prior competition experience. The
dotted vertical line represents the lunch break, and it is worth
noting also that the queries in the morning and afternoon ses-
sions were selected by different individuals. Interestingly, in
the afternoon session, the difference between the cumula-
tive scores of users and the average score tends to increase.
This could be attributed to the selection of more challeng-
ing queries during the session, as well as potential fatigue
experienced by the users.

See Fig. 4 for an analysis of the ranks achieved by each
user in the queries relevant to their respective teams. This
includes the number of times they ranked first within their
teamand the occurrences of no submissions.A notable obser-
vation from the figure is that vibro2 consistently ranked first
in his team and had the fewest instances of no submissions.
Furthermore, it is evident that each system has one user with
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Fig. 3 Difference of the cumulative VBS score w.r.t. the user average cumulative score

Fig. 4 Ranks of users related to their teams for each task

a higher number of no submissions compared to their team-
mates. These users are vibro1, visione2, and cvhunter1.

It is worth noting that although visione2 had the highest
number of no submissions within their team, he also ranked
first most frequently. This indicates that despite his lack of
experience in using the system, when he formulated the cor-
rect queries, he was the fastest among their team members
in finding the correct results. Moving on to Fig. 5, it presents
the same plot but considers the users as a team, with the first
user to find the correct answer being considered for each task.
We can observe that the vibro team had zero instances of
no submissions, indicating that at least one member of the
team consistently found the correct result. The CVHunter
team had a relatively low number of no submissions, while
the Visione team experienced a higher number of no sub-
missions. These findings align with the overall competition
results, where the vibro team secured the first position, fol-
lowed by CVHunter in second place, and Visione in third
place.

We also investigate the correlation between the best video
rank and the corresponding submission time for each task.
We present the results in Fig. 6, where the x-axis represents

Fig. 5 Ranks of teams for each task

Fig. 6 Best video rank versus time delta between correct submission
time and the time of the best video rank

the best rank of the searched video, while the y-axis displays
the time in seconds from the beginning of the task until the
correct submission occurred. An important aspect to note in
this plot is the presence of outliers. Under normal circum-
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stances, when a video is ranked among the top positions
(around 10), the submission time should be relatively low
(below 100s). However, it is evident that there are several
instances across all three systems where the rank was below
10, but the submission time is unexpectedly high or even
absent (indicating no submission). This discrepancy could be
attributed to various factors, such as the frame displayed in
the interface not being representative of the searched video or
the user not identifying it promptly. Furthermore, it is inter-
esting to observe that there are cases where the video was
ranked very low (beyond the 1,000th position), but the sub-
mission time remains relatively low (below 100s) in a few
instances for Visione, a couple of instances for vibro, and
once for CVHunter. In these cases, the browsing ability of
the users proved to be beneficial in quickly finding the correct
video despite its lower (initial) ranking. Overall, this figure
highlights the variability in submission time and rank, indi-
cating the influence of factors such as video representation,
user perception, and browsing capabilities in the competition
results.

Based on the analysis, we can draw several conclusions
regarding the performance of each system and its respective
teams in the competition. Vibro is probably the most effec-
tive system. The outstanding performance of the “superuser”
vibro2 played a significant role in securing the team’s first
position. However, even as a novice user, vibro4 achieved the
3rdhighest user score in the competition. In contrast,Visione
demonstrated more consistent results among its users, which
translated into a more balanced performance as a team (as
observed in Fig. 2). If a user struggled to find a specific video,
it was likely that other team members faced similar difficul-
ties. Consequently, the performance of Visione as a team is
closely aligned with the collective performance of its mem-
bers. CVHunter, on the other hand, exhibited a different
dynamic. While the individual users’ results were not par-
ticularly impressive (each user had a noticeable number of
no submissions, comparable to Visione team members as
reported in Fig. 4), the team as a whole managed to com-
pensate for these individual errors. This is evident from
the relatively low number of no submissions achieved by
the CVHunter team (see Fig. 5), ultimately securing their
second-place position. This implies that the CVHunter sys-
tem possesses sufficient flexibility to yield diverse results
from different users utilizing the system.

4.3 User-specific interaction with retrieval models

To gain insights on the user-specific interactions with their
systems, we first analyzed the individual queries that were
formulated by eachuser in order to solve the tasks anddivided
all queries into three time ranges. The individual results are
depicted in Fig. 7 and show big differences in usage-patterns
between and in-between the teams. The first time-frame is

the first 45 s of each task, since this was the range where
the pre-defined text was not allowed to be altered by the
users and had to be used as the first query for each task. The
number of completed tasks was 57, therefore the amount of
text-queries that have been formulated in this time-range is
close to this number. Discrepancies occur, since some users
had problems with their systems during a few of the tasks or
the system encountered a problem with the logging mech-
anism. Most users spent the first 45 s inspecting the initial
queries results. This is especially true for Visione. For all
four users, only a small amount of queries from other modal-
ities than text are used during this time. For the other two
systems, image-queries where used quite often, especially by
the best performing user, vibro2. The second temporal cat-
egory includes queries between 45 and 90s into each task.
This was the time that allowed users to rephrase the initial
text description and therefore textwas themost popular query
modality here across all users. Again, the only exception
is vibro2. However, both cvhunter2 and cvhunter3 also had
a large proportion of image-queries during this time range.
The last time-range includes the remaining time of the tasks,
90–300s. It can be observed that a significant number of
users shift toward query-modalities that were less frequently
employed in the earlier time ranges. For example, tempo-
ral and multimodal queries gain popularity and a lot of users
fromCVHunter and vibro rely on images as themost dom-
inant query-type. Outliers are the two users with the least
experience (Table 1) vibro4 and cvhunter1.

Next, we analyzed the performance of the systems under-
lying retrieval models and used the mean average precision
(mAP) metric as a performance measure. Since there is only
one relevant video for each task, the average precision can
simply be calculated as the reciprocal value of the rank of the
first item from the current tasks video for each query. Given
that only 10,000 items from the result lists were logged by
the systems, the mAP is a robust metric for outliers or items
that not had been logged. All but the initial text queries are
additionally affected by the users query formulation abilities.
Experience with the system might be such a factor. There-
fore, we first compare the initial text-queries performance
and the results of Table 2 show that Visiones text-query
retrieval model yields significantly higher average precision
scores across all of those queries. CVHunters superior per-
formance over vibro can be explained by the use of a better
model (ViT-L vs. ResNet50x16) and vibro’s compression
and quantization of the embeddings.

Next, we investigate the performance of the retrieval sys-
tems in hard tasks, which are defined per system individually,
specifically as tasks, where no user from the system could
solve the task solely with the initial query. We can observe
that the initial queries obtain far worse mAPs in this sce-
nario and extensive browsing would be needed to find the
relevant video. Once the 45s have passed and the users are
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Fig. 7 Query type frequencies for each individual user

Table 2 Video mAP for
pre-defined, initial text queries
from all (A) and hard tasks (H)

System Initial text (A) Initial text (H) User text (H) Image (H)

vibro 0.108/57 0.011/33 0.029/215 0.129/199

cvhunter 0.138/57 0.006/34 0.039/237 0.053/182

visione 0.183/57 0.004/40 0.024/128 0.056/28

Hard tasks where defined per system and include tasks, where no user of the respective system could find the
video with solely the initial query. The number after the slash indicates the amount of unique queries in the
respective category

allowed to reformulate the given text, the user-formulated
text queries provide considerably better, but still not suffi-
cient results. This indicates that text-to-image models like
CLIP fail to match images with text in this hard task sce-
narios. An example for such a task is “Flashing shots of a
man on a bed and in front of a wall”. Neither of the three
system could solve the task with this given query. However,
when looking at the performance of the second most popu-
lar query type, image, we can see that significantly superior
mAPs could be achieved. Especially vibro’s image retrieval
engine performs very well during the hard tasks. Possible
explanations are that due to vibro browsing capabilities it is
easier to find fitting queries and the use of a retrieval specific
imagemodel that was designed to work on visual, rather than
semantic aspects of the images.

Figure 8 shows the progression of each users mAP over
time, where the mean is calculated across all tasks. We can
observe that Visione users get a head-start for the aforemen-
tioned reasons at the beginning of the tasks but struggle to
find queries that would significantly boost the rank of the rel-
evant video afterward. On the other hand, even though vibro
and CVhunter users begin the tasks with lower mAP val-
ues, their systems are able to improve the relevant video rank
through user formulated queries more often. Even though
text-queries where not allowed up until the 45s mark, vibro2
was able to achieve the best mAP at this point and on aver-
age, more than doubled this metric compared to the starting
point of his initial query. This diagram also shows clear dif-
ferences in the interaction between users and their systems.

Fig. 8 Development of the video mAP over time for each user. Queries
from all modalities where used and the mean was calculated across
all tasks. Browsing actions like scrolling and switching views are not
included in this Figure and the mAPs are solely computed from the
logged result lists of each query

For example, given that three CVhunter users (2, 3 & 4)
achieved very similar VBS scores at the end of the compe-
tition, cvhunter3 was consistently able to find queries that
scored better mAPs compared to the other CVhunter users.

4.4 Reformulation of the pre-defined text queries

We analyze how the participants made use of the predefined
text query, and the changesmade to narrowdown the content-
set. We provide a visualization of the times of query changes
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Fig. 9 Times of text query changes and submissions per query and user: colors denote the different teams, symbols the different users (filled: text
query change, outline: submission)

and submissions per user and task in Fig. 9. First, we see that
some reformulations have taken place within the first 45 s
(where the predefined query should stay unchanged), which
is mostly due to copy/paste errors and their correction. Most
of these can be considered negligible; however, we observe
that for example including a full stop or not may impact the
result list created with CLIP. The visualization gives a good
indication of the difficulty of tasks, and the amount of text
query changes done by the different teams.

We also looked into how the text queries changed. The
most common changes of queries involve adding adjectives
or numerals (on average 0.5 per task, and quite consistent
for all teams and over working time), as well as adding con-
junctions and nouns. Here it is interesting that for vibro and
CVhunter on average 0.5 of these types of words are added
to the first modified query, which increases to on average 1.0
to the final query before submission. For Visione the aver-
age number is 0 over the working time, but with quite high
variability in terms of added/removed words between team
members and tasks.

In order to understand the trends in query reformulation
applied by different users (or influenced by the tool) we
analyze the lengths of the queries over the working time.
Figure10 shows the mean length differences (over all tasks)
of queries per user over the working time, i.e., the length
is expressed as the difference to the length of the predefined
query. Each point in the plotmeans that the query changed for
at least one task at that working time into the task. It becomes

apparent from the figure, that for Visione and CVhunter
the query lengths tend to increase for 3 out of 4 users, and stay
similar for one user. In contrast, the query lengths rather tend
to decrease for 3 out of 4 vibro users, and slightly increases
for the other one. These observations seem consistent with
those from other data, showing that Visione results hinge
more on text search, while vibro users’ success is often due
to browsing capabilities.

5 Conclusion

This post-evaluation aimed to gain insights on performance
differences between the three top-scoring teams at the inter-
active video retrieval competition VBS22. Even though the
amount of KIS tasks was largely increased in this post-
evaluation, the systems ranked in the same order, i.e., vibro
first, CVhunter second andVisione thirdwhen aggregating
the performance on a system level. Comparing the individual
users showed a slightly different picturewith twovibro users
in the top-3 (first and third) and one Visione user ranked
second, followed by two CVhunter users on fourth and
fifth place. Analyzing the user specific interactions with their
respective systems showed thatVisionemostly relies on text
queries and achieved the best text-to-image retrieval perfor-
mance across the three systems. On the other hand, vibro
and CVhunter performed a significantly larger amount of
image-to-image queries, which is especially true for themore

123



International Journal of Multimedia Information Retrieval            (2024) 13:15 Page 11 of 13    15 

Fig. 10 Relative lengths of the text queries compared to the predefined
query. Each line represents the mean of length differences at the speci-
fied time into the task working time across all tasks. For tasks that have

already been solved at a particular time, the length is the last query is
used in the mean calculation (in order to keep the number of queries
considered constant)

experienced users of the two systems.Vibro’s success at this
post-evaluation can be explained with three factors. First, the
user vibro2 showed an outstanding performance at solving
know-item-search tasks and greatly influenced vibro’s over-
all VBS score. Second, compared to the other two systems,
vibro offers more advanced browsing capabilities, which
especially helped during the 45s of each task, where the
initial query-text was not allowed to be modified. Third,
since vibro browsing mostly relies on visual embeddings of
video keyframes, the use of a model optimized for general-
purpose nearest neighbor search to extract those embeddings
has proven to be especially beneficial in hard tasks, i.e., tasks
where the CLIP-based text-queries failed to achieve good
results. Additionally, the introduction of a pre-defined ini-
tial text query helped to compare the CLIP-based retrieval
engines, and allowed to analyze the reformulation of this
text. Even though reformulation was moderate, we observed
that Visione formulated longer queries compared to the two
other teams.
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