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Abstract
Recent advancements with deep generative models have proven significant potential in the task of image synthesis, detection,
segmentation, and classification. Segmenting the medical images is considered a primary challenge in the biomedical imaging
field. There have been various GANs-based models proposed in the literature to resolve medical segmentation challenges.
Our research outcome has identified 151 papers; after the twofold screening, 138 papers are selected for the final survey.
A comprehensive survey is conducted on GANs network application to medical image segmentation, primarily focused on
various GANs-based models, performance metrics, loss function, datasets, augmentation methods, paper implementation,
and source codes. Secondly, this paper provides a detailed overview of GANs network application in different human diseases
segmentation.Weconcludeour researchwith critical discussion, limitations ofGANs, and suggestions for future directions.We
hope this survey is beneficial and increases awareness of GANs network implementations for biomedical image segmentation
tasks.

Keywords Generative adversarial network · GANs applications · GANs in medical image segmentation

1 Introduction

The medical imaging domain is widely used to gather
life-saving image data by noninvasive peering at different
human body organs [1]. With the advancement of biomedi-
cal imaging fields, the data are provided by positron emission
tomography (PET), computed tomography (CT), magnetic
resonance imaging (MRI), and a few other modalities such
as microscopy and digital pathology. The images collected
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by thesemodalities can demonstrate anatomical views of dif-
ferent human body organs. Still, it is pretty tricky for any
radiologist to identify lesions areas from provided image
data correctly. Similarly, CT scans and MRI imaging help
accurately diagnose and provide detailed information about
anatomy. These images data are provided in the 3D form
such that all lesion tissue segmentation processes required
slice-to-slice on 2D format images data. However, if medi-
cal imaging data are hand-mark by some annotation expert or
radiologist, it will takemore or less fifteenminutes per image
[2]. Therefore, the manual annotation method is expensive,
time-consuming, and challenging to scale. The time consum-
mation overhead of manually segmenting images made the
automatic methods most active in the research field.

Over the last few years, medical experts have highly
adopted automated segmentation methods for accurate clini-
cal decision-making. Automated segmentation methods can
provide the necessary evidence for any medical expert for
proper treatment planning and predicting potential high-risk
factors. Various challenges are present in the medical image
segmentation field. Medical imaging researchers often expe-
rience limited data availability issues for any specific disease
segmentation. Furthermore, the changeable shape, position,
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and size of lesion tissues create serious difficulty for the seg-
mentation methods. Another challenge is correctly locating
boundary elements that belong to the same tissue struc-
tures. Thirdly, various factors of the image capturing such
as aliasing, image sampling, reconstruction, and different
types of noises may create boundaries of the region of inter-
est ambiguous and indistinct [3]. Recently deep learning
has appeared as a revolutionary model so that many med-
ical imaging challenges, including image segmentation, are
tackled by adopting various CNNs models [4]. Deep learn-
ing models are known for outstanding performance and are
vital in medical imaging for complex decision-making [5].
These deep networks use many nonlinear transformations to
abstract given input at a multilevel and map together to pre-
dict results. Deep networks are bound to a nonlinear mapping
among input and predicted results and are fully capable of
learning the hidden features [6].

Recently, generative adversarial networks (GANs) have
been introduced as outstanding breakthroughs in deep net-
works and rapidly getting research community attention
because of their wide variety of medical imaging appli-
cations. As compared to traditional deep neural networks,
GANs are different types of deep neural networks where
two networks are trained simultaneously. Some survey and
review papers on applications of GAN to medical imag-
ing were published [7–10]. These papers consider a lot of
research details generally, which is helpful for new GANs
researchers. However, the GAN application in the biomed-
ical segmentation task was not explicitly covered in detail.
The core objective of our survey is to share a comprehen-
sive overview of GANs applications in the segmentation
of biomedical images. For data collection, we utilized the
Google scholar tool to query papers with titles that contain
("Generative adversarial network," "GANs segmentations,"
“GANs medical image segmentation”). Our research paper
collection timeline was from 2016 and March 2021. Our
search outcome has identified 151 papers, but only 138 pub-
lished papers are covered on GANs for segmentation tasks.
Most of the papers are considered from well-reputed jour-
nals, such as IEEE, Springer, Elsevier, and some related
conference papers. Also papers with good citations are
also considered from arXiv e-Print. We reviewed all papers
thoroughly and excluded such papers that are irrelevant to
biomedical imaging or GANs. To tackle the overlapping
issue, only the paper with the highest citations is considered.
A comparison of our survey with previous survey papers is
presented in Table 1.

The remainder of this survey is organized as follows. We
began with the background of GANs and structural variants
in Sect. 2. Section 3 presents imaging modalities used in
GANs studies. Section 4 provides detail of GANs segmenta-
tion for different human organs. The discussions, limitations,
and conclusion are presented in Sects. 5 and 6.

2 Background

This section discusses variousmodels ofGANs, performance
matrices, and loss function, respectively.

2.1 Generative adversarial networks (GANs)

This section aims to provide an introduction to different
GANs that we have found in medical image segmentation
papers reviewed in this research work. Table 2 shows dif-
ferent variants of GANs architecture used in existing studies
and a number of a paper published on various human organs.

GANs [11] classic architecture was proposed in 2014 that
is also known as vanilla GAN. As compared to traditional
deep neural networks, GANs are two different type of deep
neural networks where generator G and the discriminator D
train simultaneously. The basic aim of discriminator D is
to determine where a sample members to fake distribution
or real. Whereas fake samples are generated by a genera-
tor to deceive the discriminator D, A two-player min–max
game is played among two networks where one participant
tries to maximize the value function; and the second par-
ticipant tries to minimize it. In generator G, the prior input
noise is p(z), that is, usually Gaussian or uniform distribu-
tion. The visual similarity is expected between output G and
xg , with real images xr drawn from pr(x) real data images
distribution. Here, the generator G determines a nonlinear
mapping function parameterized with θg and formulated as
G(z;θg). The given input to discriminator D is a real sam-
ple or generated one. Network D obtains both xr and xg
outputs a single scalars valueO1�D(x;θd), stating the prob-
ability of whether input images are realistic or fake sample
images. Here, function D(x; θd) is the map function learned
by discriminator D and parameterized with θd. The distribu-
tion created by synthesis samples is Pg, and it is anticipated
to approximate Pr after successful training. Normally Z is
denoted as input noise, network generator is denoted as G,
and discriminator is denoted as D. Here, y1 is the output of
binary real or fake images.

The discriminatorD is focused on differentiating between
real and fake images; here, networkG especially trains to fool
network D. However, gradient info back propagates from
network D to network G, so network G updates parameters
to generate such output, which helps to fool the network D.
A mathematical intuition of network G and network D can
by illustrated as follows.

LGAN
D � max

D
Exr∼r [log D(xr )] + Exr∼g(x)[log(1 − D(xg))],

(1)

LGAN
D � max

D
Exg∼g(x)[log(1 − D(xg))], (2)
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Table 1 Our survey comparison with previous survey/review papers

Survey Coverage Years Contributions Limitations

Yi et al. [7] 2016–2018 A general survey on GANs application in image
synthesis, reconstruction, segmentation,
classification, detection, and registration

The survey covers three years of papers, and
the 2019–2021 time window is uncovered.
Furthermore, the segmentation area is not
covered thoroughly. Only 26 papers are
considered for review, which is insignificant
for the research community to get complete
insight

Sorin et al. [9] 2017–2019 A general survey on GANs application in image
synthesis, reconstruction, segmentation,
classification, detection, de noising, and registration

The survey covers three years of papers, and
the 2020–2021-time window is uncovered.
This is also a general-purpose survey, and the
segmentation topic is not taken into account
thoroughly. Only 23 papers are covered for
the review process, which is trivial for a new
researcher to get a complete overview

Our Survey 2016–2021 A state-of-the-art survey on GANs application in
medical image segmentation. To the best of ours
knowledge, no other survey covered 138
segmentation papers. This survey provides a
detailed overview of GANs application in different
human organs such as brain tumor, cardiology, liver,
retina, breast cancer, skin cancer, microscopic,
lungs, orthopedic, and multi-organ segmentation.
Furthermore, the survey focused on various
GANs-based models, performance metrics, loss
function, datasets, augmentation methods, paper
implementation, and source codes

Our survey explicitly focused on GANs
applications in medical image segmentation.
However, classification, detection, de noising,
registration areas are uncovered

It can be observed that here network D act to differenti-
ate between fake and real images as binary classification. In
case network D trains to optimality prior to next network
G, minimizing LGAN

G is equivalent to reducing JS diver-
gence among Pr and Pg as demonstrated in [11]. The required
result after the training process is that samples generated by
xg must approximate real data-distribution pr(x). In 2015,
conditional-GAN (cGAN) [12] is proposed, which includes
some extra information such as class label in image synthe-
sis, and information vector c is added to generator network
(G), and discriminator (D). Here, G is using some random
noise, denoted as Z , and prior information is denoted as C,
and both merged. The discriminatorD duty is to discriminate
information provided as C to identify fake and real images
provided by generator G quickly. Similarly, deep convolu-
tional GAN was initially presented in 2015, also known as
DCGAN [13]. In this model, FC hidden layer was removed,
and pooling layer was also replaced by adding stride con-
volutions operation on discriminator network, and fractional
stride was added on generator networkG. One another modi-
ficationwas adopting batch normalization for both generative
G and discriminativeD networks alongwith applying Leaky-
ReLU activations in all layers of the discriminative network.
However, introducing batch normalization and activations,
Leaky-ReLU does not fully resolve mode collapse issues in
the DCGAN. In Pix2pix [14], network was presented for

the image to image-based translation. Additionally, learn
mapping among input to output image and pix2pix network
contrast loss function trained the mapping. This network
has shown outstanding results in various domains of image
processing and computer vision applications. Learning a
transformation between images distributions, cycle-GAN
[15] was proposed in 2017. A cycle-consistency loss is
introduced to save input image after reverse and cycle of
translation. The matching pairs are not necessary for train-
ing purposes. The technique makes the preparation of data
simpler and extends this network for a large variety of appli-
cations. Figure 1 depicts the hierarchical presentation with
modification in the original GAN architecture.

2.2 Performancemetrics

Various performance metrics in GANs segmentation mod-
els are utilized to evaluate the different models performance.
The multiple performance measures are used to analyze train
models performance because sometimes the model outper-
forms in one performance measure, while the same model
poorly performs on another performance metric. Using per-
formance measures correctly is highly recommended that
reflect where the proposed model is trained correctly or
poorly performed on a given dataset. Table 3 shows various
performancemeasures found in this survey research. In cases,
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Table 2 Index of GANs variants for different human organs segmentation

GANs architecture Year No. of Studies Papers published on different human organs

Vanilla-GAN 2014 84 Brain:
[16–38]
Retina:
[39–54]
Microscopic:
[55–64]
Multi-Organs:
[65–71]
Liver:
[72–77]
Skin:
[78–83]

Orthopedic:
[84–87]
Cardiac:
[88–91]
Breast:
[92–95]
Lungs:
[96–98]
Kidney:
[99]
[100]

Conditional-GAN 2014 21 Cardiac:
[101–107]
Brain:
[108–114]
Microscopic:
[107, 115, 116]
Orthopedic:
[117]

Skin:
[118, 119]
Breast:
[120]
Retina:
[121]
Brain:
[111]

Cycle-GAN 2017 09 Microscopic:
[122–124]
Brain:
[125–127]

Cardiac:
[128, 129]
Multi-Organ:
[130]

Pix2Pix-GAN 2016 07 Multi-Organ:
[131]
Microscopic:
[132]
Brain:
[133, 134]

Retina:
[135]
Liver:
[136]
Bone:
[137]

Patch-GAN 2017 04 Retina:
[135, 138]
Bone:
[139]

Brain:
[140]

Wasserstein-GAN 2017 02 Breast:
[141]

Brain:
[142]

Style-GAN 2019 01 Lung:
[143]

DC-GAN 2015 01 Skin:
[144]

metrics are intended to compare segmentation results against
the ground truth images, which might be a label or mask.
Mostly all these metrics are calculated using a confusion
matrix by using four basic elements, such as true positives
(TP) rate, true negatives (TN) rate, false positives (FP) rate,
and false negatives (FN) rate. However, we share the detail
of all performance metrics in Table 3.

2.3 Loss functions

There are various loss functions available for GAN in both
generator and discriminator networks equally. We have seen
different losses proposed inGANsmodels, as shown in Table

4.The ladv function is widely used in 32 studies followed by
lbce function used in 23 different studies. Similarly, ldice func-
tion is the third widely used function in 16 different studies.
We have also noticed that lmse function is also utilized in 6
different studies followed by lmae, the function being used in
2 studies only.

3 Imagingmodalities used in GAN-based
segmentation

This section summarizes GANmodel applications in various
biomedical imaging modalities. These image modalities can
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Fig. 1 A hierarchy of different
GAN architectures with the
primary contribution of each
network

Table 3 Performance metrics used in GAN-based segmentation studies

Metric Formula Metric Formula

Specificity TN
TN+FP F-Score 2. Precision.Recall

Precision +Recall

Sensitivity TP
TP+FN Dice coefficient 2.|TP|

2.|TP|+|FN|+|FP|
Precision TP

TP+FP Recall TP
TP+FN

F1-score 2 × Precision×Recall
Precision×Recall Accuracy TP+TN

TP+FP+FN+TN

Intersection over Union |TP|
|TP+FP+FN| True positive rate TP

TP+FN

False positive rate FP
FP+TN Positive predictive value TP

TP+FN

Hausdorff surface distance Haus(P , T ) �
max

{
supp∈P1 in f t∈T 1 d(p, t),

supt∈T 1 in f p∈P1 d(t , p)

} Area under the curve AUC � ∫ 1
0 Pr|T P|(v)dv

Average surface distance ASD(X , Y ) � ∑
x∈X

miny∈Y d(x ,

y)/|X |
Mean surface distance dmean � 1

2 [d(S, Sref) + d(Sref, S)]

be categorized into MRI, CT scan, X-ray, dermoscopy, and
microscopy images. Figure 2 demonstrates the hierarchical
diagramof biomedical imagingmodalities. It shows that 48%
of studies are based on MRI modality, and 31% are based on
CT scans. Furthermore, 21% of studies are based on X-ray,
ultrasound, and mammography, respectively.

3.1 Datasets based onMRI imaging

MRI is an essential noninvasive technique that is widely used
as a brain tumor imagingmodality in various research studies.

The MRI medical imaging technique is safe even for preg-
nant females and their babies, and it never affects radiation.
But the major disadvantage of MRI images is sensitive, and
it is challenging to assess organs that involve mouth tumors.
InMRImedical imaging technique, segmentation’s common
usage is to extract different tissues to identify abnormalities
and tumor regions. From 2013 to 2018, MICCAI includes a
series of brain tumor MRI scans datasets (BraTS 2013–18).
Different brain tumor segmentation approaches and frame-
works are reported [16–23, 28, 108, 109, 112, 125, 133, 140]
that aid in improving accuracy and identifying tumors from
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X-ray MRIsUltrasounds CT Scans

Brain studies:
[16-38], [108-114],[125-
127], [133-134],[140], [142]

Heart studies:
[37],[88-90],[102],[105], 
[128],[129],[149]

Pelvic studies:
[149],[150]

Liver studies:
[72-77]

Head & Neck studies:
[66],[67],[84]

Kidney studies:
[70],[99],[130],[151] 

Heart studies:
[27],[88],[89],[101]

Prostate studies:
[145],[152]

Lungs studies:
[96],[98]

Colorectal studies:
[69]

Breast studies:
[92],[141]

Bone studies:
[84],[86],[131],[137],[139]

Osteoarthri�s studies:
[85],[117]

Lungs studies:
[64],[96-98],[131],[143], 
[148]

Medical imaging 
modali�es

Mammography

Breast studies:
[93],[94],[95],[120]

Fig. 2 Papers are classified by various biomedical imaging modalities

MRI images. ISLES (Ischemic Stroke Lesion Segmentation)
contributes datasets for biomedical segmentation, and simi-
larly IXI and NAMIC Multimodality datasets [24] are also
used in studies. Alzheimer Disease Neuroimaging Initiative
(ADNI) databases were launched in 2004 by R. Michael W.
Weiner and were financed by a public–private partnership.
The ADNI database’s central object is to design a clinical
system for prompt diagnosing of Alzheimers life-threatening
disease in the early stage. Most of the medial datasets of
ADNI areMRI and PET base images for disease assessments
utilized in studies [25, 110, 126, 134, 142]. Likewise, studies
in [24] and [26] used another dataset NAMIC Brain Multi-
modality for automatic brain segmentation. This database is
freely accessible and contains structuralMRI (sMRI) images.

3.2 Datasets based on CT scans

The CT scan is a biomedical imaging modality that made
an outstanding impact on the diagnosis of human body
assessments. CT scans are widely used in various medical
conditions in a broad rangeof biomedical applications similar
to MRI modality. CT scan requires less screening time and is
an excellent technique for abnormal coronary artery diseases
and vessel assessments than MRI imaging. However, radia-
tion exposure and contrast material cause adverse effects on
kidney function in persons having kidney problems. ISLES

challenge 2018 provides ischemic stroke lesion segmenta-
tion CT (3D) images used in studies [27]. There are various
CT scan datasets MICCAI 2017, ImageCHD, MRBrainS18,
and MM-WHS-2017 which are used in [88] and [101] for
heart segmentation. Similarly, MICCAI Grand Challenge
also provided a PROMISE12 Prostate MR Image segmen-
tation dataset utilized in [145]. The CT scan images have
achieved importance as a 3D imaging modality, and most
of the liver tumor datasets ISBI LiTS-2017, DeepLesion,
MICCAI-SLiver07, LIVER100 are based on 3D technique,
which is widely utilized in literature [72, 73, 89, 99, 130,
136]. For lung tumor segmentation, LIDC-IDRI, SARS-
COV-2 Ct-Scan, and NSCLC-Radiomics datasets have been
experimented in the research work [65, 96]. The CT (3D)
scan images also find application in kidney tumor segmen-
tation. GAN-based models [99, 130] use datasets Kidney
KiTS19 Challenge, and Kidney NIH Pancreas-CT for accu-
rate tumor segmentation. Similarly, for the spine, thorax,
head and neck, and spleen segmentation, datasets InnerEye,
2017AAPMThoracic Auto-segmentation Challenges, H&N
CT, and Spleen Data Decathlon are publicly available. These
datasets have widely experimented within the GAN models
[66, 67, 84, 130].
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3.3 Datasets based on ultrasound imaging

Ultrasound images are taken by diagnostic ultrasound, a non-
invasive technique used to capture inside body visual images.
Ultrasound is widely adopted because it is low cost, and no
side effects are reported in patients. There are a few limita-
tions with ultrasound techniques strictly linked to medical
experiments and require ensuring no air gaps between probe
andbody.DatasetBwas shared in 2012byUDIATParcTaulí,
Spain.This dataset includes 163 images ofwomenbreast can-
cer cases with resolution 760 × 570, and each image shows
more than one lesion. This dataset is also used in the study
[92]. The OASBUD dataset is collected from Baheya Hos-
pital Egypt, and it contains 100 patients’ breast ultrasound
images, 50 malignant, and 48 benign lesions.

3.4 Datasets based on X-ray imaging

X-ray (CXRs) imaging is a very affordable and commonly
used medical imaging modality. Due to low cost and easy
availability, daily thousands of CXRs are performed in var-
ious hospitals regularly. The Osteoarthritis Initiative project
is based on understanding and preventing knee osteoarthri-
tis, one of the leading disabilities in older males and females.
The OAI data are adopted in research work [117], and more
than 4,796 subjects X-ray and MRI images are available.
JSRT database contains 154 lungs nodule and 93 non-nodule
X-ray images with 2048 × 2048 resolution. These data are
utilized for segmentation purposes in the studies [97, 98,
131]. The NIH chest X-ray is another chest X-ray image
dataset experimented within the research work [98]. Mam-
mography is a low-energy X-ray-based biomedical imaging
technique to examine breast cancer diagnosis and screening.
The mammography datasets INbreast, DDSM-BCRP, CBIS-
DDSM are widely utilized in GANs [93, 120].

3.5 Datasets based on RGB imaging

In the following subsection, we focus onRGB imaging appli-
cations for GANs network. As seen in Fig. 3, these are sub-
categorized into microscopy, funduscopy, and dermoscopy.
Figure 3 demonstrates that 20 papers have been published
on fundoscopy-related studies. Fundus images are taken by
a specialized fundus camera which captures the retina, optic
disk, and macula images in 2D format. These 2D format
images are used to diagnose eye diseases and segment glau-
coma, optic disk, blood vessels, and eye retina. The publicly
available datasets DRIVE, STARE, Drishti-GS are leading
datasets that are widely used in the work of [39–49, 135,
138]. Similarly, CHASEDB1and RIM-ONE are retinal fun-
dus image databases used for segmentation [41, 44, 48–50,
138]. In research [44, 46, 48, 49, 51, 52, 111, 121, 138], few
other datasets are utilized which are Origa650, REFUGE,

DRIONS-DB, EyePACS, FGADR, and IDRiD, respectively.
Figure 3 shows that ten papers have been published on
dermoscopy-related studies. Dermoscopy is a noninvasive
techniqueperformedby instrument dermatoscope to examine
pigmented skins lessons. In the skin cancers segmentation-
related studies, ISIC2016, ISIC2017, and ISIC2018 are three
publicly available challenge datasets that are widely used in
thework of [78–82, 100, 118, 144]. ThePH2 is a small dataset
consisting of 200 skin images, including ground truth images.
Similarly, HAM10000 dataset consists of 10,015 dermato-
scopic images released to train deep learning and some
machine learning models. These datasets are used by the
following research papers [80, 81, 83, 119]. Figure 3 shows
that 14 papers are published on microscopy-related studies.
The 2018 Data Science Bowl was contributed by numerous
biological laboratories and presented by Booz Allen Hamil-
ton & Kaggle. This dataset consists of a total of 660 RGB
images and is used in the research [115]. Similarly, MIVIA,
ssTEM, SCDRBC, triple negative breast cancer (TNBC) are
microscopy datasets that are used in GAN applications [55,
116, 132]. The MICCAI challenge 2015 provided the Gland
Challenge dataset based on H&E-stained histology images.
Similarly, MICCAI 2017 shared the Digital Pathology Chal-
lenge dataset for research purpose. In the 2018 challenge, a
multi-organ nuclei segmentation challenge was conducted,
and microscopy images were provided. These challenging
datasets are followed by the subsequent researchers [55, 56].

The complete overview of various datasets used in GANs-
based studies is presented in Table 5. The dataset name, type,
target, number of samples, and downloading URLs are also
provided.

4 GAN-based segmentationmethods
for various human organs

This section will focus on the medical image segmentation
model based on GAN architecture, and studies are catego-
rized on a specific part of human anatomy. Figure 4 shows
papers published on different human organs and their share
in biomedical segmentation tasks. Tables 6, 7, 8, 9, 10,
11, 12, 13, 14 and 15 have categorized these models into
tabular form stating each model, loss function, dataset, pre-
processing method, image resolution, augmentation method,
performance measure, implementation, and available source
code link.

4.1 GANs applications in brain tumor segmentation

In medical imaging, brain MRI images and CT scans are
usually used to diagnose and monitor specific patient illness
progression and plan possible treatment.Alzheimer and brain
tumor diseases are most commonly known as the deadliest
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RGB 
Imaging

Microscopy studies:
[55-64],[107],[115], 
[116],[122]-124],[132]

Funduscopy studies: 
[39-54],[121],[135], 
[138]

Dermoscopy studies:
[78-83],[118-119],[144]

Fig. 3 Papers published in different RGB imaging

Fig. 4 The pie chart shows the distribution of papers on different human organs and a few samples of different biomedical images and their
corresponding masks

123



International Journal of Multimedia Information Retrieval (2022) 11:333–368 343

Table 5 Overview of datasets used in GANs segmentation studies

Abbrev Dataset Data Type Target Samples Data URL

D1 dHCP MRIs(3D) Brain 40 http://www.developingconnectome.org

D2 Epirmex MRIs(3D) Brain 1500 https://epipage2.inserm.fr/index.php/en

D3 BraTS 2013 MRIs(3D) Brain tumor 274/110 https://www.smir.ch/BRATS/Start2013

D4 BraTS 2014 MRIs(3D) Brain tumor 200/100 https://www.smir.ch/BRATS/Start2014

D5 BraTS 2015 MRIs(3D) Brain tumor 274/110 https://www.smir.ch/BRATS/Start2015

D6 BraTS 2017 MRIs(3D) Brain tumor 285/146 https://www.med.upenn.edu/sbia/brats2017/data.html

D7 BraTS 2018 MRIs(3D) Brain tumor 285/191 https://www.med.upenn.edu/sbia/brats2018/data.html

D8 BraTS 2019 MRIs(3D) Brain tumor 335/125 https://www.med.upenn.edu/cbica/brats2019/data.html

D9 BraTS 2020 MRIs(3D) Brain tumor 369/125/166 https://www.med.upenn.edu/cbica/brats2020/data.html

D10 ISEG 2017 MRIs(3D) WM, GM,
CSF

10/13 https://iseg2017.web.unc.edu

D11 IXI Dataset MRIs(3D) Brain 600 http://brain-development.org/ixi-dataset

D12 NAMICdatasets MRIs(3D) Brain 10 https://www.insight-journal.org/midas/collection/
view/190

D13 ISLES2018 CT(3D) Ischemicstroke 63/40 http://www.isles-challenge.org

D14 ADNI MRIs(3D) Alzheimer 1073 http://adni.loni.usc.edu/

D15 CIND,Dataset MRIs(3D) Brain tumor 5500 https://isip.bit.edu.cn/kyxz/xzlw/134492.htm

D16 2012 MICCAI MRIs(3D) Brain tumor 15/20 http://www.neuromorphometrics.com/2012_MICCAI_
Challenge_Data.html

D17 Decathlondataset MRIs(3D) Brain tumor 400 https://drive.google.com/drive/folders/
1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ--2

D18 2017 MICCAI CT/MRI Heart 20/20 https://zmiclab.github.io/projects/mmwhs/

D19 ACDC-2017 MRI (3D) Heart 30 https://drive.google.com/file/d/
0B1hiv6qJQ9b9THpSem5vQm9tYmc/view

D20 ISBI LiTS CT (2D) Liver 130/70 https://biomedicalimaging.org/2017/challenges/

D21 HVSMR-2016 MRI (3D) Heart 10/10 http://segchd.csail.mit.edu/data.html

D22 ImageCHD CT(3D) Heart 110 https://git.io/Jmo8N

D23 MRBrainS18 CT(2D) Heart 21 https://mrbrains18.isi.uu.nl/

D24 MM-WHS CT(3D) Heart 120 https://zmiclab.github.io/projects/mmwhs/

D25 DeepLesion CT(3D) Liver 10,594 https://academictorrents.com/details/
de50f4d4aa3d028944647a56199c07f5fa6030ff

D26 SLiver07 CT(3D) Liver 20/10 http://www.sliver07.org/index.php

D27 LIVER100 CT(3D) Liver 100 -

D28 REFUGE Fundus (2D) Retina 128 https://refuge.grand-challenge.org/details/

D29 Origa650 Fundus (2D) Retina 650 https://drive.google.com/drive/folders/
1VPCvVsPgrfPNIl932xgU3XC_WFLUsXJR

D30 RIM-ONE Fundus (2D) Retina 169 http://medimrg.webs.ull.es/research/retinal-imaging/
rim-one/

D31 DRIONS-DB Fundus (2D) Retina 110 https://www.idiap.ch/software/bob/docs/bob/bob.db.
drionsdb/master/index.html

D32 Drishti-GS Fundus (2D) Retina 51 https://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-
dataset2/Home.php

D33 DRIVE Photograph
(2D)

Retina 20/20 https://drive.grand-challenge.org/

D34 AV-DRIVE Photograph
(2D)

Retina 40 https://drive.grand-challenge.org/

D35 CVDG Photograph
(2D)

Retina 3119 -
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Table 5 (continued)

Abbrev Dataset Data Type Target Samples Data URL

D36 STARE Photograph
(2D)

Retina 400 https://cecas.clemson.edu/~ahoover/stare/

D37 HRF Photograph
(2D)

Retina 45 http://www5.cs.fau.de/research/data/fundus-images/

D38 CHASEDB1 Photograph
(2D)

Retina 28 https://blogs.kingston.ac.uk/retinal/chasedb1/

D39 EyePACS Photograph
(2D)

Retina 1000 https://www.kaggle.com/c/diabetic-retinopathy-
detection/data

D40 FGADR Photograph
(2D)

Retina 1842 https://csyizhou.github.io/FGADR/

D41 IDRiD Fundus (2D) Retina 516 https://idrid.grand-challenge.org/

D42 INbreast Mammography Breast 410 https://drive.google.com/file/d/19n-
p9p9C0eCQA1ybm6wkMo-bbeccT62/view

D43 DDSM-BCRP Mammography Breast 79 http://www.eng.usf.edu/cvprg/Mammography/DDSM/
BCRP/bcrp.html

D44 CBIS-DDSM Mammography Breast 753/891 https://wiki.cancerimagingarchive.net/display/Public/
CBIS-DDSM

D45 Dataset B Ultrasound Breast 163 http://www2.docm.mmu.ac.uk/STAFF/m.yap/
dataset.php

D46 OASBUD Ultrasound Breast 300 https://zenodo.org/record/545928

D47 ISIC2016 Dermoscopic Skin 900/379 https://challenge.isic-archive.com/data#2016

D48 ISIC2017 Dermoscopic Skin 2000/600 https://challenge.isic-archive.com/data#2017

D49 ISIC2018 Dermoscopic Skin 2594/1000 https://challenge.isic-archive.com/data#2018

D50 PH2 Dermoscopic Skin 200 https://www.fc.up.pt/addi/ph2%20database.html

D51 HAM10000 Dermoscopic Skin 10,015 https://www.kaggle.com/kmader/skin-cancer-mnist-
ham10000

D52 DermoFit Dermoscopic Skin 1300 https://homepages.inf.ed.ac.uk/rbf/DERMOFIT/
datasets.htm

D53 MIVIA Histology Specimen 28 https://mivia.unisa.it/datasets/

D54 KDSB Histology Nuclei cell 670 https://www.kaggle.com/c/data-science-bowl-2018

D55 H1299 Cell (2D) Live cell – –

D56 ssTEM Cell (2D) Microscopy 1 https://figshare.com/articles/dataset/Segmented_
anisotropic_ssTEM_dataset_of_neural_tissue/856713

D57 SCD RBC Cell (2D) Microscopy 314 –

D58 2015 MICCAI Histology Gland 85 https://warwick.ac.uk/fac/sci/dcs/research/tia/
glascontest/

D59 2017 MICCAI Histology Microscopy 64 http://www.miccai.org/events/challenges/

D60 2018 MICCAI Histology Microscopy 22,000 https://monuseg.grand-challenge.org/

D61 TNBC Dataset Histology Microscopy 4022 –

D62 LIDC-IDRI CT (3D) Lungs 247 https://drive.google.com/drive/folders/1HgGnMC_
0I7ClWHjLosg8i3l56VCtLjZ7

D63 JSRT Dataset X-ray Lungs 260/15 http://db.jsrt.or.jp/eng.php

D64 NIH chest Data X-ray Lungs 5000 https://nihcc.app.box.com/v/ChestXray-NIHCC

D65 OID Dataset MRI (3D) Osteoarthritis 4796 https://nda.nih.gov/oai/

D66 SARS-COV CTs(3D) Lungs 1252 https://www.kaggle.com/plameneduardo/sarscov2-
ctscan-dataset

D67 KiTS19 CTs(3D) Kidney 300 https://kits19.grand-challenge.org/home/

D68 NSCLC-Radiomics CTs(3D) Lungs 422 https://wiki.cancerimagingarchive.net/display/Public/
NSCLC-Radiomics
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Table 5 (continued)

Abbrev Dataset Data Type Target Samples Data URL

D69 InnerEye CTs(3D) Spine 302 https://www.microsoft.com/en-us/research/project/
medical-image-analysis/

D70 PROMISE12 CTs(3D) Prostate
Cancer

18,942 https://promise12.grand-challenge.org/

D71 2017 AAPM CTs(3D) Thorax 35 http://aapmchallenges.cloudapp.net/competitions/3

D72 H&N CT CTs(3D) Head and neck 48 https://wiki.cancerimagingarchive.net/display/Public/
Head-Neck-PET-CT

D73 H&N MRI MRIs(3D) Head and neck 25 https://wiki.cancerimagingarchive.net/display/Public/
Head-Neck-PET-CT

D74 Kidney: NIH CTs(3D) Kidney 50/3/13 https://wiki.cancerimagingarchive.net/display/Public/
Pancreas-CT

D75 LiverDecathlon CTs(3D) Liver 179/9/43 http://medicaldecathlon.com

D77 SpleenDecathlon CTs(3D) Spleen 30/2/8 http://medicaldecathlon.com

Table 6 Summary of the papers for brain tumor segmentation using GAN models

Model Year Loss Dataset Preprocessing
method

Resolution Augmentation Results Implementation Source code

SegSRGAN
[19]

2020 L1,
L2

D1, D2 LR image
generation

128 × 128
× 128

Contrast mod-
ification,
Gaussian
noise

DSC �
0.855

Python,
Tensorflow,
Keras

https://git.io/
JmMFs

Cycle-GAN
[125]

2020 L3 D7,
D10

Cycle-GAN
Contrast
enhance-
ment

64 × 64 ×
64

× DSC �
0.821,
0.824,
0.853

Python,
Tensorflow,
Keras

https://git.io/
JmMFW

GP-GAN
[20]

2020 L4 D4 Image
registration

64 × 64 ×
64

× DSC �
0.882

Python, Pytorch ×

SLNet [27] 2020 L3,
L4

D13 × 256 × 256 × DSC �
0.510

Python, Pytorch ×

SegAN [21] 2018 L1 D3, D5 × 240 × 240
× 15

Randomly
cropped

DSC �
0.84,
0.85

Python, Pytorch https://git.io/
JmMF4

RescueNet
[140]

2019 L1,
L5

D5, D6 Contrast
enhance-
ment

240 × 240
× 155

× DSC �
0.940,
0.946

× ×

GAN [134] 2020 L1 D14 × 1.50 × 1.50
×
1.50 mm

× AUC �
0.868

× ×

TumorGAN
[22]

2020 L6 D6 × 256 × 256 Rotate
horizontally,
vertically

DSC �
0.853,
0.806,
0.831

× ×

UG-Net [34] 2019 L3 D14,
D15

Image
registration

112 × 103
× 24

Rotation,
translation,
Gaussian
noise

DSC �
0.196

× ×

MCMT-GAN
[24]

2020 L1 D11,
D12

× 256 × 256 × DSC �
0.8619,
0.788,
0.749

× ×
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diseases in both males and females all around the world.
However,manual segmentation and identification of patholo-
gies in brain images are time-consuming and tedious jobs.
The imbalanced datasets of brain tumor images are causing
significant challenges in medical imaging, directly affect-
ing the proposed models training process. Recently, GANs
have gained momentum in the research community to syn-
thesize brain images. Rezaei et al. [108] proposed a GAN
model with i) generative, ii) discriminative, iii) and refine-
ment networks to address imbalanced dataset issues using
ensemble-based learning. A 3D projective GAN, called PAN
[29], is introduced to address the computational burden.
Attention module is also proposed to select global informa-
tion from the segmentor network. The proposed solution for
privacy restriction problems in multiple health entries uses
the AsynDGAN [16] model. The framework also focused
on train generators to collect information distribution for
discriminators and utilized synthetic samples for training
segmentation models. A framework was proposed [17] for
synthetic segmentation of FLAIRMRI images translation to
high-contrast synthetic MRI images. Few regression models
were also utilized to predict each patient test case. In MPC-
GAN-based [30] model, dense multipath UNet is used as a
generator to be regularized through the discriminator.

Moreover, discriminator and generator capture contextual
information as input images. Furthermore, the boundary loss
function is utilized to enhance the performance of the gener-
ator loss function and proposedUAGAN [31] formultimodal
un-paired medical image segmentation. Different modalities
of invariant features are captured by translation stream for
target anatomical structures. CoCa-GAN [18] is based on
3-dimensional feature learning context-aware GAN for data
synthesis. This resolves the missed modalities problem for
grading gliomas with single T1-weighted image MRI input.
Rachmadi et al. presented DEP-GAN [32] with two discrim-
inators to improve the predicting performance evaluation of
WMH small vessel disease. Using incomplete multimodal
brain images, a unified disease-image-specific deep neural
network was developed to synthesize images and diagnose
disease [126]. Vox2Vox suggested network [133] generates
realistic output images frommultichannel 3D sample images.
The adversarial training approach is incorporated with CNN-
based segmentationmethod.Also, the loss function is utilized
to improve the generator network and discrimination net-
work [26]. An unsupervised 3D adversarial neural network
is introduced [33] for brain image segmentation—moreover,
a multiconnected discriminator is suggested for optimizing
adversarial training of Deep-supGAN [110] cascade GAN
network to segmentation of bony structures from generated
CT scans of MRI images. Complementary information of
bony structureswas gathered froma combination ofCT scans
andMRI images.A software solution [19] is presented for the
reconstruction of retina 3DMRI images. Themethod uses the

multistagemodel to pay attention to filtering the unimportant
contents, and the resolution of HTC is enhanced [125]. GP-
GAN is a modified variant of classical U-Net, and a novel
loss function is presented with dice loss [20]. The proposed
approach is calleddiffusion-weighted imaging, andperfusion
parameter maps get optimum and correct image segmenta-
tion [27]. SegAM is an end-to-end GAN-based model with
a novel multiscale loss for segmentation tasks [21]. The pro-
posed network is a residual cyclic unpaired encoder and
utilizes residual and mirroring principles [140]. The method
is presented to segment the whitematter in 18F-FDGPETCT
images by employing GANs [134]. The structure of GAN
model used in this study is illustrated in Fig. 5.

The tumorGAN[22] is introduced,whichgenerates image
segmentation pairs using unpaired adversarial training. UG-
net can gain pixel-level classification of MRI images, and
GANs are utilized for training two models simultaneously
[34]. MCMT-GAN is another variant of the GAN network,
which addresses brain MRI synthesis issues in an unsu-
pervised fashion [24]. Liu et al. proposed GANReDL [35]
based on SRGAN to improve image quality. The loss func-
tion is also introduced as a feature real order derivative.
The discriminators network is trained to discriminate among
improved sources and masks images. Researchers in stud-
ies [28, 112, 113] presented GAN models, which depend
on a fully convolutional network to synthesize and seg-
ment MRI images more accurately. In research [109, 111,
114, 142], a cGAN was proposed for segmenting brain MRI
(3D) or CT scans images. Results demonstrate that proposed
works are practical for different types of brain tumor images.
The cycle-GAN-based unsurprised network proposed in var-
ious papers [25, 127], synthesized, and segmented medical
images. Results indicate that proposed approaches help in
correct segmentation of brain tissues. Few other studies are
presented based on generator and discriminator networks to
correctly segment brain 2D or 3D images. Similarly, research
presented in [23, 36–38] is based on generator and discrimi-
nator networks to correctly segment brain 2D and 3D images.

4.2 GANs applications in cardiac segmentation

In medical imaging, cardiac segmentation contributes a sig-
nificant potential in cardiac diseases, clinical monitoring,
and treatment planning. CMRI (cardiac magnetic resonance
imaging) contains details for premedication and surgical
treatments, which are beneficial for evaluating all possible
treatments. But there are various challenges in echocardiog-
raphy such as low spatial resolution, deformable appearance,
and limited annotation image availability. The authors in
[102] presented cCGAN developed bi-ventricle segment
cardiac short-axis in MRI. Traditional UNet inspires the
generator to be used for segmenting images, and a dis-
criminator network is developed to distinguish the input
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Fig. 5 Segmentation map generation using the adversarial network. This figure is reproduced from paper [134]

Fig. 6 The RNN-GAN architecture is based on two generator and discriminator networks. This figure is reproduced from paper [89]

image of a ground truth image. GAN model is utilized
to learn the UNet feature representation for the segmenta-
tion process. The proposed U-Net-GAN [128] presents an
annotation-free solution for the medical segmentation prob-
lem. From the latent space factorization based on cycles
consistency principle, a method [129] is utilized in semi-
supervised myocardial segmentation. In work of Xu et al.
[90], multitask GAN is proposed as contract-free to clini-
cally segment and quantify MIs concurrently. The method
has achieved 96.46% accuracy for classification. VoxelAt-
las GAN [103] was suggested for 3-D LV segmentation on
3-D echocardiography. This network is consisting of voxel

to voxel-based cGAN and adds atlas into an end-to-end
improvement of the framework. The results show that this
proposed framework has great importance for clinical appli-
cations. Similarly, cGAN[104] is used to predict deformation
from CMR frames, with an outstanding result of accuracy
in realistic prediction. For automatically whole heart and
great vessel segmenting using CMR images, a context-aware
cGAN is presented by research [105]. Additionally, cascade
leverage transfer learning is introduced to address gradi-
ent vanishing problems and enhance the training process.
Dou et al. [88] presented an adversarial learning-based un-
supervised framework for the cross-modality segmentations.
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Moreover, the pixel-wise prediction GAN model consists of
dilated FCN. Dong et al. [91] came upwith amethod that can
efficiently overcome 3D-echocardiography issues, complex
anatomical environment, and high dimensionality in data.
Atla’s prior knowledge is integrated with CNN for the 3D
LV segmentation task. Furthermore, a deep atlas network can
be trained with limited availability of annotated images. The
experimental dataset was acquired privately to demonstrate
the significance of the presented framework. The proposed
PSCGAN [106] is CA-Free, synthesizes LGE equivalent
images while segmenting all diagnostic tissue from MRI
scans. Furthermore, the proposed framework offers three
stages and divide-conquer approach for training generated
images and segmenting given images. The network runs for
180 subjects, and results have shown that PSCGAN could be
used as an effective clinical application for the standardiza-
tion f IHDdiagnosis. Teng et al. [101] is called few-shotGAN
leveraging transfer learning and echocardiography transla-
tion. Two-parents network U2S and S2U are trained and
assembled for the transfer learning process. Pre-knowledge
shifted into targeted networks. The proposed work gains
interactive translation among sketch images and ultrasound
images with shot annotated data. The proposed contrast-free
method DSTGANs [107] automatically segments and quan-
tifies cine MRI images. The experiments are demonstrated
on 165 subject cases and achieve a pixel classification accu-
racy of 96.98%. Rezaei et al. [89] proposed an RNN-GAN
network and used it to mitigate the imbalance data challenge.
The architecture is basedon the recurrent generator and recur-
rent discriminator. Furthermore, categorical accuracy LOS
is merged with the adversarial loss to train the RNN-GAN.
Also, the proposed work also validated abdomen CT scans
and gained good results on LITs benchmarks. The struc-
ture of the GAN model used in this research is illustrated
in Fig. 6.

4.3 GANs applications in liver tumor segmentation

TheWHOreports 2017 revealed that liver cancer had become
second most common malignant tumor, the leading cause
of mortality globally [74]. The prevention and treatment of
liver diseases are active research topics worldwide. There-
fore, liver lesions share essential information regarding the
initial treatment plan to improve the patient recovery pro-
cess. Nowadays, various researchers have proposed different
liver segmentation approaches and frameworks based on CT
images to detect lesions in the early stages of such cancers.
Frid Adar et al. [75] presented a GAN-oriented augment-
ing data method used against a limited dataset to increase
the medical images. This experiment is tested on three cat-
egories of a liver lesion, such as cysts, metastases, and
hemangiomas, to improve classification performance using
CNN networks. A multiscale GAN network [136] is utilized

for liver segmentation using weighted loss function. Fur-
thermore, pix2pix GAN is based on DeepLabv3 to achieve
semantic features. In liver appearance, fuzzy boundary, com-
plex background, and appearance create a challenging task
for the research community. A network called DI2IN pro-
poses [72] liver segmentation based on encoder and decoder
modules incorporating multilevel feature combination and
deep supervision. A low-cost and safe clinical tool is sug-
gested using Radiomics-guided GAN [76] to segment liver
lesions. This network also learns mapping relations between
contrast and no-contrast images. Results demonstrate that
the liver segmentation method is the most useful tool for
clinical experts. Another research work [77] presented a
semi-supervised-basedGAN architecture for liver segmenta-
tion using CT images. In the training process, non-annotated
data are used to reduce annotated data requirements. In addi-
tion, Bayesian-based loss function is adopted to include prior
and likelihood. Sun et al.presented an end-to-endMM-GAN-
based framework [73] to translate label maps to 3D MRI
images. In detailed experiments, both liver and brain images
are synthesized to increase the data volume.

4.4 GANs applications in retina diseases
segmentation

Diabetic retinopathy and GLAUCOMA are two leading eye
diseases that cause severe damage to the eyes blood ves-
sels and ultimate vision loss. Therefore, early diagnosis
and screening are essential to reduce permanent blindness
risks. Research studies based on retinal vessel segmenta-
tion have highly employed deep learning-based models. A
GANs-oriented semi-supervised network is proposed for
the semantic segmentation task. Compared with traditional
CNN networks, proposed GAN training process is more
effective [39]. The residual learning concept is applied to
improve architecture built upon FCNs models. Moreover,
adversarial training improves the segmentation results—a
mapping among retinal and segmentation maps using FCN
and GAN [50]. Wu et al. [40] presented a U-GAN improve-
ment model based upon GAN incorporated with classical
U-Net architecture, including densely connect convolutional
and attention gates in the generator network. A novel label
refinement approach was proposed [41] based on iterative
GAN. This network trains on low-quality patches and high-
quality patches with some noisy vessel labels. Tu et al.
proposed [42] WGAN-GP-based encoder and decoder net-
works that consist of dilated residual layer and pyramid
pooling network to address training instability. Tjio et al.[43]
presented MuGAN consisting of multi discriminators that
contain receptive fields sensitive to various scales. And dis-
criminators play the role of attention to multi scale patterns.
Edge detector HEDNet [121] was used for the segmen-
tation task of the diabetic retinopathy dataset. Also, the
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Fig. 7 The framework of RetinaGAN for accurate vessel segmentation. This figure is reproduced from paper [46]

model is trained to reduce loss and optimized discrimina-
tor classifying loss. A conditional-GAN [51] is used for
segmentation, which improves the overall performance, and
reduces the overfitting problem with a minimum learning
rate. AMD-GAN [53] uses an attention encoder mechanism
and multibranch structure for the detection of fundus dis-
ease images. cGAN [138] is trained for segmentation tasks
such that pre-processing and image enchantment is applied.
Texture features use the indices of taxonomic diversity M-
GAN [44]. Discriminator based on U-Net with few short
connections and middle Conv layer replace with a dense
connection block [45]. A GAN [46] model is employed for
thin vessel segmentation of the retina; performance is better
than classical U-Net network. The architecture of the GAN
model used in this study is shown in Fig. 7. GL-Net [47]
is based on DCNN, which is used to segment optic disk
and cup. VGG16 is used as a feature extraction to reduce
the down sampling factor. SEGAN [48] and MSFRB mod-
els are applied to enhance the performance of retina vessel
segmentation. Their proposed model [54] is useful for high-
resolution DR images, and synthesized images are used for
further data augmentation process. GAN is combined with
a topological structure to reduce the loss and enhance con-
nectivity [52]. To precisely segment the optic cup and disk, a
patch-based output space adversarial framework is applied.
[49]. Few other studies [46, 135] proposed GAN-basedmod-
els, and results are evaluated on fundoscopic datasets such
as DRIVE and STARE.

4.5 GANs applications in breast cancer
segmentation

Breast cancer is the deadliest disease in young females all
around the world. In the USA, 268,600 females are diag-
nosedwith breast cancers, and41,760mortalities are reported
[146, 147]. The female survival rate strongly relies on early
diagnosis to prevent breast cancer risks. Mammography is

an inexpensive primary breast cancer screening method for
female breast cancer diagnosis, leading to breast cancer
detection. Breast tumor segmentation remains challenging
because of tumor variability in shape, size, texture, and cor-
rect localization.

Recently, various studies have been proposed to syn-
thesize and segment breast tumors and improve prediction
accuracy. Muli-FCN [94] proposed dilated convolution to
partial convolution to reduce the loss of pixels. A generative
adversarial network is adopted to train models to segment
images correctly. The proposed model enhanced mammog-
raphy segmentation’s overall accuracy and achieved a dice
score of 91.15% and 91.8%. Singh et al. [120] presented
cGAN is used to segment breast tumor ROI, and then clas-
sified binary mask using the convolutional network-based
descriptor. GAN networks learn to identify between fake
and real images. Additionally, the GAN network is also
encored to create ground truth images as possible. In the
classification process, the CNN model generated ground
truth into four parts: lobular, oval, irregular, and round.
Overall 80% accuracy is achieved, higher than other pre-
viously proposed methods. A semi-supervised GAN-based
model consists of the BUS-S network for segmenting image
and the BUS-E network to evaluate the network’s perfor-
mance [92]. Thismethod extracts denselymulti scale features
vector to assist the variance individually of breast lesions.
BUS-GAN achieves higher performance in the segmentation
process by BUS-E network, which provides direct guides
to the second network BUS-S, to produce more realistic
segmentation maps. Results reflect that the proposed GAN
network achieves superior accuracy on both private and
public datasets. Ma et al. [95] suggested an automated GAN-
based deep learning method to determine the FGT region in
MRI-based images. As compared with classic U-Net archi-
tecture, the proposed GAN identifies the FGT region in MRI
more accurately andproduces accurate results.AnovelRDA-
UNET-WGAN [141] method was proposed for breast cancer
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images and adversarial training to generate realistic tumor
masks that are similar to ground truth images. To segment,
the image residual dilated attention gate is used in the U-Net
model, which acts as a generator. However, a Conv network
is used as a classifier to act as a discriminator. Zhu et al. [93]
suggested FCN-CRF network based upon end-to-end adver-
sarial network for breast mass segmentation. Furthermore,
mass distribution depends on pixel position, fully convolu-
tional network merge with position priori. Experiments are
performed on two publicly available datasets INbreast and
DDSMBCRP.

4.6 GANs applications in skin lesion segmentation

According to facts, malignant melanoma is a fast-growing
cancer type worldwide, and the death rate has increased
dramatically. A cancer report published by the WHO has
revealed that 1.04 melanoma cases were recorded in 2018. It
is more important to timely diagnose such cancers because
the survival of patients with melanoma within five years
is lesser than 15%; however, rapid melanin is greater than
six times. Dermatologists use the determoscopy procedure
to monitor and magnify skin pigmentation diseases. How-
ever, this treatment is more time-consuming and highly
required expertise. The advancement of deep learning mod-
els in computer vision systems provides an essential tool
for dermatologists to detect skin-related cancers more accu-
rately.

The skin lesion features are learned by stacked adver-
sarial learning. Learned features extend feature diversity to
FCN as training data [100]. The leveraging of GANs net-
work is introduced for the skin lesion segmentation process.
The lesion samples are synthesized using the FCN network,
a CNN for discriminating between real and syntactic images
[83]. Lei et al. [78] introduced DAGAN integrated UNet-
SDC module similar to the UNet encoder and decoder and
used a dual discrimination module. The proposed network
is trained on ISIC challenge datasets 2016–17 and 2018.
The structure of the GAN model used in this study is illus-
trated in Fig. 8. Sarkera et al.[79] came upwith integrated 1D
kernel factorized networks, aggregation, multiscale position,
and channel-based attention mechanisms with the classical
GAN architecture. As compared with previously proposed
models, MobileGAN has 2.35 million trainable parameters.
The results are assessed on the skin challenge dataset ISBI
2017–18. TU et al. [80]method is based on the dense residual
module and adversarial-based learning, which rely on CNN
architecture. Furthermore, EPE and multiscale loss func-
tions were adopted for deep supervision to improve fuzzy
boundaries in skin lesion images and make the segmentation
process more stable. Peng et al. [81] presented a network
consisting on the classical UNetmodel, and the discriminator
module is linkedwith a fewconvolutional layers ofCNN.The

proposed architecture was tested on two public datasets PH2
and ISBI 2016 challenge datasets. Pollastri et al. [144] pro-
posed two GAN-based networks, which are called DCGAN
and LAPGAN, respectively. The core concept is to produce
skin lesion images and segmentation masks using the pro-
posed GANs architecture. Ding et al.[118] present a method
for synthesis dermoscopy images to tackle data limitation
issues. The cGAN is used for image-to-image translation
to account for prior label mapping as source input to cre-
ate new dermoscopy synthesis images. Furthermore, feature
matching loss is proposed to enhance the generated image
quality.

4.7 GANs applications in microscopic segmentation

Histopathology plays a crucial role in many clinic decision-
making and disease-identifying processes. Different cell
segmenting models have been proposed for images from
light-sheet imaging and electron microscopy in the past
few years. Xu et al. [122] proposed cycle-GAN to con-
vert H&E-stained to IHC-stained images, supporting fake
IHC on the same slide. Moreover, a limited data sample
is required, but results are generated pixel-wise. Further-
more, two-loss functions are adopted to improve transla-
tion accuracy. Label pathology images are expensive to
analyze and time-consuming as well. A consistent cycle-
GAN [123] is presented to tackle this problem based on
an unsupervised segmentation approach for segmentation
histopathology images. A self-supervision GAN model [57]
is used for segmentation without manual annotation images.
Then coarse segmentation is obtained using the classi-
cal segmentation method. Experiments are performed on
red blood cells and microscope images. Results demon-
strate that annotation free method achieved considerable
improvement as compared to classical methods. Tsuda et al.
[132] suggested a pix2pix variant of GAN used for cell
image segmentation. Moreover, multiple GANs are adopted
with different roles, and results are more accurate than
other previously proposed methods. An end-to-end train-
able model was proposed [124] that combines segmentation
tumor epithelium on PDL1 while using unpaired image to
image translation among CK and PDL1. Majurski et al.
[58] introduced a cell object representation as an abstract
approach.

The unsupervised learn representation feeds to a tradi-
tional CNN segmentation network. Furthermore, transfer
learning is used incorporated with the COCO dataset, includ-
ing semantic segmentation. Research in the present network
[59] is based on CNN and adversarial loss function to seg-
ment microcopy cells. Wang et al. [60] deep learning-based
model is presented with an adversarial training approach to
resolving the object contour segmentation problem. Genera-
tor part is replaced with FCN while discriminator is utilized
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Fig. 8 The flowchart shows the GAN-based UNet-SCDC model. This figure is reproduced from paper [78]

for the adversarial training process. In a study [61], image
to image, a translation method is proposed to synthesize
fake samples from real sample images. The fake images
are combined with original images to generate multichannel
images. HEp-2 cells are essential for detecting antinuclear
auto antibodies in human autoimmune disease. These cells
have multiple patterns and shapes. For the accurate seg-
mentation of HEp-2 dataset images, novel cGAN is adopted
[115]. The accurate segmentation of cell nuclei images lim-
ited annotated data samples as another challenge. To address
this challenge, Method [116] is based on the data image
augmentation task, and corresponding ground truth is also
produced. Guo et al.[62] stated that transfer learning knowl-
edge is incorporated with the adversarial-based network for
microcopy segmentation. The results reflect that the pre-
sented model is sufficient to develop a segmentation solution
for new modalities. Zhang et al. [56] suggested a DAN
model for gland segmentation and achieved good results on
un-annotated and annotated images. Basically, the proposed
framework consists of a segmentation architecture and eval-
uation network to review network segmentation quality. A
GAN-based model [63] is suggested with multiple feature
extraction layers for accurate segment spheroids. Results are
qualitatively and quantitatively evaluated against segmenta-
tion datasets. Gong et al. [55] used Style Consistent GAN
for the nuclei segmentation task. Furthermore, the model is
used to segment real and fake nuclei images, which bene-
fits the generator part to boost segmentation accuracy and
performance.

4.8 GANs applications in lungs diseases
segmentation

There is considerable research work based on CXR image
analysis for lungs diseases diagnosis. Besides, lung cancer
is another severe type of cancer, with around 1.7 million
death reported worldwide in 2018. The lung cancer sur-
vival rate is 10–17%, and the early diagnosed five-year

survival rate increased to 70% [148]. Computerized tomog-
raphy (CT scans) is another widely practiced modality for
clinical diagnosis and treatment planning. A proposed Dec-
GAN [64] automatically decomposed X-ray images but with
un pair provided data. Furthermore, depending on existing
CT anatomy information, X-ray data are separated into dif-
ferent components. The efficiency of the model is evaluated
by comparing it with other states of art models. LGAN [96] is
a novel lung segmentation schema to segment the CT dataset,
which includes 220 scan images.Moreover, the proposed net-
work can also be employed for different modalities of image
segmentation. A style-based GAN is used with randomly
selected styles for data augmentation of given LIDC-IDRI
datasets. Results demonstrate that the synthesized lung nod-
ule samples are realistic and help a more accurate nodule
segmentation method [143]. The SCAN model is presented
to segment lung and heart regions by utilizing CXR datasets.
A critic network is employed to learn structures in provided
masks to differentiate between ground truth and synthesized
images [97]. The researcher in [98] studied multi-organ seg-
mentation in an unsupervised manner. The synthetic label is
taken asDRR image input andproduces segmentation results.
Five hundred chest X-ray images were acquired from the
NIH-dataset for detailed experiments. Cycle-GAN network
is used to perform image style transfer and develop a module
to segment human multiple organs concurrently. The struc-
ture of GAN-based framework is illustrated in Fig. 9. The
proposed network [131] is based on a cGAN. A cGAN is
used on the pix2pix network and extends to a novel image-
to-image network. Furthermore, dilated conv is utilized to
enhance the performance and receptive fields. The JSRT-
chest X-ray dataset is used for experiments, and results are
compared with previously proposed methods.
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Fig. 9 Overview of the task-oriented generative model framework. This figure is reproduced from paper [98]

4.9 GANs applications in orthopedic diseases
segmentation

Orthopedic diseases are the most common in older adults,
which causes physical disability. The pain and symptoms
cause a severe effect on older adults lifestyles. But early
treatment helps the physician to diagnose and slow down
the progression process properly. Several CNN models have
been proposed to classify and detect orthopedic disease in
the last few decades. A butterfly-shaped GAN network [84]
merges the information across reformations and incorporates
energy-based adversarial training. The proposed network
without post-processing outperformed as compared with
other models. Alsinan et al. [139] developed a GAN-based
network that produces synthetic B-mode ultrasound images
and performs segmentation for the bone surface mask in real
time. Besides, two conv blocks are termed as self-attention
and self-projection blocks. In a clinical setting, fully auto-
mated tissue segmenting is an important process to translate
MRI images quantitatively. A hybrid approach is proposed
by combining CGAN and U-Net architecture to perform
segmentation on medical images [117]. Human spinal struc-
ture analysis remains laborious for clinical assessments of
MRI images to identify an abnormality of pathological fac-
tors. Spine-GAN [85] is another variant of classical GAN
proposed to address the big changes and variability of com-
plex spinal structures, an autoencoder block that is efficient
enough to obtain semantic task-aware representation. For
osteolytic bone tumor surgery, accurate cystic bone lesion
localization is the most critical process. Zaman et al. [137]
presented a multiple snapshot method to mitigate the uni-
modal deterministic output challenges in the Pix-2-Pixmodel
without utilizing any deep and complex network. Acous-
tic bone shadow is considered an essential artifact utilized
to determine bone boundaries’ appearance in ultrasound
images. In this regard, Alsinan et al. [86] presented a GAN
model that is used to accurately segment bone shadow in the
biomedical image.

4.10 GANs applications in multi-organ
segmentation

An sMRI-adid automatic segmentation method is proposed
formulti-organ segmentation. To estimate sMRI images from
CT, a cycle-GAN is employed. DA-UNet is trained on sMRI
images for auto-segmentation of pelvic CT images [149]. A
novel STRAINet [150] with adversarial learning is presented
to segment the pelvic MRI images jointly. Furthermore, a
stochastic residual approach is adopted to tackle the opti-
mization issues of FCN networks. An adversarial confidence
learning-based framework [151] is adopted for a better image
segmentation task. Additionally, fully convolutional GAN is
used for confidence learning to contribute region and voxel-
wise confidence details for the synthesis network. In MRI
images, fiducial markers display as tiny-signal voids and
are usually challenged to localized in images. The proposed
approach relies on deep learning to automatically detect tiny-
signal fiducial features in scan images [152]. Segmenting
the prostate accurately by using MRI images is a challeng-
ing research area in prostate cancer diagnosis. In research
[145], a fully convolutional generation model of densely
connected blocks and a critic model is combined with mul-
tiscale feature extraction. Qu et al. proposed TDGAN [87]
training for multi-organ segmentation to allow the generator
to learn privately and temporarily introduced discriminators
from multidata centers. Furthermore, two-loss functions are
proposed as digesting and remaindering loss functions to bal-
ance between memorizing and distribution.

In research [66], a deep learning model is introduced for
radiotherapy treatment planning using automatic multiple
thoracic OARs on the chest CT scans. UNet-GAN is a U-
Net and GAN network hybrid, which can concurrently train
a set of UNet as generators, and FCNs models as discrim-
inators. Because hand contouring is a time-consuming and
arduous activity, multi-organ segmentation of the head and
neck is essential for the first treatment plan. Furthermore, a
supervised-based FCN called Dense-Net is used to perform
segmentation for voxel-wise prediction [67]. Deep learning
models require extensive biomedical imaging data to train the
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model correctly. Recent researchers also employ adversarial
networks to generate synthesis images to increase medical
data size. In this research, cycle-GAN [130] is used for aug-
menting data techniques to increase the data size. Sivanesan
et al. [82] presented an unsupervised framework for medical
semantic segmentation. The GAN model is trained to con-
vert simple edge diagrams into synthetic medical images and
develop a dataset to train themodel. Kidney tumor segmenta-
tion is another important research field for quantifying tumor
indices and helping medical experts with tumor therapy
planning.MB-FSGAN [68] is presented for concurrent quan-
tification and the segmentation of kidney tumors in CT scans.
This network accurately segments and quantifies tumors of
kidney diseases by utilizing combined learning incorporat-
ing adversarial learning. Zhang et al. [69] came up with a
colorectal tumor segmenting method to diagnose colorectal
cancers. The proposed LAGANmodel excelled using proba-
bilistic maps and their respective masks. Learning enhances
the pixel-wise label assignment and improves refinement.
The diameter of the tumor, cross-sectional area, perimeter,
and center-point coordinates are crucial for treatment plan-
ning anddiagnosing. For renal tumor estimation,Mt-UcGAN
[70] is a joint segmentation and quantization of uncertainty.
In Photoacoustic computed tomography (PACT), immediate
image reconstruction is considered a serious challenge. In
this regard, Ki-GAN [71] is presented to develop a primary
PA pressure of vessels. Results indicate that the proposed
model performs well-sampled images.

5 Discussions

This survey paper shows a sudden spike in GAN applica-
tions in the biomedical segmentation domain. More than
138 papers are reviewed that are purely based on medi-
cal images segmentation using different GANs networks. It
is evident that GANs are achieving significant attention in
the biomedical imaging from 2016–2021. After reviewing
several research papers, we hope to share detailed informa-
tion regarding developing a better GAN for a biomedical
image segmentation. Successful training of segmentation
models requires a huge amount of label images. Some of
the segmentation networks used in the evaluated studies use
local datasets (publicly inaccessible datasets), limiting their
reusability and reachability. Table 5 summarizes the most
extensively used publicly available datasets to develop a
broadly approved solution. These benchmark datasets assist
the research community in validating current performance
and suggesting enhancements. We have also observed that
each modality required a different approach or technique
to tackle the corresponding challenges. The preliminary
results show that complex variation in targeted images of

brain, lungs, skin, and retina organs requires different mech-
anisms to integrate with the GAN to learn complex structures
and patterns. Furthermore, noise factor in different imag-
ing modalities adds another challenge to proposing a unique
solution for different segmentation methods. But data label-
ing and annotations are considered expensive in biomedical
imaging [2]. Because of the lack of data availability, deep
learning model usually suffers data imbalance issues due to
the rare nature of pathologies texture, shape, and color fea-
tures [5]. GANs are unsupervised learningmodels that do not
require label data and can be trained using unlabeled datasets.
GANs are fully capable of generating realistic-looking fake
images and increasing data quantity and lower cost. Most
studies use a single GANmodel as a data augmentation tech-
nique to increase the availability of training datasets in the
same imagingmodality. GANs-based augmentation enlarges
dataset images and helps in semi-supervised and unsuper-
vised training. Furthermore, cycle-GAN models are widely
used as translators between different modalities and signifi-
cantly contribute to cross-modality segmentation tasks [125].
Thesemodels can learn internal, messy, and complicated rep-
resentation and distribution of dataset [126, 127]. Learning
texture, shape, and color features pattern in deep learning
contributes to detecting various diseases. These networks
are based on adversarial learning, which is the most state-
of-the-art architecture to extract essential information from
provided datasets that classical pix-wise losses fail to hold.
This survey found that 48% of studies are based on MRI
modality, 31% are based on CT scan modality, and various
studies are most frequently experimented with brain tumor
segmentation. Table 2 shows that 65% of GANs models are
basedon the classical vanilla-GANmodel.Conditional-GAN
and cycle-GAN are also popular, and their share is 16% and
7% in all proposed models. The rest of Pix2Pix, Patch-GAN,
Style-GAN, and DCGAN is also utilized, but their share is
around 5–1% only. Most research papers shared their model
implementation source code for other researchers to repro-
duce the model. And most of the time, these codes help
new researchers reduce their effort to start code from scratch
level. The python-based libraries like TensorFlow,Keras, and
PyTorch are most famous in GANs models that can pro-
vide an efficient way to train models on different datasets.
According to our findings, 79 papers did not reveal their pro-
gramming language or libraries. However, 35 papers used
TensorFlow, andKeras libraries to implement GANsmodels.
Rest of 23 papers used PyTorch library to train and imple-
ment models. Majorities of studies are based on open-source
Python frameworks and libraries; only 2 studies are imple-
mented in licensed software MATLAB.
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Fig. 10 Different modalities-based challenges involved in biomedical image segmentation

5.1 Limitations of GANs

In our presented survey, we identify a few major limitations
of GANs that may be obstacles to the biomedical research
community’s acceptance. The unavailability of a large medi-
cal dataset has been a huge barrier to the use of GANs-based
models in biomedical images [75]. In the healthcare domain,
clinician trust is a big challenge for any new advancements;
fake data synthesis by GANs provides some comfort for the
research community. In a study [7], clinical usage of artificial
intelligence in medical imaging is still debated. When GANs
are utilized for the clinical task, the big challenge is that
they may synthesize false information. The deep biomedical
models that train on fake images also raise data credibility
questions. Another research [9] shows that GANs can easily
fool radiologists, and it is quite challenging to determine real
and fake images. In medical imaging, most research studies
are performed on 2-D and 3-D images, but there is still a chal-
lenging task to use GANs power for 4-D-based images [24].
In studies, separate GANs are trained for each class, which
increases complexity. However, generating multiclass sam-
ples would be better to reduce complexity overheads [75].
Despite GANs-based networks performing well for medi-
cal image segmentation tasks, there are different challenges
involved, as shown in Fig. 10 with modality-based chal-
lenges, for deploying the real-world implication of GANs.
The performance of GANs is also affected by low-quality
imaging caused by various artifacts and noises, where noise
may affect useful image features, while artifacts add irrele-
vant features with complex patterns. However, it is an open
challenge for the research community to propose GANs that
de noise and help in preprocessing medical imaging data to
reduce the presence of artifacts and noises from images.

The training aimofGANsnetwork ismostly considered as
saddle point optimization that gradient-based methods could
resolve. The other problem is that generator and discrimina-
tor networks are trained fromscratch to converge together [8].

There is uncertainty of balance among training of discrim-
inator D and generator G with the JS divergence. It mostly
leads towards better performance of discriminator as oppo-
site to generator network. Consequently, one network maybe
become more powerful to classify real and fake samples eas-
ily, So, if Discriminator D becomes stronger as compared to
generator G, thus gradient ofD reaches zero, and it turns into
ineffectual in adversarial learning of generatorG [7].Another
common problem is that generator produces a few set of
repetitive mage samples because of the focus on few finite
modes of true data distribution. The other limitation ofGANs
is convergence issues such as mode collapse. This problem
happens when the generator network learns to synthesize a
limited heterogeneity of images out of various modes obtain-
able in the training dataset. In biomedical imaging, where the
imagemodes are not explicit, identifying such uncertain con-
ditions generates unrealistic results that could be an obstacle
for researchers. Sometimes discriminators perform so well,
and the generator fails because of the gradient vanishing
problem [9]. It means discriminators stop sharing important
information for the generator to process by learning new pat-
terns and textures from input images. Traditional pixel-wise
matrices use ground truth images to evaluate performance.
So, the researcher must carefully develop data flow and loss
functions to tackle non-convergence and model collapsing
issues. But most of the time, GANs dataset images do not
have any ground truth images in the case of unsupervised
models. To reduce the training errors ofGANs and to improve
the network convergence, the optimization of loss function is
the key challenge in current studies [98]. The training process
of GANs model is another issue, powerful GPU hardware is
essential to train a considerable amount of image data, and
these systems are costly to afford [79]. Compared with tra-
ditional CNN models, the GAN-based model is based on
generator and discriminator networks, so two networks train
simultaneously and need a lot of time to train the network
properly. Most of the GANs-based networks use small size
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of input images like 64, or 128-pixels images, which may
also cause distinctive information loss from medical images
[19]. When images size is increased to 256, and 512 resolu-
tions, it may also require huge training time and extensively
powerful GPUs power.

6 Conclusion

GANs have emerged as a hot research area in medical imag-
ing due to their image synthesis power and success rate
in many computers vision-related challenges such as seg-
mentation, image construction, and registration. Following
this context, different GANs are explored, covering develop-
ments and advancements in biomedical image segmentation
tasks. GANs network development incurred unique chal-
lenges in medical imaging modalities. According to our
findings Vanilla-GAN, conditional-GAN and their modified
variants are widely used in different medical imaging seg-
mentation tasks. We have also noticed that MRI and CT
scans imaging modalities are widely repeated in GANs-
based studies. For new researchers, there is huge potential
to explore breast tumors, pelvic segmentation, bone segmen-
tation, and colorectal tumor segmentation for future work.
Furthermore, brain tumor segmentation is hot research area
in GANs-based studies. Most of studies utilized adversarial
loss, binary cross-entropy, and dice loss function to com-
pute loss of generator and discriminator networks. GANs
suffer from un-interpretability and low repeatability as other
traditional CNNmodels. It could be a challenge to their appli-
cation in the biomedical segmentation task. The solution to
these challenges will provide a new direction for developing
effective GANs-based networks. Because of the great util-
ity and promising results of GANs variants, it is expected
that they will be widely used to handle a variety of tough
challenges in biomedical image segmentation for the devel-
opment of real-world computer-aided diagnosis systems.
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