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Abstract
Image classification systems have been found vulnerable to adversarial attack, which is imperceptible to human but can easily
fool deep neural networks. Recent researches indicate that regularizing the network by introducing randomness could greatly
improve the model’s robustness against adversarial attack, but the randomness module would normally involve complex
calculations and numerous additional parameters and seriously affect the model performance on clean data. In this paper, we
propose a feature matching module to regularize the network. Specifically, our model learns a feature vector for each category
and imposes additional restrictions on image features. Then, the similarity between image features and category features
is used as the basis for classification. Our method does not introduce any additional network parameters than undefended
model and can be easily integrated into any neural network. Experiments on the CIFAR10 and SVHN datasets highlight
that our proposed module can effectively improve both clean data and perturbed data accuracy in comparison with the state-
of-the-art defense methods and outperform the L2P method by 6.3%, 24% on clean and perturbed data, respectively, using
ResNet-V2(18) architecture.

Keywords Feature matching · Deep neural network · Adversarial attack and defense · Robustness

1 Introduction

Deep neural networks (DNNs) have demonstrated superior
performance in diverse research areas, such as image clas-
sification [1] and machine translation [2]. However, recent
researches [3–5] indicate that deep models are vulnera-
ble to adversarial examples, thereby seriously limiting their
application in safely-critical scenarios. For the image classifi-
cation task, an adversarial example is an imagewith carefully
designed perturbation, which is not visually perceptible, but
can drastically affect the model performance. Based on the
prior knowledge of the model, the adversarial attack algo-
rithms can be generally divided into white-box attack and
black-box attack. For the white-box attack, the adversary can
get access to the entire information of the model (including
the structure and the parameters); therefore, the gradient can
be precisely calculated according to the predefined loss func-
tion and be propagated to the original input to generate the
adversarial examples. While for the black-box attack, the
model information is only partially accessible to the adver-
sary. It needs to query themodel frequently, in order tomimic

B Yanming Guo
guoyanming@nudt.edu.cn

1 National University of Defense Technology, Changsha, China

the real output and conduct an effective attack. Compared to
the white-box attack, the black-box attack has less informa-
tion about the attacked model, so it normally has a lower
attack success rate.

To deal with the adversarial attack, various defense algo-
rithmshave beenproposed, including data compression [6,7],
gradient masking [8,9] and adversarial training [4,10], in
which the adversarial training is considered as the simplest
and effective way to improve the model robustness.

Recently, several works [11–15] have proven that regu-
larizing the network by introducing randomness is another
effective way to deal with adversarial examples. Although
these methods add noise at different ways, their ultimate
goals allow the output of the network layers to change within
an acceptable range in the training phase, which makes
the network adapt to the impact of adversarial examples.
Regrettably, the introduction of a large amount of random-
ness has led to a phenomenon of over-regularization (i.e.,
under-fitting), and these methods generally involve complex
training process [13,14] and need to manually set multiple
noise hyper-parameters [11,12,15], which greatly affect the
final performance and have to be tuned carefully.

To overcome the above shortcomings, in this paper, we
propose a featurematching (FM)module to predict the image
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Fig. 1 Comparison of our method and against traditional methods

category. The main function of FM module is to regular-
ize the model. Inspired by the randomness methods, we also
allow the image features to changewithin an acceptable range
during training. In this way, we hope to increase the dif-
ficulty of adversarial examples features far away from the
real category. As shown in Fig. 1, the traditional method
uses a fully connected layer to project the image features
into prediction scores, where the index corresponding to the
maximum score is the prediction result. In comparison, our
proposed method learns a feature for each image category
during the training phase. In the test phase, backbone net-
work extracts the input image feature and then calculates the
distance between the image feature and the category features.
These distances build the matching scores, where the size
of the score represents the difference between the features.
Hence, the minimum score index is the predicted result.

In a nutshell, our contributions can be summarized as fol-
lows:

1. We use a feature matching module to replace the fully
connected layer, which can significantly improve the
model’s robustness to adversarial attack without intro-
ducing additional parameters.

2. Compared with the methods of regularizing the network
by injecting noise, our method loses less accuracy of
clean data and eliminates the complex training process.

3. Extensive experiments on the CIFAR10 and SVHN
datasets indicate that ourmethod achieves state-of-the-art
robustness to adversarial attack in white-box and black-
box environments.

The remaining of this article is organized as follows:
Section 2 mainly reviews some relative attack and defense
methods. Section 3 introduces the proposed featurematching

framework. Section 4 demonstrates the experimental results
under different setups, as well as our analysis. Qualitative
evaluation of our method is presented in Sect. 5. We prove
that our method is not relying on gradient obfuscation in
Sect. 6. We further discuss our method in Sect. 7, and Sect.
8 concludes this work.

2 Relate work

This section reviews some relative and well-performing
attack and defense methods, which will be investigated in
this work.

2.1 Adversarial attack

In 2014, Goodfellow et al. [4] explained the existence of
adversarial examples; afterwards, many attack algorithms
against image classification networks have been proposed.
Several typical white-box (i.e., FGSM [4], PGD [10], and
C&W [5]) and black-box (i.e., One-Pixel [16] and trans-
ferability attack [17]) adversarial attack methods are briefly
introduced as follows. As we would evaluate our method
under specific parameter settings in the experiment section,
we also elaborate the formulas of the attack algorithms.

FGSM Attack: Fast gradient sign method (FGSM) [4] is a
simple first-order attack algorithm that uses the symbolized
gradient of the input image to generate adversarial examples.
Whenwe define a pretrainedDNNmodel f and loss function
l f , FGSM generates an adversarial example using Eq. 1.

x
′ = x + ε · sign(∇x l f ( f (x), label)) (1)

where the ε refers to the range of attack strength from 0–255,
and sign(·) is the gradient sign. In this way, the perturbed
image x

′
will increase the loss function value, causing the

network to output a wrong classification result.

PGDAttack:Madry et al. [10] proposes the PGD algorithm,
which is a variant of FGSM. With the initialization x (k=1) =
x , PGD is divided into k steps to generate an adversarial
example. The process can be described as:

xk+1 = �x±ε

{
xk + α · sign

(
∇x l f ( f (x

k), label)
)}

(2)

where α is a small step size, adversarial example is within a
specified l p range of the original input x . Madry et al. [10]
also experimentally proves that even if x (k=1) is randomly
initialized within the l∞-ball around x , the generated adver-
sarial examples would converge to similar local maximum
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loss values. Based on this fact, they claim that PGD is a uni-
versal adversary among all the first-order adversaries.

C&W Attack: C&W [5] is another strong white-box attack
method and can attack undefended model with almost 100%
attack success rate. The attack process of C&W is optimized
based on the following objective function formula.

min
{
‖ δ ‖p +c · L(x

′
)
}

x
′ = x + δ (3)

L(x
′
) = max

{
−k, Z(x

′
)t − maxZ(x

′
)i �=t

}
(4)

where δ is the perturbation added to the image, t is the true
label of x and p is the L p-norm of the perturbation, and p can
be 0, 2, or ∞. Z(·) is the prediction value of each category
output byDNN. k is a confidence level greater than 0, and c is
used to balance the two parts of the target. Given that C&W
achieves optimum performance for p=2, this work evaluates
the robustness of a model employing L2-norm-based C&W
attack.

As our model gets a classification result with smallest
matching score, we substitute the original Z(·) in Eq. 4 with
n-Z(·) and modify the second part loss function as Eq. 5,
where n is a large value.

max
{
−k, n − Z(x

′
)t − max(n − Z(x

′
)i �=t )

}
(5)

Black-box Attack: Different from the white-box attack, the
model information is only partially accessible to the adver-
sary in black-box environment. However, Liu et al. [18] have
verified that different models trained with the same train-
ing dataset have similar decision boundaries. Therefore, if
the training dataset can be obtained, one typically black-box
attack method is that training a agent model and attacking
the agent model to generate adversarial examples. Several
works [17,19] have shown that transferability attack uses the
adversarial examples generated by attack agent model that
can also attack the black-box model with a high attack suc-
cess rate. On the other hand, if the training dataset cannot
be obtained, One-Pixel [16] attack is an efficient method to
conduct black-box attack. One-Pixel attack does not relying
on dataset, as it uses a differential evolution algorithm to
generate adversarial examples from a randomly initialized
perturbed population.

2.2 Adversarial defense

Adversarial training is a common practice to improve the
robustness of the model against adversarial attack. Although
several works [4,20] have highlighted that adversarial train-
ing can be used to regularize the network and improve the
model’s robustness, Moosavi-Dezfooli [21] proves that no

matter howmany adversarial examples are added to the train-
ing process, there will be new adversarial examples that can
fool the model after adversarial training is completed.

Recent researches [11–14] have proved that employing
both noise injection and adversarial training to regularize the
model can further improve the model’s robustness against
adversarial attack. The random self-ensemble (RSE) [11]
method adds an additive noise layer before the convolu-
tion layer and carries out the forward propagation many
times in the test phase, which simulates an ensemble of
multiple models. Although RSE significantly improves the
model robustness, the variance of the noise is an adjusted
hyper-parameter that requires manually selected. In con-
trast, the parametric noise injection (PNI) [13] learns weights
through the network to automatic control noise injection.
Learn2Perturb (L2P) [14] is a recent extension of PNI. The
noise injection is learned in an end-to-end manner, and the
model is trained using a method called alternating back
propagation, that is, alternatively training the noise injection
module and network layers. Instead of adding additive noise
to network layer, the Adv-BNN [12] method assumes all the
weights in the network are stochastic and uses the commonly
used techniques in Bayesian neural network and adversarial
training to train a highly robust model.

Although these noise injection methods improve per-
turbed data accuracy, the accuracy on clean data is signif-
icantly reduced. Moreover, these methods introduce numer-
ous parameters that need to be trained compared to the
undefendedmodel. In contrast, our proposedmethoddoes not
inject noise and additional trainable parameters into network
and loses less clean data accuracy than other competitive
methods.

3 Proposedmethod

This section introduces our FMmodule along with the train-
ing and optimization process.

3.1 Featurematchingmodule

We report our model architecture in Fig. 2; it mainly com-
prises a backbone network fW and feature matching module.
The FM module mainly encodes labels and queries the posi-
tive feature and negative feature based on image label. Then,
we use the Euclidean distance between image feature and
label embedding vector to compute loss and predict classifi-
cation result. A deeper layer can extract higher-level visual
information from an image, which will provide our model
higher accuracy of clean data. Therefore, in this work, we
select the last convolution layer of a backbone network and
global average pooling to extract the feature Fx of input
image x . We get label embedding features through word-
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Fig. 2 The architecture of the our FM model. The backbone network
can be any known classification model

embedding technology and set the feature dimension is same
with Fx .

We divide the label embedding features into positive fea-
ture LP and negative feature LN . The two class features
are obtained through a query process. For example, for a
given image x and its label y, the LP is the y-th row one-
dimensional vector in the embedding matrix, and the LN

represents the remaining vectors. We use these positive and
negative features to compute loss value and predict the label
of a test image. As presented in Eq. 6, our model defines a
new loss function named fullple loss. The fullple loss intends
to make the category feature similar to all the same category
images but far away from all the different categories images.
Accordingly, it can be divided into two parts. The first part
refers to the positive sample loss. If the Euclidean distance
between the image feature Fx and the positive feature LP is
less than threshold α, the loss of this part is zero. The sec-
ond half refers to the negative sample loss. If the distance
between the image feature Fx and all the negative features
LN exceeds β, the loss of this part is zero. Figure 3 highlights
that the fullple loss function encourages images to be close
to the true label embedding vector and far away from all the
fake labels embedding vector. Moreover, the LP and LN are
not related to the backbone network parameters. When we
require all the fW (̃x)(̃x represents all images in a category)
to be close to a certain LP , it is actually a constraint on the
parameter W as the images in x̃ are different. So, our loss
function also plays a regularizing role in the model.

L(x, fW ) = max{d(Fx , LP ) − α, 0}
+ max{β − d(Fx , LN ), 0} (6)

To avoid repeated parameter adjustments, in the experi-
ment phase,wefix the twoparametersα andβ asEq. 7,where
len(Fx ) represents the length of the image features extracted
by the backbone neural network, e.g., 64 for ResNet-V1 and

Fig. 3 The fullple loss reduces the distance between an image feature
and the positive feature and maximizes the distance between the image
feature and all the negative features

512 for ResNet-V2.

α =
√
len(Fx ) · 2 · 10−9, β =

√
len(Fx ) · 7 · 10−4 (7)

As shown in Eq. 8, we calculate the Euclidean distance
between the label embedding vector Li {i=0,· · · ,n-1} of
each category and the image feature vector Fx to form the
network’s matching scores, which represent the differences
between the image and the n categories.We choose the small-
est matching score index as the classification result, as shown
in Eq. 9.

fW (x) = [d(Fx , L0), d(Fx , L1), . . . , d(Fx , Ln−1)] (8)

pred = argmin( fW (x)) (9)

Moreover, the parameter number of the label embedding
module is equal to the element number in the embedding
matrix, which is same with the weight number of fully con-
nected layer. As the label embedding module does not use
bias, ourmodel has fewer trainable parameters than the unde-
fended model.

3.2 Training strategy and optimization

Algorithm 1 shows the training strategy and optimization
of our proposed FM method. As we can see, our model does
not require a special training process. The label embedding
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module is similar to a fully connected layer, whose input is a
category and the output is a vector. During the training pro-
cess, the label embeddingmodule is set as a trainable network
layer and trained together with the backbone network. To
further enhance the model’s robustness to adversarial attack,
we also employ an adversarial training scheme, as adding
adversarial examples affords the model to learn more gen-
eral category features. The ensemble loss Lens is described
in Eq. 10, where g(·) is an adversarial examples generation
algorithm. In consistentwithL2P [14],weuse thePGDattack
[10] for the g(·) and add adversarial examples into the train-
ing dataset after the model is trained for 20 epochs.

Lens = wc · L(x, fW ) + wa · L(g(x), fW ) (10)

wherewc is the weight of clean data loss andwa is the weight
of perturbed data loss. In thiswork,we follow the competitive
methods [13,14] and set wa = wc = 0.5.

4 Experiments

To evaluate the defensive performance of our method, we
adopt FM module to train various models and observe
their robustness to different attack methods. In addition,
we compare our model with typical state-of-the-art meth-
ods, including vanilla PGD adversarial training [10], random
self-ensemble (RSE) [11], adversarial Bayesian neural net-
work (Adv-BNN) [12], parametric noise injection (PNI)
[13], Learn2Perturb (L2P) [14]. We extract the experimental
results of the competitive methods from the above papers.

4.1 Dataset and attack

Dataset: The experiments employ two commonly used
datasets to evaluate themodel’s defense capability, CIFAR10
[22] and SVHN [23]. The CIFAR10 dataset involves 10 com-
mon types of nature images and consists of 50,000 training
and 10,000 test data. Each image has RGB channel setup
with a size of 3232 pixels. The SVHN dataset is derived from
Google Street View house numbers and is amore challenging
version of MNIST. It comprises 99,289 RGB images with a
size of 3232, where 73,257 images are used as training data
and 26,032 images as test data. For both datasets, we use the
same data augmentation strategy (i.e., random crop, random
flip) of L2P [14] during training.We do not use normalization
in data augmentation, but set it as an non-trainable network
layer on the top of the backbone network.

Attack: To evaluate the defensive capability, we compare
our method with other defensive methods, in resistance with
different white-box and black-box attack settings. Thewhite-
box attack includes FGSM [4], PGD [10], C&W [5], and the

black-box attack includes One-Pixel [16] and transferability
attack [17]. In the evaluate phase, the adversarial examples
are generated by adding perturbation to the test images using
the attack algorithm. The perturbed data accuracy refers to
the proportion of adversarial examples correctly classified by
the model. And the clean data accuracy is the classification
accuracy on clean testing images.

4.2 Experimental setup

In this work, we utilize VGG [24] and ResNet [25] as the
backbone notwork. The classical ResNet (i.e., ResNet-V1)
and the newResNet (i.e., ResNet-V2) are used for evaluation.
Compared with ResNet-V1, ResNet-V2 has more stages and
kernel numbers and thus has more trainable parameters.

For the attack algorithms, we follow their original config-
urations [11–14]: For the PGD attack, the attack strength ε

in Eq. 2 is set to 8/255, and the iterative step k is set to 7
with the step size α=0.01. The FGSM attack adopts the same
attack strength ε setup as PGD. The C&W attack employs
the Adam optimizer with a learning rate of 5e−4. The weight
c in Eq. 4 is initially set as 10−3 and ranges from 0 to 1010.
We use a nine-step binary search to determine it and opti-
mize 1000 times for each search iteration. The confidence
parameter k of the C&W attack is set to 5 different values
(0,0.1,1,2,5) and set the number n in Eq. 5 to 10. For the
One-Pixel attack, we set the number of perturbed pixel is 1.
For the transferability attack, we use the PGD algorithm to
produce adversarial examples and then use these adversarial
examples to attack the target model.

4.3 Evaluation of the FMmodule

To evaluate the effectiveness of our proposed module, we
first compare the accuracy of the model with/without the FM
module on clean data and perturbed data. We conduct the
experiments on two different datasets (CIFAR10, SVHN).
As shown in Table 1, the FM module does not bring in addi-
tional parameters. On the contrary, it contains slightly fewer
parameters since it eliminates the bias item of the fully con-
nected layer. As expected, the attack algorithms can bring a
great drop in accuracy, especially in the undefended model.
Take the PGD attack on the ResNet-V2(18) as an example, it
has an accuracy ofmore than 90%on clean data, but the accu-
racy under PGD attack dramatically drops to less than 0.5%.
In contrast, the ResNet-V2(18) with FM module keeps the
accuracy of perturbed data more than 80% on both datasets.
Similar to the PGD attack, our model also outperforms the
undefended model under the FGSM attack. Overall, our FM
module makes the backbone network highly robust to adver-
sarial attack.

Note that theFMmodule suffers fromacertain decrease on
clean data accuracy, this phenomenon also can be observed in
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Table 1 Comparing our FM defense method with the undefended model

Model #Parameter CIFAR10 SVHN

Clean FGSM PGD Clean FGSM PGD

ResNet-V2(18) 11,173,962 95.47 41.82 0.25±0.01 96.51 24.49 0.31±0.01

ResNet-V2(18) with FM 11,173,952 91.66 81.63 80.03±0.15 96.22 81.42 80.09±0.17

VGG19 20,040,522 93.77 26.38 0.05±0.00 96.25 24.52 0.23±0.01

VGG19 with FM 20,040,512 88.48 71.06 68.94±0.16 94.15 66.61 66.00±0.10

Due to the randomness of PGD, the five PGD attacks involved calculated the mean±std% values. Parameter represents the number of all parameters
that require training. Clean refers to the model classification accuracy on clean test images

all the competitivemethods (as indicated in Table 2). Andrew
et al. [26] proves that the features of dataset involve robust
features and non-robust features. A undefended model will
use all the features in the training phase, so it can achieve
a good standard accuracy but a bad robust accuracy. To
improve robust accuracy, a defensive model tends to reject
these non-robust features, which have only sight correla-
tion to label. Therefore, the model’s accuracy will inevitably
decline when defended model applied on clean data. Never-
theless, we assume the decrease of FM is acceptable because
only a small drop in clean data accuracy is exchanged for a
large increase in perturbed data accuracy. For example, on
the SVHN dataset, the ResNet-V2(18) with FM only drops
by 0.29% (from 96.51 to 96.22%) in clean data accuracy
than the undefended model, but the perturbed data accuracy
under PGD attack gets significant improvement (from 0.31
to 80.09%).

4.4 White-box attack

4.4.1 Resistance for l∞-norm based on white-box attack

To further illustrate the effectiveness of the FM method, we
challenge it against current state-of-the-art methods, includ-
ing adversarial training [10], PNI [13], Adv-BNN [12], and
L2P [14]. Following the competitivemethods, in this section,
the experiments are performed on the CIFAR10 dataset using
ResNet-V1 (20,32,44,56) and ResNet-V2(18).

Table 2 presents the comparison results under differ-
ent network setups regarding depth and structure. First,
we use ResNet-V1(20,32,44,56) to compare the interplay
between the model’s depth and robustness. Then, we exam-
ine the effectiveness of increasing the number of convolution
kernel of ResNet-V1(20) and compare different network
widths on the model’s robustness. The networks involved
are ResNet-V1(20) [1.5], ResNet-V1(20)[2], and ResNet-
V1(20)[4], indicating that the input and output channels are
expanded to 1.5/2/4. To independently analyze the feature
matching module and adversarial training, we also report the
test results that do not use adversarial training.

Table 2 shows that the perturbed data accuracy of theAdv-
BNN method and L2P method does not increase with the
backbone network depth. For example, although the back-
bone network depth increases from 32 to 56, the perturbed
data accuracy keep at 54.62% under PGD attack. The results
on Net20(1.5) and Net20 also indicate that the robustness of
the Adv-BNN method does not increase with the network
width. In contrast, our FM module can improve the model’s
robust accuracy as the backbone network depth and width
increases.

Moreover, compared with the accuracy of the backbone
network on clean data shown in the second column, we can
find that Adv-BNN and L2P method have more decline on
clean data accuracy than our method. For example, when we
use Net32 as the backbone network, the accuracy of Adv-
BNN on clean data drops 29.68% (92.63%-62.95%) and L2P
method drops 8.44 (92.63%-84.19%). In contrast, our FM
method only drops 1.11% (92.63%-91.52%) when we do not
use adversarial training and 2.05% (92.63%-90.58%) when
the adversarial training is used.

Notably, even without using adversarial training, our FM
method can also get better accuracy than Adv-BNN and L2P
on most evaluated backbone networks. After using adver-
sarial training, the performance of our FM method exceeds
Adv-BNN and L2P on all backbone networks, both on clean
data and perturbed data. Especially when the Net18 with
FM method, the accuracy under FGSM and PGD attack is
higher than L2P by 19.2% (81.63%–62.43%) and 23.97%
(80.03%–56.06%), respectively. Overall, the experimental
results prove the effectiveness of our FM method in improv-
ing model’s robustness.

Table 3 presents the comparison results between our
FM method and other current state-of-the-art methods on
the CIFAR10 dataset. Although the existing methods have
greatly improved the model’s robustness against the PGD
attack compared to undefended model, this robustness is at
the expense of the accuracy decrease on clean data. In con-
trast, our proposed FM method provides a robust model and
can achieve an appealing performance both on clean and per-
turbed data.
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Table 3 Comparison of the proposedFMwith the state-of-the-artmeth-
ods on CIFAR10

Method Model Clean PGD

Vanilla [10] ResNet-V1(20)[4] 87 46.1±0.1

RSE [11] ResNext 87.5 40

DP [15] 28-10 Wide ResNet 87 25

PNI [13] ResNet-V1(20)[4] 87.7±0.1 49.1±0.3

AdvBNN [12] ResNet-V1(56) 77.20 54.62±0.06

BPFC [27] ResNet-V2(18) 82.4 50.1

L2P [14] ResNet-V2(18) 85.3±0.1 56.3±0.1

RoCL [28] ResNet-V2(18) 91.34 49.66

ASCL [29] ResNet-V2(50) 78.7 55.8

ACL [30] 34-10 Wide ResNet 85.12 56.7

FM ResNet-V2(18) 91.66 80.03±0.15

The reported results are based on the highest accuracy in the literature.
For PGD attack, the attack strength ε=8/255. Part of the results are
abstracted from [14]. Best results are in bold face

Fig. 4 The comparison of FM and other state-of-the-art methods under
different attack strengths of the FGSM

4.4.2 Resistance for different strength attacks

Figure 4 illustrates the robustness of the FM method and
the competitive methods under FGSM attack with different
strength ε. All results are observed with the ResNet-V2(18)
as the backbone network. As can be seen, the robustness of
all networks decreases when more and more noise is added
to clean data. Nevertheless, our FM method also achieves a
superior performance and the advantage over other compet-
itive methods becomes more obvious as the attack strength
increases. Specifically, compared with current state-of-the-
art L2P, we almost double the accuracy when attack strength
ε=15. Next, we conduct the same experiment using PGD
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Fig. 5 The comparison of FM and other state-of-the-art methods under
different attack strengths of the PGD

Table 4 Comparison with the competitive methods of C&W attack on
CIFAR10 dataset when ResNet-V2(18) is used as backbone network

Confident Adv-BNN [12] PNI [13] L2P [14] FM

k=0 78.9 66.9 83.6 83.9

k=0.1 78.1 66.1 84.0 84.2

k=1 65.1 34.0 76.4 81.5

k=2 49.1 16.0 66.5 81.5

k=5 16.0 0.08 34.8 81.0

Performance of competitive methods extracted from [14]. Best results
are in bold face

attack. As shown in Fig. 5, the accuracy of undefendedmodel
quickly dropped to zero under PGD attack. Although the
competitive methods obviously improves the model robust-
ness, there is still an apparent gap between them and our
method.

4.4.3 Resistance for l2-norm-based white-box attack

The above experiments and analysis are based on l∞-norm
white-box attack. However, Araujo et al. [31] have shown
that robust method to attack on l∞-norm is not necessarily
effective on l2-norm. Thus, to verify our FM method is still
effective against l2-norm attack, we use C&W algorithms
with different confidence levels to attack the RecNet-V2(18)
with FM module. We set k in Eq. 6 to five different values,
which represents different attack strengths. Table 4 presents
the defensive effect of our method. As seen, the FM method
can maintain high robustness as the k increases and achieves
the best results for all k values. Specially when k=5, the
robustness is higher than L2P by 46.2% (81.0%–34.8%).

Table 5 Comparison with the competitive methods of One-Pixel attack
on CIFAR10 dataset when ResNet-V2(18) and ResNet-V1(20) are used
as backbone network

Backbone AdvBNN [12] PNI [13] L2P [14] FM

ResNet-V1(20) 58.40 67.40 70.15 74.90

ResNet-V2(18) 68.60 50.90 64.45 70.80

Performance of competitive methods extracted from [14]

Table 6 FMmethod against transferability attack on CIFAR10 dataset,
model A is undefended ResNet-V2(18), while model B is ResNet-
V2(18) trained with our method

Source model PGD attack Transferability attack [17]

A 99.74 A �⇒ B 13.76

B 19.73 B �⇒ A 64.72

The data in the table is the attack success rate

4.5 Black-box attack

In this section, we conduct attack experiments in the black-
box environment. First, we follow the L2P [14] and perform
the One-pixel attack on ResNet-V1(20) and ResNet-V2(18).
The results of the FM and the competitive methods are pre-
sented in Table 5. As shown, the FM method achieves the
highest robustness on both backbone networks. Next, we use
the PGD algorithm to generate the adversarial examples and
use the transferability attack to verify the effectiveness of
FM. We report the attack success rate in Table 6. While the
PGD algorithm attack model A reaches a 99.74% attack suc-
cess rate, there is only a 13.76% attack success rate when
these adversarial examples are used for model B. Although
the PGD algorithm attacks model B with a 19.73% success
rate, 64.72% of the adversarial examples can attack model A
successfully. The above results show that ourmethod still has
defense capability against attacks that do not use gradients.

5 Qualitative evaluation

In addition to the quantitative evaluation above, in this sec-
tion, we conduct the qualitative analysis by using T-SNE tool
to visualize the feature distribution of our model and unde-
fended model. Figure 6 shows the distribution diagram of the
ResNet-V2(18) employed as the backbone network on the
CIFAR10 and SVHN test data. All the features are extracted
from the last convolution layer of backbone network. We use
global average pooling and PCA (principal component anal-
ysis) to project the features into two-dimensional space. We
can easily find from the CIFAR10 distribution that our FM
method makes clean data features closer than undefended
model, which proves our hypothesis that our loss function
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Fig. 6 The visualization of the feature distribution on CIFAR10 and
SVHN. The first line is the distribution result of the undefended model
ResNet-V2(18). The second line is the result of ResNet-V2(18)with our
FM module. We select 500 images from each category in the test data

to form the result of clean data and all perturbed data come from the
category that selected by the box. We use the PGD attack to generate
perturbed data and set the attack strength ε=8

can make all the same category images close to their label
embedding feature.

On the other hand, we believe that the features extract
by a robust model would be closer to true category than the
undefendedmodel under the same attack strength.Unsurpris-
ingly, as can be seen in the undefended model, the PGD(ε=8)
attack spreads the features extracted by the boxed category
into nine different clusters, so the perturbed data are com-
pletely identified as the other nine categories. In contrast,
the feature distribution of the perturbed data generated by
attacking our model is relatively concentrated, and most of
them are still remained as the correct category. In other word,
our proposed defense is strong that it is difficult to generate
adversarial examples to fool a model with FM module.

Last but not least, it is well known that images in
the CIFAR10 can be generally categorized into machines
(including plane,car,ship,truck) and animals (including
bird,cat,deer,dog,frog,horse). As shown in the distribution
result of CIFAR10, the perturbed data of car are misclassi-
fied as other nine categories in the undefended model, but
the perturbed data are mainly misclassified as ship and truck
in our model. So we can conclude that gradient-based attack
finds the correct perturb direction to conduct an attack in
our model, because our model uses the similarity between
image features and category features as the basis for clas-
sification. This conclusion is related to the stability of our
defense method, and we will further discuss the stability in
the next section.

6 Inspection of gradient obfuscation

According to Athalye et al. [32], the defense method based
on gradient obfuscation is unreliable. Gradient obfuscation is
considered to be unable to correctly obtain the true gradient
from a defended model. We try to prove that the robustness
provided of our method is not relying on gradient obfus-
cation from two perspectives: (1) In the above section, we
have proved that the gradient-based attack successfully finds
the correct perturb direction to complete an attack in our
model. In other words, the gradient-based attack successfully
finds the correct gradient of our model. (2) Our proposed FM
method does not have the five phenomena, which will appear
in a defense strategy based on gradient obfuscation according
to [32]. In the following, we will give the relevant phenom-
ena and the refutation evidence to prove those phenomena
do not exist in our method.

Phenomenon 1:One-step attacks performbetter than iter-
ative attacks.

Refutation: From the results in Table 2, we can see that
our FMmethod performs better against FGSM than PGD. In
other words, the iterative attack PGD performs better than
one-step attack FGSM.

Phenomenon 2: Black-box attacks are better than white-
box attacks.

Refutation: From the results of the transferability attack
in Table 6, the attack success rate of model B is 13.76%
under black-box attack, but the success rate of the white-box

123



236 International Journal of Multimedia Information Retrieval (2021) 10:227–237

Fig. 7 The robustness of ResNet-V2(18) based on FM when it is
attacked by PGD algorithms with different attack strengths. The x-
axis represents the attack strength of the PGD algorithm, and the y-axis
represents the accuracy of all the adversarial examples in the model

PGD attack is 19.73%. Therefore, white-box attack performs
better than black-box attack in our model.

Phenomenon 3: Unbounded attacks do not reach 100%
success.

Refutation:We report the ourmodel accuracy under PGD
attack in Fig. 7. We set the PGD attack iterative step k=7 and
make the attack strength ε change from 0 to 255. As shown,
the unbounded PGD attack can reach 100% attack success
rate.

Phenomenon 4: Random sampling finds adversarial
examples.

Refutation:This phenomenon involves that if the gradient-
based attack method cannot find an adversarial example,
there will be no adversarial example that can be found even if
randomly sampling 105 times within the clean image ε-ball.
Therefore, we randomly sample 1000 test images from the
CIFAR10 test data. These test images are correctly classi-
fied by the our model but cannot be successfully perturbed
by the PGD algorithm (ε=8/255). Then we conduct 105

times random sampling noises within each test image ε-ball,
and finally, the classification accuracy of the 108 perturbed
images in our model is 100%.

Phenomenon 5: Increasing the distortion bound does not
increase success.

Refutation: As shown in Figs. 4 and 5, increasing the
distortion bound can increase attack success rate.

7 Discussion

Our methods has three main strengths than the competi-
tive methods. (1) Our FM method essentially optimizes the
extraction process of image features and does not modify the
related network layers. So, the proposed FM method can be
integrated into any neural network. As we can see in Tables
1 and 2, our method gets great performance on several differ-
ent networks and does not need to design carefully for each
network architecture. (2) Our method does not increase the
parameters of the network, while the competitive methods
need additional parameters and complex training processes.

(3) We can achieve high accuracy on both clean data and
perturbed data, while the other defense methods improve the
perturbed data accuracy at the cost of lowering the clean data
accuracy.

For the adversarial training process, it normally consists of
numerous training epochs, and in each epoch, it will generate
the same number of adversarial examples with the training
set and double training data (adversarial examples and clean
training data) will be learned by the network. Therefore,
training a model on the large-scale dataset with the adversar-
ial training is rather time-consuming, and most methods are
experimented on the small datasets, typically CIFAR10, to
validate their effectiveness. Actually, CIFAR10 has already
been employed as the primary dataset for the evaluation of the
robustness. To facilitate the comparison with these methods,
we also conduct most of our experiments on the CIFAR10
dataset. However, we assume it is more practically useful to
ensure the model robustness on large-scale natural images;
therefore, it is meaningful to facilitate more efficient training
strategies on large-scale datasets.

8 Conclusion and prospect

In this paper, we propose a feature matching module, which
enhances the robustness of the model without increasing
additional parameters. The module can be easily integrated
into any neural network. Extensive white-box and black-box
attack experiments verify the effectiveness of the suggested
FM method and get state-of-the-art performance both on
clean data and perturbed data. We further prove that its high
performance does not originate from gradient obfuscation.
In the future, we strive to combine our FM module with the
randomness methods to further enhance model robustness
and apply our method to large-scale dataset.
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