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Abstract
The availability of increasingly largermultimedia collections has fostered extensive research in recommender systems. Instead
of capturing general user preferences, the task of next-item recommendation focuses on revealing specific session preferences
encoded in the most recent user interactions. This study focuses on the music domain, particularly on the task ofmusic playlist
continuation, a paradigmatic case of next-item recommendation. While the accuracy achieved in next-song recommendations
is important, in this work we shift our focus toward a deeper understanding of fundamental playlist characteristics, namely the
song order, the song context and the song popularity, and their relation to the recommendation of playlist continuations. We
also propose an approach to assess the quality of the recommendations that mitigates known problems of off-line experiments
for music recommender systems. Our results indicate that knowing a longer song context has a positive impact on next-song
recommendations. We find that the long-tailed nature of the playlist datasets makes simple and highly expressive playlist
models appear to perform comparably, but further analysis reveals the advantage of using highly expressive models. Finally,
our experiments suggest that the song order is not crucial to accurately predict next-song recommendations.

Keywords Music recommender systems · Music playlist continuation · Sequential recommendation · Collaborative filtering ·
Recurrent neural networks

1 Introduction

Automated music playlist continuation is a specific task in
music recommender systems where the user sequentially
receives song recommendations, producing a listening expe-
rience similar to traditional radio broadcasting. Sequential
recommendation scenarios are in fact very natural in the
music domain. This is possibly explained by the short time
required to listen to a song, which results in listening sessions
typically including not one, but several songs.
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According to interviews with practitioners and postings to
a dedicated playlist-sharing website, Cunningham et al. [8]
identified the choice of songs and the song order as impor-
tant aspects of the playlist curation process. As we review in
Sect. 2, some approaches to automated music playlist con-
tinuation take into account the current and previous songs
in the playlist and the order of the songs in the playlist to
recommend the next song. However, to the best of our knowl-
edge, previous works do not explicitly analyze the impact
of exploiting this information for next-song recommenda-
tions. We refer to the current and previous songs in a playlist
as the “song context” available to the recommender system
when it predicts the next song. This terminology is borrowed
from language models and should not be confused with the
incorporation of user’s contextual information into the rec-
ommender system.

In this work, we compare four well established andwidely
used playlistmodels: a popularity-basedmodel, a song-based
collaborative filtering (CF)model, a playlist-based CFmodel
and a model based on recurrent neural networks (RNNs).
These playlist models are of increasing complexity and, by
design, are able to exploit the song context and the song
order to different extents. By analyzing and comparing their
performance on different playlist continuation off-line exper-
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iments, we derive insights regarding the impact that the song
context, the song order and the bias toward popular music
have on next-song recommendations. For the evaluation of
the off-line experiments, we propose to use metrics derived
from complete recommendation lists, instead of from the
top K positions of recommendation lists. This provides a
more complete view on the performance of the playlist mod-
els.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on automated music playlist
continuation. Section 3 introduces the guidelines for the
off-line experiments conducted throughout this work. We
describe the recommendation task that the playlist models
must fulfill and define the metrics employed to assess their
performance on the task. Section 4 describes the four playlist
models considered. Section 5 presents the datasets of hand-
curated music playlists on which we conduct the off-line
experiments. Section 6 elaborates on the results of the off-line
experiments and is divided into three parts, which discuss the
impact of the song context, the popularity bias and the song
order on next-song recommendations, respectively. Conclu-
sions are drawn in Sect. 7.

2 Related work

A well-researched approach to automated music playlist
continuation relies on the song content. Pairwise song simi-
larities are computed on the basis of features extracted from
the audio signal (possibly enrichedwith social tags andmeta-
data) and used to enforce content-wise smooth transitions
[10,18,21,22,25]. Recommendations based on content sim-
ilarity are expected to yield coherent playlists. However,
pure content-based recommendations cannot capture com-
plex relations and, in fact, it does not hold in general that the
songs in a playlist should all sound similar [19].

Playlist continuation has also been regarded as a form of
collaborative filtering (CF), making the analogy that playlists
are equivalent to user listening histories on the basis of
which songs should be recommended. Playlist-based nearest-
neighbors CF models and factorization-based CF models
exploit the full song context when making next-song rec-
ommendations [1,4,11]. Song-based nearest-neighbors CF
models [29] are not common in the playlist continuation lit-
erature. However, Hidasi et al. [12] show in the domains
of e-commerce and video streaming that an item-based CF
model that predicts the next item on the basis of only the cur-
rent item can effectively deal with short histories. In general,
CF models disregard the song order, but it is worth noting
that the model presented by Aizenberg et al. [1] accounts for
neighboring songs, and the model introduced by Rendle et
al. [27] for on-line shopping is aware of sequential behavior.

The Latent Markov Embedding introduced by Chen et
al. [6] models playlists as Markov chains. It projects songs
into a Euclidean space such that the distance between two
projected songs represents their transition probability. The
importance of the direction of song transitions is evalu-
ated by testing a model on actual playlists and on playlists
with reversed transitions, yielding comparable performance
in both cases. McFee and Lanckriet [23] also treat playlists
as Markov chains, modeled as random walks on song hyper-
graphs, where the edges are derived from multimodal song
features, and the weights are learned from hand-curated
music playlists. The importance of modeling song transi-
tions is assessed by learning the hypergraph weights again
but treating the playlists as a collection of song single-
tons. When song transitions are ignored, the performance
degrades. These works examine the importance of account-
ing for song transitions and their order, but the Markovian
assumption implies that only adjacent songs are considered.

Hariri et al. [11] represent songs by latent topics extracted
from song-level social tags. Sequential pattern mining is per-
formed at the topic level, so that given seed songs, a next topic
can be predicted. Re-ranking the results of a CF model with
the predicted latent topics is found to outperform the plain
CF model. This approach considers the ordering but only at
the topic level, which is more abstract than the song level.

Hidasi et al. [12] propose for e-commerce and video
streaming an approach to sequential recommendation based
on the combination of RNNs with ranking-aware loss func-
tions. This approach has gained attention and has been further
improved and extended [13,31]. Jannach and Ludewig [14]
have applied it to the task of automated music playlist
continuation in a study that compares the performance of
RNN models and session-based nearest-neighbors mod-
els for sequential recommendation. Among other analyses,
Jannach and Ludewig question whether the computational
complexity of RNN models is justified. Recommendation
models based on RNNs consider the full item context in
sequences and are also aware of their order.

For a comprehensive survey on automated music playlist
continuation, we point the interested reader to Bonnin and
Jannach [4] and Ricci et al. [28, chap.13].

We conducted preliminary studies preceding this work
analyzing the importance of the song order and the song
context in next-song recommendations [32,33]. This paper
further extends these works by incorporating a detailed
discussion of the proposed evaluation methodology, an addi-
tional playlist model (namely a playlist-based CF model), an
analysis of the impact of the popularity bias of music col-
lections in next-song recommendations and more conclusive
experiments to determine the importance of the song order.
We also provide the full configurations and training details
for the playlist models.
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3 Evaluationmethodology

We propose an evaluation methodology based on the ability
of playlist models at retrieving withheld playlist continua-
tions.We conduct the next-item recommendation experiment
proposed by Hidasi et al. [12] and then propose approaches
to interpreting the obtained results and to comparing the per-
formance of different playlist models.

We are aware that off-line evaluation approaches are
approximations of the actual recommendation task, and they
may not be able to fully estimate the final user satisfaction.
However, the aimof thiswork is to understand the importance
of the song context, the song order and the bias toward pop-
ular music on next-song recommendations. In this sense, the
proposed off-line evaluation methodology serves this pur-
pose well, because it allows the systematic comparison of
different playlist models under controlled conditions.

3.1 Next-song recommendation experiment

A collection of music playlists is split into training and test
playlists. A trained playlist model is evaluated by repeating
the following procedure over all the test playlists, which, for
clarity, we describe alongside the example depicted in Fig. 1.
We consider a test playlist (e.g., p = (s3, s5, s2)). In the first
step, we show the model the first song in the playlist (s3).
The model ranks all the songs in the dataset according to
their likelihood to be the second song in the playlist. We
keep track of the rank attained by the actual second song
in the playlist (s5 attains rank 3). We also keep track of the
fact that this is a prediction for a song in second position. In
the second step, we show the model the first and the second
actual songs in the playlist (s3, s5). The model ranks all the
songs in the dataset according to their likelihood to be the
third song in the playlist. We keep track of the rank attained
by the actual third song in the playlist (s2 attains rank 1), etc.
In this way, we progress until the end of the playlist, always
keeping track of the rank attained by the actual next song

Fig. 1 Illustration of the evaluation methodology. The playlist model
is evaluated on the test playlist p = (s3, s5, s2). It progresses through
p and ranks all the songs in the dataset according to their likelihood to
be the next song. The actual second song, s5, attains rank 3. The actual
third song, s2, attains rank 1

in the playlist and the position in the playlist for which the
prediction is made.

We index the ordered list of next-song candidates from 1
(most likely) until N (least likely), where N is the number of
unique songs in the dataset.Agoodplaylistmodel is expected
to rank the actual next song in top positions (rank values
close to 1). On the other hand, a poor model would rank the
actual next song on bottom positions (large rank values). A
random model would, on average, rank the actual next song
on positions around N/2.

3.2 Assessing the quality of the recommendations

Previous research in automated music playlist continuation
has summarized the distribution of attained ranks using met-
rics derived from the top K positions of the ordered lists
of next-song candidates. For example, the recall at K (also
named “hit rate” at K ) is defined as the proportion of times
that the actual next songs in the test playlists attain a rank
lower than K [4,11,14,15]. The rationale behind fixing the
length K , typically to a small value, is that, in practice,
only the top K results are of interest to the end user of the
recommender system. We claim that this approach has two
important limitations: (1) values of K that are reasonable
for on-line systems (with actual end users) are not necessar-
ily reasonable for off-line evaluation (without end users); (2)
arbitrarily fixing a value of K provides partial and potentially
misleading information.

We first discuss the first limitation. A playlist may be
extended by a number of potentially relevant songs, but off-
line experiments only accept the exact match to the actual
next song. The rank attained by the actual next song can
be overly pessimistic, because the ordered list of next-song
candidates can actually contain relevant results in better posi-
tions [22,24]. Therefore, the results of off-line evaluation
approaches need to be understood as approximations of the
expected performance of the playlist models. They cannot
be interpreted in absolute terms but as a means to compare
the relative performance of different models. In particular,
values of K meaningful for on-line systems should not be
literally transferred to off-line experiments.

We now address the second limitation. Even though the
playlist models and the datasets will be presented in Sects. 4
and 5, respectively, we advance here some results for the
sake of illustration. Figure 2 shows the recall curves of sev-
eral playlist models for values of K ranging from 1 to the
maximum number of song candidates. If we chose to focus
on a fix value of K , this would correspond to only observing
a one-point cut of these recall curves, which is very partial
information. Furthermore, as we have discussed, choosing a
specific value of K can become arbitrary in off-line exper-
iments, where the user feedback is missing. Finally, the
information provided by a fix value of K is potentially mis-
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(a) (b)

Fig. 2 Recall curves for values of K ranging from 1 to the maximum
number of songs in each playlist dataset. The circles indicate the length
K where each playlist model achieves a recall at K of 50% and corre-
spond to the median rank achieved by each model. The results on the

top 10 positions are detailed in the boxes, where dots are superimposed
only to remind of the discrete nature of the displayed values (the lines
just connect the different recall values)

leading because the recall curves of different playlist models
cross each other at different values of K . That is, the best
performing playlist model would depend on the chosen value
of K .

For these reasons, we propose to assess playlist models by
examining their whole lists of ordered next-song candidates,
as opposed to focusing only on an arbitrary number of top
K positions in the lists. This provides a more complete view
of the performance of the playlist models. Even though the
complete recall curves displayed in Fig. 2 are informative, we
instead propose to directly compare the whole distribution of
ranks attained by each playlist model. We report the distri-
bution of attained ranks by means of boxplots that represent
the minimum, first quartile, median, third quartile, and max-
imum rank values (see, e.g., Fig. 3). Alternatively, we report
only themedian rank value if this facilitates the interpretation
of the results (Fig. 5).

4 Playlist models

Wedescribe the four playlist models considered in our exper-
iments. By design, the models are of increasing complexity
and are able to exploit the song context and the song order to
different extents (Table 1). Hyperparameter tuning, if neces-
sary, is performed on validation playlists withheld from the
training playlists.

4.1 Song popularity (“Popularity”)

This is a unigram model that computes the popularity of
a song s according to its relative frequency in the training
playlists, i.e.,

pop(s) = |Ptr(s)|
|Ptr| , (1)

Table 1 Summary of the playlist models

Playlist model Context length Order awareness

Popularity 0 ✗

Song-CF 1 ✗

Playlist-CF n ✗

RNN n ✓

The context length is the number of songs considered by the model to
predict the next song (n means all the songs shown to the model). Order
awareness indicates if the model regards the order of songs in playlists

where Ptr is the set of training playlists, Ptr(s) is the subset of
training playlists that contain the song s, and | · | denotes the
number of playlists in each set. Given a test playlist, the next-
song candidates are ranked by their popularity, disregarding
the previous songs and their order. Despite its simplicity, the
popularity-basedmodel is a competitive playlist model [4,6].

4.2 Song-based collaborative filtering (“Song-CF”)

This is a CF model based on song-to-song similarities. A
song s is represented by a binary vector ps that indicates the
training playlists to which it belongs. The similarity of a pair
of songs s, t is computed as the cosine between ps and pt ,
i.e.,

sim(s, t) = cos(ps,pt ) = ps · pt
‖ps‖‖pt‖ .

Two songs are similar if they co-occur in training playlists,
regardless of the positions they occupy in the playlists. We
follow Hidasi et al. [12] and implement the song-based CF
model such that next-song candidates are ranked according to
their similarity only to the current song in the playlist, ignor-
ing previous songs. This approach is relatively simple, but
Hidasi et al. show its competitive performance for sequential
recommendation on short sessions.

123



International Journal of Multimedia Information Retrieval (2019) 8:101–113 105

4.3 Playlist-based collaborative filtering
(“Playlist-CF”)

This is a CF model based on playlist-to-playlist similarities.
Aplaylist p is represented by a binary vector sp indicating the
songs that it includes. The similarity of a pair of playlists p, q
is computed as the cosine between sp and sq , i.e.,

sim(p, q) = cos(sp, sq) = sp · sq
‖sp‖‖sq‖ . (2)

The score assigned to a song s as a candidate to extend a test
playlist p is computed as

score(s, p) =
∑

q∈Ptr(s)

sim(p, q), (3)

where Ptr(s) is the subset of training playlists that contain the
song s. This model considers a song to be a suitable continu-
ation for playlist p if it has occurred in training playlists that
are similar to p. The similarity of a playlist pair (Eq. 2) and
the score assigned to a candidate song to extend a playlist
(Eq. 3) depend on the full playlist p, i.e., on the full song
context, but they disregard the song order.

Playlist-based CF has proven to be a competitive playlist
model [4,11,14,15]. It usually has an additional parameter
defining the number of most similar training playlists on
which Eq. 3 is calculated. We use all the training playlists
because we find that this yields best performance in our
experiments (Appendix A.3).

4.4 Recurrent neural networks (“RNN”)

Recurrent neural networks are a class of neural networkmod-
els particularly suited to learn from sequential data. They
have a hidden state that accounts for the input at each time
step while recurrently incorporating information from previ-
ous hidden states. We point the interested reader to Lipton et
al. [20] for a review of RNN models.

We adopt the approach and implementation1 proposed
by Hidasi et al. [12], where an RNN model with one layer
of gated recurrent units (GRU) [7] is combined with a loss
function designed to optimize the ranking of next-item rec-
ommendations. Themodel hyperparameters and architecture
are detailed in Appendix A.4.

Given a test playlist, the RNN model considers the full
song context and the song order and outputs a vector of song
scores used to rank the next-song candidates.

1 https://github.com/hidasib/GRU4Rec

5 Datasets

We evaluate the four playlist models on two datasets of hand-
curated music playlists derived from the on-line playlist-
sharing platforms “Art of the Mix”2 and “8tracks.”3 Both
platforms allow music aficionados to publish their playlists
on-line.Moreover, theArt of theMix platform hosted forums
and blogs for discussion about playlist curation, as well as
social functionalities such as favoriting, or providing direct
feedback to a user.4 The 8tracks platform also provides social
functionalities, such as following users, liking, or comment-
ing on specific playlists. Previous works in the automated
music playlist continuation literature have chosen to work
with collections derived from the Art of the Mix and the
8tracks databases because of their presumably careful cura-
tion process [4,11,15,22,23]. As an illustration of the users’
engagement, we refer the interested reader to the study pre-
sented by Cunningham et al. [8], that analyzes posts to the
Art of theMix forums requesting advice on, for example, the
choice of songs, or song ordering rules.

The “AotM-2011” dataset [23] is a publicly available
playlist collection derived from the Art of the Mix database.
Each playlist is represented by song titles and artist names,
linked to the corresponding identifiers of the Million Song
Dataset5 (MSD) [3], where available. The “8tracks” dataset
is a private playlists collection derived from 8tracks. Each
playlist is represented by song titles and artist names. Since
we find multiple spellings for the same song–artist pairs, we
use fuzzy string matching to resolve the song titles and artist
names against the MSD, adapting the code released by Jans-
son et al. [16] for a very similar task.

We use the MSD as a common name space to correctly
identify song–artist pairs. In both datasets, the songs that
could not be resolved against the MSD are discarded, with
one of two possible approaches. The first approach consists
in simply removing the non-matched songs. The original
playlists are preserved but with skips within them, which we
ignore. The second approach consists in breaking up the orig-
inal playlists into segments of consecutive matched songs,
yielding shorter playlists without skips. We show results
obtained on playlists derived from the first approach, but
experiments on playlists derived from the second approach
yielded equivalent conclusions.

We keep only the playlists with at least 3 unique artists and
with amaximumof 2 songs per artist. This is to discard artist-
or album-themed playlists, which may correspond to book-

2 http://www.artofthemix.org
3 https://8tracks.com
4 Publishing playlists and interacting with individual users are still
active services on the Art of the Mix, but the forums and blogs seem to
be discontinued.
5 https://labrosa.ee.columbia.edu/millionsong
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Table 2 Descriptive statistics of the filtered AotM-2011 and 8tracks
playlist datasets. We report the distribution of playlist lengths, number
of artists per playlist and song frequency in the datasets (i.e., the number
of playlists in which each song occurs)

Dataset Statistic min 1q med 3q max

AotM-2011 Playlist length 5 6 7 8 34

Artists per playlist 3 5 7 8 34

Song frequency 1 8 12 20 249

8tracks Playlist length 5 5 6 7 46

Artists per playlist 3 5 6 7 41

Song frequency 1 9 15 30 2320

marking favorite artists, or saving full albums as playlists.
While these are also valid criteria, we prefer to exclude them
in this work. We also keep only the playlists with at least 5
songs to ensure a minimum playlist length. Songs occurring
in less than 10 playlists are removed to ensure that themodels
have sufficient observations for each song.

We randomly assign 80% of the playlists to training and
the remaining 20% to test. As in any recommendation task
blind to itemcontent, the songs that occur only in test playlists
need to be removed because they cannot be modeled at
training time. This affects the final playlist length and song
frequency of the playlist datasets.

The filtered AotM-2011 dataset has 17,178 playlists with
7032 unique songs by 2208 artists. The filtered 8tracks
dataset has 76,759 playlists with 15,649 unique songs by
4290 artists. Table 2 reports the distribution of playlist
lengths, unique artists per playlist and song frequency in the
datasets.

6 Results

We assess the ability of the four considered playlist mod-
els, Popularity, Song-CF, Playlist-CF and RNN, to recover
withheld playlist continuations as described in Sect. 3. By
comparing the performance of the different playlist models
on the same experiment, or the performance of the same
model on different experiments, we reason about the impor-
tance of considering the song context and the song order
for next-song recommendations. Furthermore, we study the
impact of the song popularity on the performance of the
different models. As a reference, all the results include the
performance of a dummy model that ranks next-song candi-
dates at random (we call this model “Random”).

6.1 Song context

Recall that Popularity predicts the next song disregarding the
current and previous songs, i.e., it has no context. Song-CF

predicts the next song on the basis of the current song but
disregards the previous ones, i.e., it has a context of 1 song.
Playlist-CF and RNN predict the next song on the basis of
the full playlist, i.e., they have full song context.

Figure 3 reports the rank distribution of each playlist
model. They are split by the position in the playlist for which
the next-song prediction is made.6 We consider only predic-
tions up to position 8, which represent roughly the 90% of
all the next-song predictions made in the AotM-2011 and
the 8tracks datasets. From position 9 onward, the number
of predictions quickly decreases and the results become less
reliable.

The results in Fig. 3 show that Popularity and Song-CF do
not systematically improve their predictions as they progress
through the playlists. This is the expected result because Pop-
ularity has no context, and Song-CF has a constant context
of 1 song. Their rank distributions remain overall stable with
fluctuations easily explained by the fact that at each posi-
tion the models deal with different songs. On the other hand,
Playlist-CF and RNN are aware of the full song context. The
results in Fig. 3 show that the performance of Playlist-CF
clearly improves as it progresses through the playlists, and
the performance of RNN improves slightly but steadily. This
indicates that Playlist-CF andRNNbenefit from increasingly
longer song contexts.

In terms of absolute model performance, Song-CF is the
least competitive model, slightly better but not clearly dif-
ferent than the random reference. Popularity and RNN show
the most competitive overall performances. Playlist-CF has
difficulties when the song context is short, but it consistently
improves as it gains more context, until it eventually outper-
forms Popularity.

Summary of main observations:

– Playlist-CF and RNN, aware of the full song context,
improve their performance as the song context grows.

– Despite its simplicity, Popularity compares to RNN and,
except for long contexts, outperforms Playlist-CF.

– Song-CF exhibits a poor performance.

6.2 Popularity bias

The previous results pose an apparent contradiction: Popu-
larity, unaware of the song context, performs comparably to
RNNand, overall, slightly better than Playlist-CF, both aware
of the full song context. Is it then important or not to exploit
the song context? Furthermore, as discussed by Jannach and

6 The position in the playlist for which the next-song prediction ismade
must not be confused with the song context length of the playlist model.
For example, making a next-song prediction for a song in position 5, the
playlist-based CF model has a context of 4 songs, while the song-based
CF still has a context of 1 song (Table 1).
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Fig. 3 Song context experiments. Distribution of ranks attained by the
actual next songs in the test playlists (closer to 1 is better) for the AotM-
2011 and the 8tracks datasets. Each panel corresponds to a playlist
model. The x-axis indicates the position in the playlist for which a pre-
diction is made. The y-axis indicates the attained ranks, and its scale

relates to the number of songs in each dataset. The boxplots report the
distribution of attained ranks. Outliers are indicated with small horizon-
tal marks. The number of next-song predictions made at every position
is annotated in the boxplots

Ludewig [14], do marginal performance gains of RNN over
Playlist-CF and Popularity justify its higher computational
complexity?

To shed light on these two questions we deem it impor-
tant to analyze the possible impact of the playlist datasets
being biased toward popular songs, which is in fact a bias
ubiquitous in the music consumption domain [5]. Within our
study, we identify the popularity of a song with its frequency
in each of the datasets, that is, with the number of playlists
in which it occurs in each dataset. Table 2 and Fig. 4 show
the song frequency distribution of the AotM-2011 and the
8tracks datasets. The AotM-2011 and the 8tracks datasets
present a clear popularity bias, with a vast majority of songs
occurring in few playlists and a few songs occurring in many
playlists.

We consider again in Fig. 5 the performance of the four
playlist models, but this time we distinguish whether the
actual next songs in the test playlists were popular or not.
We precisely define the popularity of a song as its relative
frequency in the training playlists, as given by Eq. (1). The
left panels report the median rank obtained when all the next-
song predictions are considered. The central panels report the
median rank obtained when the actual next songs belong to
the 10% most popular songs in the datasets. The right panels
report the median rank obtained when the actual next songs
belong to the 90% least popular songs in the datasets (which
we refer to as the “long tail”). In this particular case we report
only themedian rank instead of thewhole rank distribution to
obtain a more compact figure that facilitates the comparison
of the playlist models across the different song-popularity
levels.

The results in Fig. 5 show that Popularity performs out-
standingly well on the most popular songs, but it makes poor
predictions for songs in the long tail. This is the natural con-
sequence of its very design (Sect. 4.1). Playlist-CF performs

reasonably well on the most popular songs, and it shows a
quick improvement as the song context grows. Its perfor-
mance on long-tail songs is poorer, but it shows a slight
improvement as it gains song context, until given a context
of at least 5 songs, it outperforms Popularity. The good per-
formance of Playlist-CF on popular songs is not surprising
because the scoring Eq. (3) favors songs occurring in many
training playlists. However, the rather poor performance on
long-tail songs is less expected, especially if we remember
that our implementation of Playlist-CF considers all the train-
ing playlists as neighbors (Sect. 4.3), which should help to
counteract the large amount of non-popular songs in the
playlist datasets. Song-CF also performs better on popu-
lar songs than on long-tail songs, especially in the 8tracks
dataset, where the popularity bias is stronger (Table 2, Fig. 4).
RNN is competitive, and most importantly, in contrast to the
other playlist models, its performance is largely unaffected
by the popularity of the actual next songs in the test playlists.

Focusing on the performance of the playlist models on
all next-song predictions (left panels in Fig. 5), Popularity
seems comparable to the more sophisticated RNN. Given
enough song context, Playlist-CF also seems to compete
with RNN. However, as we have just seen, the overall strong
performance of Popularity and Playlist-CF is the result of
aggregating the accurate predictions made for a few popular
songs (central panels in Fig. 5) with the rather poor predic-
tions made for a vast majority of non-popular songs (right
panels in Fig. 5). On the contrary, the performance of RNN
is not affected by the song popularity. This observation must
be taken into consideration to judge whether the higher com-
putational complexity of the RNN model is justified, also
considering the particular use case and target users of each
recommender system. For example, the robustness ofRNN to
the popularity bias would be crucial to assist users interested
in discovering long-tail music.
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(b)(a)

Fig. 4 Unique songs in the AotM-2011 and the 8tracks datasets, sorted
by frequency, i.e., by the number of playlists in which they occur. The
colored dots correspond to songs located at specific percentile positions,
with their absolute and percentile frequencies annotated (the latter in

parentheses). Furthermore, examples of frequent and infrequent songs
in the datasets are provided, with their absolute frequency annotated in
parentheses

(b)(a)

Fig. 5 Popularity bias experiments. Median rank attained by the actual
next songs in the test playlists (closer to 1 is better) for the AotM-2011
and the 8tracks datasets. Left: all songs are considered. Center: only
the 10% most popular songs in the dataset are considered. Right: only
the 90% least popular (long-tail) songs in the dataset are considered.

The x-axis indicates the position in the playlist for which a prediction is
made. The y-axis indicates the attained ranks, and its scale relates to the
number of songs in each dataset. The number of next-song predictions
made at every position is annotated

Summary of main observations:

– RNN exhibits a competitive performance which is not
affected by the popularity of the actual next songs.

– Popularity, Song-CF and Playlist-CF exhibit a consider-
able performance gap depending on the popularity of the
actual next songs.

– Despite its overall poor performance on non-popular
songs, Playlist-CF can exploit the song context to even-
tually outperform Popularity.

6.3 Song order

RNN is the most complex of the four playlist models con-
sidered, and it is the only one aware of the song order.
Furthermore, we have shown its good performance and

robustness to dealing with infrequent music. We now inves-
tigate the importance of considering the song order by
comparing the performance of RNN when it deals with orig-
inal playlists, and when it deals with playlists where the
song order has been manipulated. The rationale behind this
experiment is the following: if the playlist datasets exhibit a
consistent song order that RNN exploits to predict next-song
recommendations, then we should observe a performance
degradation when the song order is deliberately broken.

We devise three song order manipulation experiments.
Firstly, we evaluate RNN on shuffled test playlists. This can
be regarded as a weak check, because RNN could still have
learned patterns based on the song order at training time.
Secondly, we train another instance of the RNN model but
using shuffled training playlists.We name it “RNNsh.”We re-
tune its hyperparameters to make sure that the performance
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Fig. 6 Song order experiments. Distribution of ranks attained by the
actual next songs in the test playlists (closer to 1 is better) for the AotM-
2011 and the 8tracks datasets. The panels report the results of RNN
and RNNsh evaluated on original and shuffled test playlists. The x-axis
indicates the position in the playlist for which a prediction is made. The

y-axis indicates the attained ranks, and its scale relates to the number
of songs in each dataset. The boxplots report the distribution of attained
ranks. Outliers are indicated with small horizontal marks. The num-
ber of next-song predictions made at every position is annotated in the
boxplots

is not compromised as a consequence of modifying the train-
ing playlists, but eventually we keep the same configuration
because others do not yield consistent improvements. Then,
we evaluate RNNsh on original test playlists. This is a strong
check, because we nowmake sure that RNNsh cannot exploit
the song order at training time. For completeness, we also
evaluate RNNsh on shuffled test playlists.

Figure 6 reports the rank distribution for each song order
randomization experiment. As a reference, we also include
the performance of RNN evaluated on original test playlists.
The rank distributions are split by the position in the playlist
for which the next-song prediction is made. As before, we
consider only predictions up to position 8, which represent
roughly the 90% of all the next-song predictions made in the
AotM-2011 and the 8tracks datasets (Sect. 6.1). Surprisingly,
the rank distributions are comparable across all song order
randomization experiments, regardless of whether the song
order is original, broken at test time, broken at training time,
or broken both at training and at test time. This result provides
an indication that the song order may not be an essential
feature for next-song recommendations, and it would agree
with similar findings derived from user experiments [17].
Alternatively, even though RNN models are the state of the
art in many sequential tasks, this result could be explained
by the incapability of this specific RNN model to properly
exploit the song order.

To further investigate this question, we create synthetic
playlist datasets where the song order is controlled. We
start creating a playlist dataset where the song order within
playlists is strictly ruled by an arbitrary but fixed universal
song order. This dataset, which we name “One order,” will let
us determine whether the considered RNNmodel (Sect. 4.4)

is actually able to capture order information. In any case,
we already presume that such a definite song order behavior
will not occur in real situations. We hypothesize with two
possible sources of variation that may better respond to how
natural playlists are organized: firstly, instead of a universal
song order, there may exist several song orders correspond-
ing to, for example, different underlying music taste profiles;
secondly, one or several orders may exist, but they may be
followed in a non-strict manner. We create three additional
synthetic datasets according to these variations. We create
a playlist dataset where the song order within playlists is
strictly ruled by one of five arbitrary but fixed song orders,
with the same number of playlists following each of the five
orders. We refer to this dataset as “Five orders.” We further
create noisy versions of “One order” and “Five orders” such
that the song order within the playlists is followed but in
a non-strict manner. To achieve this, we copy the original
datasets but replace a randomly chosen 30% of the songs of
each playlist by unordered, randomly sampled songs from
outside the playlist. We name the resulting datasets “One
order—30% noise” and “Five orders—30% noise.”

Each of the synthetic datasets has 15,000 playlists with
7000 unique songs, and each playlist has a length of exactly
10 songs. These specific values are chosen so that the
synthetic datasets have similar characteristics to a natural col-
lection like AotM-2011. The concept of artist does not exist,
and the song orders are defined arbitrarily. Using more than
five song orders, or a noise factor higher than 30%, yielded
very challenging datasets that were not as illustrative as the
created ones. The synthetic datasets are split into training
and test playlists as described in Sect. 5. We then use them to
conduct the song order randomization experiments described
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Fig. 7 Randomized song order experiments with synthetic datasets.
Distribution of ranks attained by the actual next songs in the synthetic
test playlists (closer to 1 is better) for the AotM-2011 and the 8tracks
datasets. The panels report the results of RNN and RNNsh evaluated
on original and shuffled test playlists. The x-axis indicates the posi-

tion in the playlist for which a prediction is made. The y-axis indicates
the attained ranks, and its scale relates to the number of songs in each
dataset. The boxplots report the distribution of attained ranks. Outliers
are indicated with small horizontal marks. The number of next-song
predictions made at every position is always exactly 3000

at the beginning of this section. Figure 7 reports the rank dis-
tribution for each song order randomization experiment, for
each synthetic playlist dataset.

We first analyze the results obtained on “One order”
(Fig. 7a), which should let us determine whether the consid-
eredRNNmodel is actually able to capture order information.
The performance of RNN on original test playlists is perfect,
with all ranks equal to 1. This shows that the considered
RNN model would be able to capture a universal song order
if there were one. Consequently, we can conclude that the
playlists in the AotM-2011 and the 8tracks datasets are not
strictly ordered; otherwise, RNN would have been able to
perfectly extend them. Again in Fig. 7a, precisely because
RNN learned the song order strictly, its performance on shuf-
fled test playlists is comparatively very poor. We now move
on to RNNsh. The performance of RNNsh is not perfect but
very good on both original and shuffled test playlists. This
suggests that RNNsh follows a different strategy than RNN.
Since RNNsh is trained on shuffled playlists, the strict song
order is not anymore enforced. Instead, RNNsh learns to pre-

dict songs in the proximity of the current song,meaning songs
that are few positions before or after the current song within
the universal song order. In other words, training the RNN
model on shuffled playlists works as a regularization that
favors learning song proximity rather than strict song order.

We have found evidence that the playlists in the AotM-
2011 and the 8tracks datasets are not ruled by a strict,
universal song order. In fact, since we train dedicated
instances of the RNN model for each dataset, we know that
the playlists are also not ruled by a strict, dataset-specific
song order. However, this does not imply that the playlists
are, on the other end, completely unordered. There may
exist intermediate song order rules, which in real situations
may further be affected by different sources of uncertainty.
We examine the results obtained on the remaining synthetic
datasets (Fig. 7b–d) as an approximation to the more com-
plex song order patterns that may underlie the playlists of the
AotM-2011 and the 8tracks datasets.

Figure 7b, c shows an overall, noticeable performance
degradation compared to Fig. 7a. Still, RNN evaluated on
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original test playlists performs almost perfectly for “Five
orders” and competitively for “One order—30% noise.” The
performance degrades strongly when RNN is evaluated on
shuffled test playlists, which suggests that it had indeed cap-
tured song order patterns. RNNsh again shows that training
on shuffled playlists provides a regularization effect, because
its performance on original and shuffled test playlists is
comparable. Figure 7d reports the results on the most chal-
lenging of the synthetic datasets and exhibits a generalized,
clear performance degradation. While we cannot derive fur-
ther conclusions regarding the nature of the playlists in the
AotM-2011and the8tracks datasets, the comparisonbetween
Figs. 6 and 7 suggests that real playlists may indeed be sub-
ject to complex, noisy song order rules.

We know that the playlists in the AotM-2011 and the
8tracks datasets do not follow simple song order patterns,
and thus they could be either completely unordered or ruled
by complex, noisy song order rules. In both cases, the song
order experiments on the natural datasets show that RNN
performs equivalently to RNNsh (Fig. 6), which could be the
result of RNN adopting the same strategy of RNNsh, that is,
relying on song proximity patterns rather than on complex or
inexistent song order patterns. Since the AotM-2011 and the
8tracks datasets do not have a strict song order, the concept of
proximity could be understood as fitness, meaning that RNN
and RNNsh could be predicting next songs that fit well the
playlist being extended. This could also explain why RNN
and RNNsh improve their performance as the song context
grows, namely because a longer song context better specifies
the playlist under consideration.A longer song contextwould
not necessarily translate into performance improvements if
RNN could rely on clear song order patterns, in which case
knowing a single song would suffice to accurately predict the
next one (see the performance of RNN evaluated on original
playlists in Fig. 7a, c).

Summary of main observations:

– RNN achieves comparable performance on original and
on shuffled test playlists. It also compares to RNNsh,
which is completely unaware of the song order.

– Experiments on strictly ordered synthetic datasets show
that RNN can learn song order patterns.

– From the previous, we conclude that the AoM-2011 and
the 8tracks datasets are not strictly ordered.

– Further experiments on synthetic datasets suggest that
the AotM-2011 and the 8tracks datasets might be ruled
by complex, noisy song order rules.

– When RNN relies on song fitness patterns rather than on
song order patterns, it benefits from longer song contexts,
which better identify the playlist being extended.

7 Conclusion

We have explicitly investigated the impact of the song order,
the song context and the popularity bias in music playlists for
the task of predicting next-song recommendations. We have
conducted dedicated off-line experiments on two datasets
of hand-curated music playlists comparing the following
playlist models: a popularity-based model, a song-based CF
model, a playlist-based CFmodel, and an RNNmodel. These
models are well established and widely used and exploit the
song context and the song order to different extents. Our
results indicate that the playlist-basedCFmodel and theRNN
model, which can consider the full song context, do benefit
from increasingly longer song contexts.However,weobserve
that a longer song context does not necessarily translate into
outperforming the simpler popularity-based model, which is
unaware of the song context. This is explained by the popular-
ity bias in the datasets, i.e., the coexistence of few, popular
songs with many, non-popular songs. Failing to take into
account the popularity bias masks important performance
differences: the popularity-based model, the song-based CF
model and the playlist-based CF model exhibit considerable
differences in performance depending on the popularity of
the actual next songs in the test playlists. On the contrary, the
more complex RNN model has a stable performance regard-
less of the song popularity. This effect must be taken into
account in the design of playlist models for specific use cases
and target users. The RNN model is the only of the consid-
ered playlist models aware of the song order. We have found
that its performance on original and shuffled playlists is com-
parable, suggesting either that the song order is not crucial
for next-song recommendations, or that the RNN model is
unable to fully exploit it. We have further investigated this
question by evaluating the RNN model on synthetic datasets
with controlled song orders. We have found that the RNN
model is able to capture a universal song order if there is one.
This implies that the natural playlists datasets considered do
not follow a strict song order, although they might be ruled
by complex, noisy song order rules. Finally, and regarding
the evaluation methodology, we have proposed an approach
to assess the quality of the recommendations that observes
the complete recommendation lists instead of focusing on the
top K recommendations. Doing so provides amore complete
view on the performance of the playlist models.
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A Model configurations

A.1 Song popularity

This model computes the popularity of all the unique songs
in the dataset, that is, 7032 songs for the AotM-2011 dataset
and 15,649 songs for the 8tracks dataset.

A.2 Song-based collaborative filtering

This model computes pairwise similarities for all the unique
songs in the dataset, that is, 7032 songs for the AotM-2011
dataset and 15,649 songs for the 8tracks dataset.

A.3 Playlist-based collaborative filtering

This model computes the similarity of each test playlist to all
the training playlists in the dataset, that is, 13,744 playlists for
the AotM-2011 dataset and 61,416 playlists for the 8tracks
dataset.We also experimented using 100, 500 and 1000 train-
ing playlists but did not achieve better results.

A.4 Recurrent neural networks

We experiment with different loss functions, namely cate-
gorical cross-entropy, Bayesian pairwise ranking (BPR) [26]
and TOP-1 [12]. The RNN is optimized using AdaGrad [9]
with momentum and L2-regularization. We also experiment
with dropout [30] in the recurrent layer, but none of the

final configurations use it. We tune the number of units, the
learning rate, the batch size, the amount of momentum, the
L2-regularization weight and the dropout probability on a
withheld validation set, by running 100 random search exper-
iments [2] for each of the loss functions mentioned above.
The final model configuration is chosen according to the val-
idation recall at 100 (i.e., the proportion of times that the
actual next song is included within the top 100 ranked can-
didates), which we consider a proxy of the model’s ability to
rank the actual next songs in top positions. The number of
training epochs is chosen on the basis of the validation loss.

For theAotM-2011dataset, thefinalmodel uses theTOP-1
loss and it has 200 hidden units. It is trained on mini-batches
of 16 playlists, with a learning rate of 0.01, a momentum
coefficient of 0.5 and an L2-regularization weight of 0.1.
For the 8tracks dataset, the final model uses the TOP-1 loss
and it has 200 hidden units. It is trained on mini-batches
of 64 playlists, with a learning rate of 0.025, a momentum
coefficient of 0.3 and an L2-regularization weight of 0.02.
For both datasets, the hyperparameters and architecture of
the RNN models trained on shuffled and reversed playlists
were re-tuned, but since other configurations did not yield
clearly better results, we decided to use the same settings for
consistency.

B Additional experiments

We conduct, for completeness, a related set of experiments
consisting in reversing the song order instead of random-
izing it. A similar experiment was proposed by Chen et
al. [6] to investigate the importance of the “directional-
ity” in next-song recommendations. Chen et al. found only
small performance differences evaluating the Latent Markov

Fig. 8 Reversed song order experiments. Distribution of ranks attained
by the actual next songs in the test playlists (closer to 1 is better) for the
AotM-2011 and the 8tracks datasets. The panels include the predictions
of the RNN on the original playlists and on the different reversed song
order experiments. The x-axis indicates the position in the playlist for

which a prediction is made. The y-axis indicates the attained ranks,
and its scale relates to the number of songs in each dataset. The box-
plots report the distribution of attained ranks. Outliers are indicatedwith
small horizontal marks. The number of next-song predictions made at
every position is annotated in the boxplots
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Embedding model on original and reversed playlists. We
replicate the different settings from our previous experi-
ments: we first train the RNN model on original playlists
and evaluate it on reversed playlists. Then, we train the
RNN model on reversed playlists and evaluate it on origi-
nal playlists. Finally, we train and evaluate the RNN model
on reversed playlists. Figure 8 reports the rank distributions
under each reversed song order experiment. As expected, the
results are comparable to those reported in Fig. 6. That is, the
distribution of ranks is comparable for all the reversed song
order experiments.
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