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Abstract In this paper, we present an intrinsic spatial pyra-
mid matching approach for 3D shape retrieval. Motivated by
the fact that the second eigenfunction of Laplace–Beltrami
operator not only can capture the global topological struc-
ture information, but also is intrinsic, we propose to adopt its
level sets as cuts to perform surface partition. The resulting
matching scheme is able to consistently estimate the approx-
imate global geometric correspondence among 3D shapes. In
particular, we can leverage recent developments in intrinsic
shape analysis and perform intrinsic spatial pyramid match-
ing based on dense spectral shape descriptors such as scale-
invariant heat kernel signature. Our experiments demonstrate
a significant improvement of 3D shape retrieval on two stan-
dard benchmarks.

Keywords Intrinsic partition · Diffusion geometry ·
Eigenfunction · Shape retrieval

1 Introduction

State-of-the-art image recognition algorithms usually adopt
a local patch based, multiple-layer pipeline to obtain a good
representation. These methods start from local image patches
using either normalized raw pixel density or descriptors
such as the scale-invariant feature transform (SIFT) [1] or
the histogram of oriented gradients (HOG) [2], and encode
them into an overcomplete representation using various algo-
rithms such as the k-means or sparse coding. After coding,
global image representations are formed by spatially pooling
the coded local descriptors. The methods following such a
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pipeline have achieved competitive performance on image
classification tasks [3]. During the whole procedure, the spa-
tial pooling step brings a substantial performance improve-
ment. One significant milestone in the construction of this
arsenal of tools is the spatial pyramid matching (SPM) intro-
duced in [4], which partitions the image into increasingly
fine subregions and then computes histograms of local fea-
tures found inside each subregion. The empirical success of
this technique stems from the fact that the spatial cue is inte-
grated, and an approximate geometric matching is actually
performed when multiple resolutions are combined in a prin-
cipled way.

The codebook model, as a simplified version of such a
pipeline without spatial pooling, has been also considered for
3D shapes. The basic idea of using a codebook to represent a
shape as histograms of occurrences of visual words is com-
monly referred to in the literature as Bag-of-Words (BoW) or
Bag-of-Features (BoF) approach. Several authors have intro-
duced such BoF approaches for 3D shape retrieval. Indeed,
early research has mainly dealt with the global Euclidean
transformations (rigid motion) [5] and multiple views [6]. By
defining the visual words on the segmented shape regions,
Toldo et al. [7] obtained encouraging shape categorization
and retrieval results. Darom et al. [8] achieved state-of-the-
art retrieval accuracy by designing the local vertex-wise fea-
tures, which are robust to scale changes and partial mesh
matching. The codebook model has been shown to be a
promising method for partial shape retrieval [8,9]. Recent
efforts have also focused on finding the deformation invari-
ance for nonrigid shapes by replacing the Euclidean metric
with its geodesic counterpart [10]. The geodesic distance,
however, suffers from strong sensitivity to topological noise,
which limits its usefulness in real applications.

This problem is well handled by the tools from the emerg-
ing field of diffusion geometry, which provides a generic
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framework for many intrinsic methods in the analysis of geo-
metric shapes. Diffusion geometry formulates the heat diffu-
sion processes on manifolds. Coifman and Lafon [11] intro-
duced invariant metrics known as diffusion distances, which
correspond to the L2-norm difference of energy distribution
between two points initialized with unit impulse functions
after a given time. The diffusion distance is more robust
to topological noise than geodesic one. Reuter et al. [12]
adopted the eigenvalues of the Laplace–Beltrami (LB) opera-
tor to construct a global shape descriptor, called ShapeDNA.
Based on the theoretical works in [13], Lévy [14] showed
that the eigenfunctions of LB operator can be well adapted
to the geometry and the topology of an object. Later, sev-
eral spectral descriptors were proposed to characterize the
geometric features of a 3D surface [15–17]. By aggregat-
ing these spectral descriptors, the Shape Google algorithm
[18,19] was proposed as a classical method for deformable
shape retrieval. It uses the multiscale diffusion heat ker-
nels as “geometric words”, and constructs a compact and
informative shape representation by means of the codebook
approach.

More recently, there have been several attempts to adapt
2D planar shape contexts [20], popular image feature detec-
tors [21] and descriptors [22], to 3D surfaces. This line of
works partially inspires our proposed approach. Another
inspiration is due in part to the great success of SPM in
the image domain. Spatially enhanced techniques for 3D
shape recognition were explored earlier in [23,24], but these
works are not intrinsic, i.e., shape deformations affect the
descriptors. “Geometric expressions” [18] was an earlier
work that explored the exploitation of intrinsic geometry,
but the authors only dealt with the local relative spatial posi-
tion, by considering the diffusion distance between pair-
wise vertices. Our approach, on the other hand, models the
global absolute spatial positions, which allow us to retain
and exploit the information contained in the whole 3D
shape.

Our contributions are threefold: (1) we propose to adopt
the second eigenfunction of the LB operator in a bid to con-
struct a global surface coordinate system, which is insensitive
to shape deformation, (2) we develop a proper generalization
of the SPM for surfaces and show a numerical way to con-
struct it, and (3) we experimentally demonstrate that intro-
ducing the global spatial context significantly improves the
discriminative power of the descriptor in 3D matching and
retrieval.

The rest of this paper is organized as follows. Section 2
provides a brief background on the LB operator, its discretiza-
tion and eigenanalysis, followed by the codebook model. In
Sect. 3, we propose the intrinsic spatial pyramid matching
(ISPM) approach. Experimental results on two 3D datasets
are presented in Sect. 4. Finally, we conclude and point out
future work directions in Sect. 5.

2 Background

2.1 Laplace–Beltrami operator

Let M be a smooth orientable 2-manifold (surface) embedded
in R

3. A global parametric representation (embedding) of M

is a smooth vector-valued map (also called surface patch) x
defined from a connected open set (parametrization domain)
U ⊂ R

2 to M ⊂ R
3 such that

x(u) =
(

x1(u), x2(u), x3(u)
)

(1)

where u = (u1, u2) ∈ U . Note that the components of x and
u are denoted by superscripts in place of subscripts. This
superscript convention stems from the use of tensor nota-
tion which greatly simplifies the formalism of the theory of
surfaces [25].

Given a twice-differentiable function f : M → R, the LB
operator [26] is a second-order partial differential operator
defined as

�M f = − 1√|g|
2∑

i, j=1

∂

∂u j

(√|g| gi j ∂ f

∂ui

)

= −
2∑

i, j=1

gi j ∂

∂u j

∂ f

∂ui
+ (lower order terms) (2)

where the matrix g = (gi j ) is referred to as a Riemannian
metric tensor on M, gi j denote the elements of the inverse
of the metric tensor g−1, and |g| is the determinant of g.
The functions gi j are sometimes referred to as the metric
coefficients. The Riemannian metric g is an intrinsic quantity
in the sense that it relates to measurements inside the surface.
It is the analogous of the speed in the case of space curves
and determines all the intrinsic properties of the surface M.
These properties depend on the surface and do not depend on
its embedding in space. Furthermore, the tensor g is invariant
to rotation of the surface in space because it is defined in terms
of inner products that are rotation invariant.

2.2 Discretization

Assume that the surface M is approximated by a triangular
mesh. A triangle mesh M may be defined as M = (V, E)

or M = (V, T ), where V = {v1, . . . , vm} is the set of ver-
tices, E = {ei j } is the set of edges, and T = {t1, . . . , tn}
is the set of triangles. Each edge ei j (denoted by [vi , v j ] or
simply [i, j]) connects a pair of vertices {vi , v j }. Two dis-
tinct vertices vi , v j ∈ V are adjacent (denoted by vi ∼ v j

or simply i ∼ j) if they are connected by an edge, i.e.,
ei j ∈ E . The neighborhood (1-ring) of a vertex vi is the set
v�

i = {v j ∈ V : i ∼ j}.
Several discretizations of the LB operator are available

in the literature. In this paper, we use the approach devel-
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oped in [27], which employs a mixed finite element/finite
volume method on triangle meshes. Hence, the value of �M f
at a vertex vi (or simply i) can be approximated using the
cotangent weight scheme:

�M f (i)≈ 1

ai

∑
j∼i

cot αi j + cot βi j

2

(
f ( j) − f (i)

)
(3)

where αi j and βi j are the angles � (vivk1v j ) and � (vivk2v j )

of two faces tα = {vi , v j , vk1} and tβ = {vi , v j , vk2} that are
adjacent to the edge [i, j], and ai is the area of the Voronoi
cell. It is worth pointing out that the cotangent weight scheme
is numerically consistent and preserves several important
properties of the continuous LB operator, including symme-
try and positive-definiteness [28].

Define the weight function ω : V × V → R as

ωi j =
{

cot αi j +cot βi j
2ai

if i ∼ j
0 o.w.

(4)

Then, for a function f : V → R that assigns to each vertex
i ∈ V a real value f (i) (we can view f as a column vector
of length m), we may write the LB operator given by Eq. (3)
as

L f (i) =
∑
j∼i

ωi j
(

f (i) − f ( j)
)
, (5)

where the matrix L = (�i j ) is given by

�i j =
⎧
⎨
⎩

d j if i = j
−ωi j if i ∼ j
0 o.w.

(6)

and d j = ∑m
i=1 ωi j is the weighted degree of the vertex vi .

2.3 Eigenanalysis and spectral signatures

Note that ωi j �= ω j i implies L is not a symmetric matrix.
Thus, the spectrum (set of eigenvalues) of the eigenvalue
problem Lϕi = λiϕi may not be real [29]. Noting that ωi j =
κi j/ai , where

κi j =
{

cot αi j +cot βi j
2 if i ∼ j

0 o.w.
(7)

we may factorize the matrix L as L = A−1C , where A =
diag(ai ) is a positive-definite diagonal matrix called stiffness
matrix and C = (ci j ) is a sparse symmetric matrix referred
to as lumped mass matrix, given by

ci j =
⎧
⎨
⎩

∑m
i=1 κi j if i = j

−κi j if i ∼ j
0 o.w.

(8)

Therefore, we may write the eigenvalue problem Lϕi = λiϕi
as a generalized problem

Cϕi = λi Aϕi , i = 1, 2, . . . , m (9)

The eigenvalues λi and associated eigenfunctions ϕi of
the LB operator can be computed by solving the above
generalized problem. That is, ϕi is an m-dimensional vec-
tor. We may sort the eigenvalues in ascending order as
0 = λ1 < λ2 ≤ · · · ≤ λm with corresponding eigen-
functions as ϕ1,ϕ2, . . . ,ϕm , where each eigenfunction ϕi =
(ϕi (v1), . . . , ϕi (vm))′ is an m-dimensional vector. Note that
the eigensystem {λi ,ϕi }i is intrinsic to the manifold and
enjoys a nice property of being isometric invariant.

Based on the obtained eigenfunctions and eigenvalues,
several spectral signatures have been proposed in the litera-
ture to describe a single vertex on a surface. Sun et al. [15]
introduced the heat kernel signature (HKS) based on the fun-
damental solution of the heat equation (heat kernel). Its scale-
invariant version (SIHKS) was developed in [17]. Another
physically inspired descriptor is the wave kernel signature
(WKS), which was proposed in [16]. Unlike the HKS, the
WKS separates influences of different frequencies, treating
all frequencies equally. These descriptors have been shown
to achieve an excellent performance in 3D shape analysis and
recognition.

2.4 Bag-of-feature model

Given a set of local point-wise signatures densely computed
on each vertex on the mesh surface, we quantize the signa-
ture space to obtain a compact histogram representation of
the shape using the codebook model approach. The geometric
word vocabulary in the codebook model may be constructed
in various ways, e.g., by approximate k-means [30] or hier-
archical k-means [31]. We use the simple k-means method,
which is also used in the Shape Google algorithm [19].
Thus, the “geometric words” of a vocabulary P = { pk, k =
1, 2, . . . , K } are obtained as the K centroid of k-means clus-
tering in the signature space. From any shape, a specific
type of local spectral descriptor S = {st , t = 1, 2, . . . , T }
is used for comparison. Obviously, each local descriptor st

(represented as a vector) is associated with its nearest geo-
metric word NN(st ) in the codebook. By a certain vector
coding technique, such as hard counting or ambiguity mod-
eling, each shape will be described by a histogram H . Since
the number of vertices is usually different among different
meshed shapes, an appropriate normalization technique is
essential for the codeword-cumulative histogram representa-
tion.

The traditional codebook is the histogram of the number
of local descriptors assigned to each geometric word. For
each codeword pk , the differences of vector st assigned to
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pk are accumulated by the L0 norm as follows:

qi =
∑

st :N N (st )=i

‖st − pi‖0 (10)

However, this may be disadvantageous because one local
descriptor can be modeled better by multiple geometric
words. The hard counting strategy in traditional codebook
will result in quantization loss. Another similar method is
the codeword uncertainty [32], in which one image region
distributes its probability mass to more than one codeword.
In the Shape Google algorithm, the authors also adopted
this technique, which is modeled to normalize the amount
of probability mass to a total constant weight of 1 and is dis-
tributed over all relevant codewords. Relevancy is determined
by the ratio of the Gaussian kernel values for all codewords
pi in the vocabulary

qi =
T∑

t=1

1

σ
√

2π
e− 1

2
‖st − pi ‖2

2
σ2

∑K
k=1

1
σ
√

2π
e− 1

2
‖st − pk‖2

2
σ2

(11)

Thus, in the traditional codebook, the local descriptor
selects the best candidate geometric word, whereas the code-
word uncertainty does not solely assign the descriptor to the
best fitting word, but is also divided over multiple codewords.
Both of them can be compared via the Chi-squared kernel.
In the following section, we introduce an ISPM kernel.

3 Intrinsic spatial pyramid matching

3.1 Isocontours

The eigenfunctions of the LB operator enjoy nice properties
including isometry invariance and robustness to pose varia-
tions such as translation and rotation. These eigenfunctions
are orthogonal 〈ϕi ,ϕ j 〉A = 0, ∀i �= j , where the orthog-
onality is defined in terms of the A-inner product. That is,
〈ϕi ,ϕ j 〉A = ϕ′

i Aϕ j . Moreover, any function f : V → R

(viewed as a column vector of length m) on the triangle mesh
M can be written in terms of the eigenfunctions as follows:

f =
m∑

i=1

αiϕi , where αi = 〈 f,ϕi 〉. (12)

Note that since the sum of each row in the matrix C equals
zero, the first eigenvalue λ1 is zero and the corresponding
eigenfunction ϕ1 is a constant m-dimensional vector. The
top row of Fig. 1 shows a 3D horse model colored by the
second, third and fourth eigenfunctions, while the bottom
row displays the isocontours of these eigenfunctions.

We can use the variational characterizations of the eigen-
values in terms of the Rayleigh–Ritz quotient. That is, the
second eigenvalue is given by

λ2 = inf
f ⊥ϕ1

f ′C f

f ′ A f
= inf

f ⊥ϕ1

∑
i∼ j ci j ( f (vi ) − f (v j ))

2

∑
i f (vi )2ai

(13)

Fig. 1 a–c 3D horse model
colored by ϕ2,ϕ3,ϕ4. d–f
Level sets of ϕ2,ϕ3,ϕ4
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and ϕ2 = (ϕ2(v1), . . . , ϕ2(vm))′ is its corresponding eigen-
vector.

The eigenvalues and eigenfunctions have a nice physical
interpretation: the square roots of the eigenvalues

√
λi are the

eigenfrequencies of the membrane and ϕi (x) are the corre-
sponding amplitudes at x . In particular, the second eigenvalue
λ2 corresponds to the sound we hear the best [33]. On the
other hand, Uhlenbeck [34] showed that the eigenfunctions
of the LB operator are Morse functions on the interior of
the domain of the operator. Consequently, this generic prop-
erty of the eigenfunctions gives rise to construction of the
associated intrinsic isocurves.

3.2 Intrinsic spatial partition

Motivated by the invariance properties of the second eigen-
function of the LB operator and also by its generic property
as a Morse function as well as by the fact that intuitively
the second eigenvalue corresponds to the sound we hear the
best [33], we propose to use the level sets (isocontours) of
the second eigenfunction as cuts to partition a surface. In
Fig. 2a–c, we show some examples of the level curves of ϕ2.
In Fig. 2a, we can observe that the isocontours are consis-
tent with global large deformation (first column), local small
bend (second column), and among the shapes from differ-
ent classes, but share similar topological structure (third col-
umn). The correspondence of isocontours on the shapes from
the same class is displayed in Fig. 2b, which shows shapes
that include various topological structures. Finally, the con-
sistency of isocontours on the shapes from different classes
is displayed in Fig. 2c. Although the shapes are explicitly
different, their isocontours can capture their intrinsic corre-
spondence well.

The level sets of the second eigenfunction have been pre-
viously used to extract curve skeletons of nonrigid shapes
[35], which is a vivid clue that these isocontours capture the
global topological structure of shapes.

3.3 Matching by intrinsic spatial partition

Instead of representing the whole shape by the codeword
model without considering spatial layout of local descriptors,
we propose to enhance the discrimination by integrating the
distribution of local descriptors in different spatial patches
determined by the intrinsic spatial partition. For any shape
cut by isocontours at resolution R, its description H is the
concatenation of R sub-histograms:

H = [h1, h2, . . . , hi , . . . , hR] (14)

where hi is the sub-histogram ordered in the i th position
according to the intrinsic spatial partition from one end to
the other. Note that the isocontour sequence might start from
either end, and the situations are different from shape to

shape. For example, in Fig. 2a, the heads of the first and third
rabbit are colored in blue, but tail of the second is colored in
red and head in blue, whose order is exactly the opposite. To
guarantee that the semantic correspondent parts are matched
in the comparison, we use an order-insensitive strategy com-
parison method. First, we get a new histogram T by making
the order of the sub-histogram inverted in H :

T = [hR, h(R−1), · · · , hi , · · · , h1]. (15)

Second, to compare two shapes P and Q, we define their
dissimilarity under this feature as follows:

BR(P, Q) = min(AR(HP , HQ),AR(HP , TQ)) (16)

where HP and HQ denote the histograms of P and Q,
respectively. In other words, there are two possible matching
schemes between the isocontour sequences of two shapes,
head-to-head and head-to-end. We consider the schemes with
the minimum cost to be better matched. For each scheme, the
dissimilarity measure AR(·, ·) is defined as

AR(HP , HQ) =
R∑

i=1

K∑
k=1

�(hi
P (k), hi

Q(k)) (17)

where�(·, ·) can be any histogram comparison metric. In this
paper, we use the Chi-squared kernel so that hi

P (k) and hi
Q(k)

are the accumulations of the code of the local descriptors from
P and Q that fall into the kth codeword cell/channel of the
i th patch.

The degree of resolution would affect the performance
of the spatial partition-based method. To further improve
the results, we extend the spatial pyramid, which has been
shown to yield excellent performance in image analysis, to
nonrigid 3D shapes. The spatial pyramid divides an image
into a multi-level pyramid of increasingly fine subregions and
computes a codebook descriptor for each subregion. We con-
struct a sequence of histograms at resolutions {R = 2�, � =
0, . . . , L} such that the surface at level � has 2� patches, for a
total of 2L − 1 patches. Thus, the final dissimilarity between
the histograms of P and Q is given by

DL (P, Q) = BL (P, Q) +
L−1∑
�=0

1

2L−�
(B�(P, Q) − B�+1(P, Q))

= 1

2L
B0(P, Q) +

L∑
�=1

1

2L−�+1
B�(P, Q) (18)

The weight associated with each level is set to 1/2L−�, which
is inversely proportional to the cell width at that level. Intu-
itively, we want to penalize matches found in larger cells
because they involve increasingly dissimilar features. Con-
cerning the implementation, one issue that arises is that of
normalization. To easily compare the methods of single-level
partition and ISPM, we normalize the histogram of each res-
olution using the L1-norm.
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Fig. 2 a Isocontours are
invariant under both global and
local deformations. b
Proportionality correspondence
of pairwise nonrigid shapes with
varied topological structure. c
Isocontours are consistent
among different classes of
shapes.
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4 Experimental results

The performance of our proposed intrinsic spatial pyramid
was evaluated on two datasets, namely SHREC 2011 Bench-
mark [36] and the TOSCA-based robust shape retrieval data-
base used in [19]. The first dataset is used to validate the
discriminative power of ISPM between different shape cat-
egories, and the second one is used to test the robustness of
ISPM.

4.1 SHREC 2011 database

SHREC 2011 database contains 600 watertight triangle
meshes that are equally classified into 30 categories. SHREC
2011 is the most diverse nonrigid 3D shape database available
today in terms of object classes and deformations. In Fig. 3,
we show two shapes of each class in the dataset. The retrieval
performance is evaluated using the discounted cumulative
gain (DCG) [37]. All normalized DCG calculations are rel-
ative values in the interval [0, 1]. Higher numbers are better,
and the results are cross-query comparable.

We performed ISPM based on HKS and SIHKS dense
descriptors. These descriptors showed excellent performance
with the codebook model in the Shape Google algorithm. The

first 150 eigenvalues and eigenvectors of the LB operator
on each shape are used. We experimentally select the best
parameters for HKS and SIHKS on SHREC 2011 dataset.
For HKS, we formulate the diffusion time as t = t0ατ , where
τ is sampled from 0 to a given scale T with a resolution 1/4.
T = 5, t0 = 0.01 and α = 4 are set in our case. In order to
construct the SIHKS, we use t = ατ , where τ ranges from 1
to a given scale with finer increments of 1/16. T = 25 and
α = 2 are chosen. After applying the logarithm, derivative
and Fourier transform, all the frequencies are used to obtain
the best result.

The computation of the vocabulary is performed offline in
advance. To confirm getting optimal results, the clustering is
repeated three times, and each by a new set of initial cluster
centroid positions. The solution with the lowest value for the
sum of distances is returned. The running time depends on the
number of the descriptors (number of vertices), the dimen-
sion of the descriptor, and the vocabulary size (the number
of clusters). Since we simplify our mesh to 2,000 faces for
each shape, we have a set of approximately 6 × 105 descrip-
tors. The vocabulary size is fixed as 32, the dimension of
HKS is 21 and the dimension of SIHKS is 385. It is impor-
tant to point out that we performed the BoF experiments on
SHREC2011 with various codeword sizes of 8, 12, 16, 24,

Fig. 3 Sample shapes in SHREC 2011 dataset
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Fig. 4 Performance improvement by increasing the number of intrinsic
partitions on SHREC 2011 dataset

Table 1 Performance (DCG) comparison of ISPM and single-level
partition on SHREC 2011

Spectral
descriptor

Level
L (partitions)

Codebook Models

Traditional Uncertainty

Single Pyramid Single Pyramid

HKS 1(2) 0.8345 0.8277 0.8497 0.8431

4 (16) 0.8766 0.8721 0.8892 0.8870

7 (128) 0.8893 0.8878 0.8892 0.8903

9 (512) 0.8911 0.8902 0.8885 0.8891

SIHKS 1(2) 0.8457 0.8436 0.8714 0.8661

4 (16) 0.8688 0.8671 0.8862 0.8853

7 (128) 0.8778 0.8771 0.8887 0.8890

9 (512) 0.8798 0.8793 0.8888 0.8890

32, 48, 64, 80 and 200. It turns out that different descrip-
tors attain the best results with size 32, and change slightly
afterwards. As a result, we fixed the codeword size as 32 for
SHREC2011. The running times to obtain the vocabulary for
HKS and SIHKS are 1,043 and 9,033 s, respectively.

First, we examine the effect of integrating spatial cues on
surfaces via the intrinsic partition. Figure 4 shows the perfor-
mance improvement of the retrieval experiments by matching
shapes directly using intrinsic partitions on SHREC 2011
dataset. With the increase of the number of intrinsic parti-
tions, both HKS and SIHKS are improved substantially. The
performance of the Shape Google is plotted as points whose
partition number is one. Obviously, intrinsic spatial cues on
the shape surface proposed in our framework significantly
outperform the Shape Google. We only show the result with
maximum 19 partitions for visualization purposes. As a mat-
ter of fact, the retrieval results will go slightly higher even
when a 1,024-partition is adopted in our experiments.

Next, let us examine the behavior of the ISPM. For com-
pleteness, Table 1 lists the performance achieved using just
the highest level of the pyramid (the “single” columns) as
well as the performance of the complete matching scheme
using multiple levels (the “pyramid” columns). For both HKS
and SIHKS, the results improve considerably as we go from
L = 1 to a multi-level setup. We do not display the results
for L = 0 because its highest single level is the same as
with its pyramid. Although matching at the highest pyra-
mid level seems to account for most of the improvement,
using all the levels together helps provide stable results. For
HKS with codeword uncertainty, single-level performance
actually drops as we go from L = 7 to L = 9. This
means that the highest level of the L = 7 pyramid is too
finely subdivided, with individual bins yielding few matches.
Despite the diminished discriminative power of the highest
level, the performance of the entire L = 9 pyramid remains
essentially identical to that of the L = 7 pyramid. Thus,
the main advantage of the intrinsic spatial pyramid repre-
sentation stems from combining multiple resolutions in a
principled fashion, and it is robust to failures at individual
levels.

In Fig. 5, we show two examples of top nine retrieval
results for different methods. There are plenty of examples
to demonstrate that our proposed ISPM method improves
the Shape Google, we just take two to illustrate the idea.
Between each two blue lines in that figure, the upper row is
our approach, while the bottom row is Shape Google. For
the first query alien, SIHKS confuses it with spider, while
HKS confuses it with Santa. This is because these objects
also have several long, thin pipe-like parts and flat globu-
lar parts, and the proportions are similar. The spatial parti-
tion separates pipe-like parts and globular parts into different
sub-histograms according to the global spatial position, thus
resulting in a more descriptive representation. In particular,
the Santa and alien models share similar body shape, but
the shapes of Santa’s hat and the alien’s horns are spatially
inverted, even though these two parts are similar in terms of
the proportion of primitive geometric elements. For the sec-
ond query dinosaur, ISPM successfully removes the incorrect
results of the gorilla and woman models. But the error with
armadillo still remains, which turns out the case as ISPM
fails. It is understandable since even humans may incorrectly
recognize it at first glance. In terms of global shape struc-
tures, the armadillo and dinosaur models are almost isomet-
ric. So ISPM considers the semantically correspondent parts
as good matchings and compares them by their correspon-
dent regions. Because of their similar geometric details of
the four legs and the tail, ISPM is still not able to distinguish
between these two shapes.

In addition to comparing shapes at their coarsest level
(shape-to-shape), ISPM is also able to quantitatively tell the
difference at certain detailed levels (patch-to-patch).
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Fig. 5 Retrieval results using SIHKS and HKS and their ISPM version. Error result is marked in the red dashed box. a On the left is the query
shape alien, and the ten rows on the right show its top 9 retrieval results. b On the left is the query shape dinosaur and the ten rows in the right show
its top 9 retrieval results

4.2 TOSCA database

We also tested our algorithm on the TOSCA database,
which has been used to validate the Shape Google [19]. The
total positive set size was 531, equally categorized into 13
classes. In each class, the shapes underwent different types
of transformations, including null, isometry topology, isom-
etry + topology, triangulation and partiality. We used 456
shapes as negatives. All the shapes were normalized to have
approximately the same scale. The retrieval quality was quan-
titatively measured using the receiver operating character-
istic (ROC) curve, which essentially represents a trade-off
between the percentage of similar shapes correctly identified
as similar (true positive rate or TPR) and the percentage of
dissimilar shapes wrongfully identified as similar (false pos-
itive rate or FPR). We used the same experimental settings as
in [19]. Since the performance of both the traditional code-
book and the uncertainty codebook is consistent, we only
display the results of the traditional codebook for the sake of
convenience. The highest level of ISPM is chosen as L = 8,
and the dictionary size is set to 48. Figure 6 shows the ROC
curves of both BoF and ISPM using HKS and SIHKS for
each class of transformations. As can be seen in Fig. 6, the

ISPM method outperforms the BoF of the Shape Google in
all cases.

4.3 Strengths and weaknesses of the proposed approach

Similar to BoF, the proposed method performs worse than
ShapeDNA on SHREC 2011 benchmark. This is due in part
to the fact that ShapeDNA is particularly good at retriev-
ing the near-redundant isometrics. On TOSCA-based data-
base, however, which has different classes of mesh trans-
formations, ISPM performs the best on the grounds that the
partitions provided by the second eigenfunction are stable.
We may summarize the strengths and weaknesses of our
approach as follows:

• Strengths: (1) The main advantage of ISPM over BoF is
its integration of spatial information in a principled way.
(2) ISPM provides a coarse correspondence of shapes.

• Weaknesses: (1) A major drawback of ISPM is how
to determine an appropriate partition number parame-
ter. Such a limitation also exists in the original paper of
Lazebnik’s et al. [4] on SPM. Thus, using too many par-
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Fig. 6 ROC curves (true positive vs. false positive rate) for different classes of shape transformations using SIHKS and HKS with both BoF and
ISPM

titions on the surface tend to degrade the performance of
the proposed algorithm, largely because of the mismatch-
ing. (2) Unlike the graph-based method, ISPM may still
lose the topological information, which is critical in dis-
tinguishing between shapes from different classes.

5 Conclusion and future work

We developed an intrinsic version of the SPM, making it
suitable for the analysis of deformable 3D shapes. Our con-
struction is based on the isocontours of the second eigen-
function of LB operator on Riemannian manifolds. The pro-
posed partitioning can capture the global shape topological
information and provide a deformation invariant represen-
tation. Furthermore, the ISPM is able to establish a global

correspondence among shapes. It can be used in combina-
tion with any dense shape descriptor, e.g., heat kernel signa-
ture or scale-invariant heat kernel signature, and consistently
achieves a notable improvement over the BoF model, which
only encodes orderless local information.

We plan to extend this work in two directions. First, the
spatial pyramid framework offers insights into the success
of the different dense shape descriptor in our experiments.
Therefore, performing a spatial partition-based investigation
on all the recent spectral descriptors, such as wave kernel
signature, may provide very practical instructions for further
applications. Second, using the proposed global system of
coordinates, intrinsic versions of many other aggregation-
based compact representations popular in image analysis,
such as Fisher vector, can be designed. We intend to explore
these constructions in our future work.
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