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Abstract This paper presents a method for selecting salient
2D views to describe 3D objects for the purpose of retrieval.
The views are obtained by first identifying salient points via
a learning approach that uses shape characteristics of the 3D
points (Atmosukarto and Shapiro in International workshop
on structural, syntactic, and statistical pattern recognition,
2008; Atmosukarto and Shapiro in ACM multimedia infor-
mation retrieval, 2008). The salient views are selected by
choosing views with multiple salient points on the silhou-
ette of the object. Silhouette-based similarity measures from
Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are
then used to calculate the similarity between two 3D objects.
Retrieval experiments were performed on three datasets: the
Heads dataset, the SHREC2008 dataset, and the Princeton
dataset. Experimental results show that the retrieval results
using the salient views are comparable to the existing light
field descriptor method (Chen et al. in Comput Graph Forum
22(3):223–232, 2003), and our method achieves a 15-fold
speedup in the feature extraction computation time.

Keywords 3D object retrieval · 3D object signature ·
Salient points

1 Introduction

Advancement in technology for digital acquisition and graph-
ics hardware has led to an increase in the number of
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3D objects available. Three-dimensional objects are now
commonly used in a number of areas such as games, mechan-
ical design for CAD models, architectural and cultural her-
itage, and medical diagnostic. The widespread integration of
3D models in all these fields motivates the need to be able
to store, index, and retrieve 3D objects automatically. How-
ever, classification and retrieval techniques for text, images,
and videos cannot be directly translated and applied to 3D
objects, as 3D objects have different data characteristics from
other data modalities.

Shape-based retrieval of 3D objects is an important area of
research. The accuracy of a 3D shape-based retrieval system
requires the 3D object to be represented in a way that captures
the local and global shape characteristics of the objects. This
is achieved by creating 3D object descriptors that encapsulate
the important shape properties of the objects. This process is
not a trivial task.

This paper presents our method of selecting salient 2D
views to describe a 3D object. First, salient points are iden-
tified by a learning approach that uses the shape character-
istics of each point. Then 2D salient views are selected as
those that have multiple salient points on or close to their
silhouettes. The salient views are used to describe the shape
of a 3D object. The similarity between two 3D objects uses
view-based similarity measure developed by Chen et al. [10]
for which two 3D objects are similar if they have similar 2D
views.

The remainder of this paper is organized as follows: First,
existing shape descriptors and their limitations are discussed.
Next, we describe the datasets acquired to develop and test
our methodology. The method for finding the salient points
of a 3D object is described next. Then, selection of the salient
views based on the learned salient points is defined. In the
experimental results section, the evaluation measures are first
described, and a set of retrieval experiments is described and
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analyzed. Finally, a summary and suggestions for future work
are provided.

2 Related literature

Three-dimensional object retrieval has received increased
attention in the past few years due to the increase in the num-
ber of 3D objects available. A number of survey papers have
been written on the topic [7–9,12,14,17,24,30,34,35,38].
An annual 3D shape retrieval contest was also introduced
in 2006 to try to introduce an evaluation benchmark to the
research area [32]. There are three broad categories of ways
to represent 3D objects and create a descriptor: feature-based
methods, graph-based methods, and view-based methods.

The feature-based method is the most commonly used
method and is further categorized into global features, global
feature distributions, spatial maps, and local features. Early
work on 3D object representation and its application to
retrieval and classification focused more on the global fea-
tures and global feature distribution approaches. Global fea-
tures computed to represent 3D objects include area, volume,
and moments [13]. Some global shape distribution features
computed include the angle between three random points
(A3), the distance between a point and a random point (D1),
the distance between two random points (D2), the area of the
triangle between three random points (D3), and the volume
between four random points on the surface (D4) [26,28].
Spatial map representations describe the 3D object by cap-
turing and preserving physical locations on them [19–21,31].
Recent research is beginning to focus more on the local
approach to representing 3D objects, as this approach has
a stronger discriminative power when differentiating objects
that are similar in overall shape [29].

While feature-based methods use only the geometric prop-
erties of the 3D model to define the shape of the object,
graph-based methods use the topological information of the
3D object to describe its shape. The graph that is con-
structed shows how the different shape components are
linked together. The graph representations include model
graphs, Reeb graphs, and skeleton graphs [16,33]. These
methods are known to be computationally expensive and sen-
sitive to small topological changes.

The view-based method defines the shape of a 3D object
using a set of 2D views taken from various angles around
the object. The most effective view-based descriptor is the
light field descriptor (LFD) developed by Chen et al. [10]. A
light field around a 3D object is a 4D function that represents
the radiance at a given 3D point in a given direction. Each
4D light field of a 3D object is represented as a collection of
2D images rendered from a 2D array of cameras distributed
uniformly on a sphere. Their method extracts features from
100 2D silhouette image views and measures the similarity

between two 3D objects by finding the best correspondence
between the set of 2D views for the two objects.

The LFD was evaluated to be one of the best perform-
ing descriptors on the Princeton and SHREC benchmark
databases. Ohbuchi et al. [27] used a similar view-based
approach; however, their method extracted local features
from each of the rendered image and used a bag-of-features
approach to construct the descriptors for the 3D objects.
Wang et al. [36] used a related view-based approach by pro-
jecting a number of uniformly sampled points along six direc-
tions to create six images to describe a 3D object. Liu et
al. [23] also generated six view planes around the bounding
cube of a 3D object. However, their method further decom-
posed each view planes into several resolution and applied
wavelet transforms to the extracted features from the view
planes. Both these methods require pose-normalization of
the object; however, pose-normalization methods are known
not to be accurate and objects in the same class are not
always pose-normalized into the same orientation. Yamauchi
et al. [37] applied a similarity measure between views to
cluster similar views and used the centroid of clusters as the
representative views. The views are then ranked based on a
mesh saliency measure [22] to form the object’s representa-
tive views. Ansary et al. [1,2] proposed a method to optimally
select 2D views from a 3D model using an adaptive cluster-
ing algorithm. Their method used a variant of K -means clus-
tering and assumed the maximum number of characteristic
views was 40. Cyr and Kimia [11] presented an aspect graph
approach to 3D object recognition using 2D shape similarity
metric to group similar views into aspects and to compare
two objects.

We propose a method to select salient 2D silhouette
views of an object and construct a descriptor for the object
using only the salient views extracted. The salient views are
selected based on the salient points learned for each object.
Our method does not require any pose normalization or clus-
tering of the views.

3 Datasets

We obtained three datasets to develop and test our method-
ology. Each dataset has different characteristics that help
explore the different properties of the methodology. The
Heads dataset contains head shapes of different classes of
animals, including humans. The SHREC 2008 classification
benchmark dataset was obtained to further test the perfor-
mance of the methodology on general 3D object classifica-
tion, where objects in the dataset are not very similar. Last,
the Princeton dataset is a benchmark dataset that is com-
monly used to evaluate shape-based retrieval and analysis
algorithms.
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3.1 Heads dataset

The Heads database contains head shapes of different classes
of animals, including humans. The digitized 3D objects were
obtained by scanning hand-made clay toys using a laser scan-
ner. Raw data from the scanner consisted of 3D point clouds
that were further processed to obtain smooth and uniformly
sampled triangular meshes. To increase the number of objects
for training and testing our methodology, we created new
objects by deforming the original scanned 3D models in a
controlled fashion using 3D Studio Max software [5]. Global
deformations of the models were generated using morphing
operators such as tapering, twisting, bending, stretching, and
squeezing. The parameters for each of the operators were ran-
domly chosen from ranges that were determined empirically.
Each deformed model was obtained by applying at least five
different morphing operators in a random sequence.

Fifteen objects representing seven different classes were
scanned. The seven classes are cat head, dog head, human
head, rabbit head, horse head, tiger head, and bear head. A
total of 250 morphed models per original object were gener-
ated. Points on the morphed model are in full correspondence
with the original models from which they were constructed.
Figure 1 shows examples of objects from each of the seven
classes.

3.2 SHREC dataset

The SHREC 2008 classification benchmark database was
obtained to further test the performance of our methodol-
ogy. The SHREC dataset was selected from the SHREC 2008

Competition “classification of watertight models” track [15].
The models in the dataset have a high level of shape variabil-
ity. The models were manually classified using three different
levels of categorization. At the coarse level of classification,
the objects were classified according to both their shapes and
semantic criteria. At the intermediate level, the classes were
subdivided according to functionality and shape. At the fine
level, the classes were further partitioned based on the object
shape. For example, at the coarse level some objects were
classified into the furniture class. At the intermediate level,
these same objects were further divided into tables, seats and
beds, where the classification takes into account both func-
tionality and shape. At the fine level, the objects were clas-
sified into chairs, armchairs, stools, sofa and benches. The
intermediate level of classification was chosen for the exper-
iments as the fine level had too few objects per class, while
the coarse level had too many objects that were dissimilar
in shape grouped into the same class. In this categorization,
the dataset consists of 425 pre-classified objects that are pre-
classified into 39 classes. Figure 2 shows examples of objects
in the SHREC benchmark dataset.

3.3 Princeton dataset

The Princeton dataset is a benchmark database that con-
tains 3D polygonal models collected from the Internet. The
dataset is split into a training database and a test database.
The training database contains 907 models and the test data-
base contains 907 models. The base training classification
contains 90 classes and the base classification contains 92
classes. Example of classes includes car, dog, chair, table,
flower, trees, etc. Figure 3 shows examples of objects in the

Fig. 1 Example of objects in the Heads dataset

Fig. 2 Example of objects in the SHREC 2008 Classification dataset

Fig. 3 Example of objects in
the Princeton dataset
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dataset. The benchmark also includes tools for evaluation and
visualization of the 3D model matching scores. The dataset
is usually evaluated using the commonly used retrieval sta-
tistics such as nearest neighbor, first and second tier, and
discounted cumulative gain (DCG). For this paper, we only
used the 907 models in the training database.

4 Finding salient points

Our application was developed for single 3D object retrieval
and does not handle objects in cluttered 3D scenes nor occlu-
sion. A surface mesh, which represents a 3D object, consists
of points {pi } on the object’s surface and information regard-
ing the connectivity of the points. The base framework of the
methodology starts by rescaling the objects to fit in a fixed-
size bounding box. The framework then executes two phases:
low-level feature extraction and mid-level feature aggrega-
tion. The low-level feature extraction starts by applying a
low-level operator to every point on the surface mesh. After
the first phase, every point pi on the surface mesh will have
either a single low-level feature value or a small set of low-
level feature values, depending on the operator used. The
second phase performs mid-level feature aggregation and
computes a vector of values for a given neighborhood of
every point pi on the surface mesh. The feature aggregation
results of the base framework are then used to learn the salient
points on the 3D object [3,4].

4.1 Low-level feature extraction

The base framework of our methodology starts by applying
a low-level operator to every point on the surface mesh [3,4].
The low-level operators extract local properties of the surface
mesh points by computing a low-level feature value vi for
every surface mesh point pi . In this work, we use absolute
values of Gaussian curvature, Besl–Jain surface curvature
characterization [6] and azimuth-elevation angles of surface
normal vectors as the low-level surface properties. The low-
level feature values are convolved with a Gaussian filter to
reduce noise.

The absolute Gaussian curvature low-level operator com-
putes the Gaussian curvature estimation K for every point p
on the surface mesh:

K (p) = 2π −
∑

f ∈F(p)

interior_anglef

where F is the list of all the neighboring facets of point p, and
the interior angle is the angle of the facets meeting at point p.
This calculation is similar to calculating the angle deficiency
at point p. The contribution of each facet is weighted by the
area of the facet divided by the number of points that form
the facet. The operator then takes the absolute value of the

Table 1 Besl–Jain surface characterization

Label Category H K

1 Peak surface H < 0 K > 0

2 Ridge surface H < 0 K = 0

3 Saddle ridge surface H < 0 K < 0

4 Plane surface H = 0 K = 0

5 Minimal surface H = 0 K < 0

6 Saddle valley H > 0 K < 0

7 Valley surface H > 0 K = 0

8 Cupped surface H > 0 K > 0

Gaussian curvature as the final low-level feature value for
each point.

Besl and Jain [6] suggested a surface characterization of
a point p using only the sign of the mean curvature H and
Gaussian curvature K . These surface characterizations result
in a scalar surface feature for each point that is invariant
to rotation, translation, and changes in parametrization. The
eight different categories are (1) peak surface, (2) ridge sur-
face, (3) saddle ridge surface, (4) plane surface, (5) minimal
surface, (6) saddle valley, (7) valley surface, and (8) cupped
surface. Table 1 lists the different surface categories with
their respective curvature signs.

Given the surface normal vector n(nx , ny, nz) of a 3D
point, the azimuth angle θ of n is defined as the angle between
the positive xz plane and the projection of n to the x plane.
The elevation angle φ of n is defined as the angle between
the x plane and vector n.

θ = arctan

(
nz

nx

)
, φ = arctan

⎛

⎝ ny√
(n2

x + n2
z )

⎞

⎠

where θ = [−π, π ] and φ = [−π
2 , π

2 ]. The azimuth-
elevation low-level operator computes the azimuth and
elevation value for each point on the 3D surface.

4.2 Mid-level feature aggregation

After the first phase, every surface mesh point pi will have
a low-level feature value vi depending on the operator used.
The second phase of the base framework performs mid-level
feature aggregation to compute a number of values for a given
neighborhood of every surface mesh point pi . Local his-
tograms are used to aggregate the low-level feature values
of each mesh point. The histograms are computed by taking
a neighborhood around each mesh point and accumulating
the low-level feature values in that neighborhood. The size of
the neighborhood is the product of a constant c, 0 < c < 1,
and the diagonal of the object’s bounding box; this ensures
that the neighborhood size is scaled according to the object’s
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Fig. 4 Example histograms of salient and non-salient points.
The salient point histograms have a high value in the last bin illustrating
a high curvature in the region, while low values in the remaining bins
in the histogram. The non-salient point histograms have more varied

values in the curvature histogram. In addition, the entropy E of the
salient point histogram is lower than the non-salient point histogram
(listed under each histogram)

size. The feature aggregation results of the base framework
are used to determine salient points of an object using a learn-
ing approach.

4.3 Learning salient points

Preliminary saliency detection using existing methods such
as 3D SIFT and entropy-based measures [18,22] were not
satisfactory. In some cases they were not consistent and
repeatable for objects within the same class. As a result,
to find salient points on a 3D object, a learning approach
was selected. A salient point classifier is trained on a set of
marked training points on the 3D objects provided by experts
for a particular application. Histograms of low-level features
of the training points obtained using the framework previ-
ously described are then used to train the classifier. For a
particular application, the classifier will learn the character-
istics of the salient points on the surfaces of the 3D objects
from that domain. Our methodology identifies interesting or
salient points on the 3D objects. Initially motivated by our
work on medical craniofacial applications, we developed a
salient point classifier that detects points that have a combi-
nation of high curvature and low entropy values.

As shown in Fig. 4, the salient point histograms have low
bin counts in the bins corresponding to low curvature val-
ues and a high bin count in the last (highest) curvature bin.
The non-salient point histograms have medium to high bin
counts in the low curvature bins and in some cases a high

bin count in the last bin. The entropy of the salient point
histograms also tend to be lower than the entropy of the non-
salient point histograms. To avoid the use of brittle thresh-
olds, we used a learning approach to detect the salient points
on each 3D object [4]. This approach was originally devel-
oped for craniofacial image analysis, so the training points
were anatomical landmarks of the face, whose curvature and
entropy properties are useful for objects in general.

The learning approach teaches a classifier the character-
istics of points that are regarded as salient. Histograms of
low-level feature values obtained in the base framework are
used to train a support vector machine (SVM) classifier to
learn the salient points on the 3D surface mesh. The train-
ing data points for the classifier’s supervised learning are
obtained by manually marking a small number of salient and
non-salient points on the surface of each training object. For
our experiments, we trained the salient point classifier on
3D head models of the Heads database. The salient points
marked included the tip of the nose, corners of the eyes, and
both corners and midpoints of the lips. The classifier learns
the characteristics of the salient points in terms of the his-
tograms of their low-level feature values. After training, the
classifier is able to label each of the points of any 3D object as
either salient or non-salient and provides a confidence score
for its decision. A threshold is applied to keep only salient
points with high confidence scores (≥0.95). While the clas-
sifier was only trained on cat heads, dog heads, and human
heads (Fig. 5), it does a good job of finding salient points on
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Fig. 5 Salient point prediction for a cat head class, b dog head class,
and c human head class. Non-salient points are colored in red, while
salient points are colored in different shades ranging from green to blue,
depending on the classifier confidence score assigned to the point. A
threshold (T = 0.95) was applied to include only salient points with
high confidence scores (color figure online)

Fig. 6 (Top row) Salient point prediction for rabbit head, horse head,
and leopard head class from the Heads database. (Bottom row) Salient
point prediction for human, bird, and human head class from the SHREC
database. These classes were not included in the salient point training

other classes (Fig. 6). The salient points are colored accord-
ing to the assigned classifier confidence score. Non-salient
points are colored in red, while salient points are colored in
different shades of blue with dark blue having the highest
prediction score.

4.4 Clustering salient points

The salient points identified by the learning approach are
quite dense and form regions. A clustering algorithm was
applied to reduce the number of salient points and to pro-
duce more sparse placement of the salient points. The algo-
rithm selects high confidence salient points that are also suf-
ficiently distant from each other. The algorithm follows a
greedy approach. Salient points are sorted in decreasing order
of classifier confidence scores. Starting with the salient point
with the highest classifier confidence score, the clustering
algorithm calculates the distance from this salient point to
all existing clusters and accepts it if the distance is greater
than a neighborhood radius threshold. For our experiments,
the radius threshold was set at 5. Figure 7 shows the selected
salient points on the cat, dog, and human head objects from

Fig. 7 Salient points resulting from clustering

Fig. 5. It can be seen that objects from the same class (heads
class in the figure) are marked with salient points in simi-
lar locations, thus illustrating the repeatability of the salient
point learning and clustering method.

5 Selecting salient views

Our methodology is intended to improve the LFD [10] and
uses their concept of similarity. Chen et al. [10] argue that
if two 3D models are similar, the models will also look sim-
ilar from most viewing angles. Their method extracts light
fields rendered from cameras on a sphere. A light field of a
3D model is represented by a collection of 2D images. The
cameras of the light fields are distributed uniformly and posi-
tioned on vertices of a regular dodecahedron. The similarity
between two 3D models is then measured by summing up
the similarity from all corresponding images generated from
a set of light fields.

To improve efficiency, the light field cameras are
positioned at 20 uniformly distributed vertices of a regu-
lar dodecahedron. Silhouette images at the different views
are produced by turning off the lights in the rendered views.
Ten different light fields are extracted for a 3D model. Since
the silhouettes projected from two opposite vertices on the
dodecahedron are identical, each light field generates ten dif-
ferent 2D silhouette images. The similarity between two 3D
models is calculated by summing up the similarity from all
corresponding silhouettes. To find the best correspondence
between two silhouette images, the camera position is rotated
resulting in 60 different rotations for each camera system. In
total, the similarity between two 3D models is calculated
by comparing 10 × 10 × 60 different silhouette image rota-
tions between the two models. Each silhouette image is effi-
ciently represented by extracting the Zernike moment and the
Fourier coefficients from each image. The Zernike moments
describe the region shape, while the Fourier coefficients
describe the contour shape of the object in the image.
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Fig. 8 a Salient points must appear on the contour of the 3D objects
for a 2D view be considered a ‘salient’ view. The contour salient points
are colored in green, while the non-contour salient points are in red.
b Silhouette image of the salient view in a (color figure online)

There are 35 coefficients for the Zernike moment descrip-
tor and 10 coefficients for the Fourier descriptor.

Like the LFD, our proposed method uses rendered silhou-
ette 2D images as views to build the descriptor to describe
the 3D object. However, unlike LFD, which extracts features
from 100 2D views, our method selects only salient views.
We conjecture that the salient views are the views that are dis-
cernible and most useful in describing the 3D object. Since
the 2D views used to describe the 3D objects are silhouette
images, some of the salient points present on the 3D object
must appear on the contour of the 3D object (Fig. 8).

A salient point p(px , py, pz) is defined as a contour
salient point if its surface normal vector v(vx , vy, vz) is per-
pendicular to the camera view point c(cx , cy, cz). The per-
pendicularity is determined by calculating the dot product
of the surface normal vector v and the camera view point
c. A salient point p is labeled as a contour salient point if
|v · c| ≤ T where T is the perpendicularity threshold. For
our experiments, we used value T = 0.10. This value ensures
that the angle between the surface normal vector and the cam-
era view point is between 84◦ and 90◦.

For each possible camera view point (total 100 view
points), the algorithm accumulates the number of contour
salient points that are visible for that view point. The 100
view points are then sorted based on the number of contour
salient points visible in the view. The algorithm selects the
final top K salient views used to construct the descriptor
for a 3D model. In our experiments, we empirically tested
different values of K to investigate the respective retrieval
accuracy.

A more restrictive variant of the algorithm selects the top
K distinct salient views. In this variant, after sorting the 100
views based on the number of contour salient points visible in
the view, the algorithm uses a greedy approach to select only
the distinct views. The algorithm starts by selecting the first
salient view, which has the largest number of visible contour
salient points. It then iteratively checks whether the next top
salient view is too similar to the already selected views. The
similarity is measured by calculating the dot product between
the two views and discarding views whose dot product to
existing distinct views is greater than a threshold P . In our
experiments, we used value P = 0.98. Figure 9 (top row)
shows the top five salient views, while Fig. 9 (bottom row)
shows the top five distinct salient views for a human object.
It can be seen in the figure that the top five distinct salient
views more completely capture the shape characteristics of
the object. Figure 10 shows the top five distinct salient views
for different classes in the SHREC database.

6 Experimental results

We measured the retrieval performance of our methodol-
ogy by calculating the average normalized rank of relevant
results [25]. The evaluation score for a query object was cal-
culated as follows:

score(q) = 1

N · Nrel

(
Nrel∑

i=1

Ri − Nrel(Nrel + 1)

2

)

where N is the number of objects in the database, Nrel the
number of database objects that are relevant to the query
object q (all objects in the database that have the same class
label as the query object), and Ri is the rank assigned to the
i th relevant object. The evaluation score ranges from 0 to
1, where 0 is the best score as it indicates that all database
objects that are relevant are retrieved before all other objects
in the database. A score that is ≥0 indicates that some non-
relevant objects are retrieved before all relevant objects.

The retrieval performance was measured over all the
objects in the dataset using each in turn as a query object.
The average retrieval score for each class was calculated
by averaging the retrieval score for all objects in the same

Fig. 9 Top five salient views
for a human query object (top
row). Top five distinct salient
views for the same human query
object (bottom row). The
distinct salient views capture
more information regarding
the object’s shape
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Fig. 10 Top five distinct salient
views of animal class (top row),
bird class (middle row), and
chair class (bottom row) from
the SHREC database

Fig. 11 Average retrieval scores across all SHREC classes in the data-
base as the number of top salient views used to construct the descriptor
is varied. Learning of the salient points used two different low-level
features: absolute Gaussian curvature and Besl–Jain curvature

class. A final retrieval score was calculated by averaging the
retrieval score across all classes.

A number of experiments were performed to evaluate the
performance of our proposed descriptor and its variants. The
first experiment explores the retrieval accuracy of our pro-
posed descriptor. The experiment shows the effect of varying
the number of top salient views used to construct the descrip-
tors for the 3D objects in the dataset. As shown in Fig. 11, the
retrieval performance improves (retrieval score decreases) as
the number of salient views used to construct the descriptor
increases. Using the top 100 salient views is equivalent to
the existing LFD method. For the absolute Gaussian curva-
ture feature (blue line graph), LFD with 100 views has the
best retrieval score at 0.097; however, reducing the number
of views by half to the top 50 salient views only increases the
retrieval score to 0.114. For the Besl–Jain curvature feature
(pink line), the trend is similar with a smaller decrease in
performance as the number of views is reduced.

In the second experiment, the algorithm selects the top
salient views which are distinct. Table 2 shows the average

Table 2 Average retrieval scores across all SHREC classes as the
number of top salient views and top distinct salient views are varied

K Score for top
K views

Score for top K
distinct views

1 0.207 0.207

2 0.186 0.174

3 0.172 0.163

4 0.162 0.151

5 0.157 0.138

6 0.155 0.134

7 0.152 0.131

8 0.152 0.129

9 0.146 0.127

10 0.143 0.128

11 0.137 0.127

12 0.134 0.121

20 0.126 –

30 0.121 –

40 0.119 –

50 0.114 –

60 0.121 –

70 0.124 –

80 0.110 –

90 0.105 –

100 0.098 –

Absolute Gaussian curvature was used as the low-level feature in the
base framework. The average maximum number of distinct salient views
is 12.38; hence there is no score available for K > 13 when using the
top K distinct views

retrieval scores across all classes in the dataset as the number
of views and number of distinct views are varied. Comparing
the results, it can be seen that the retrieval scores for the top
K distinct views is always lower (better) than that for the
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top K views. For example, using the top five distinct salient
views achieves an average retrieval score of 0.138 compared
with using the top five salient views with retrieval score of
0.157. In fact, using the top 5 distinct salient views achieves
similar retrieval score to using the top 20 salient views, and
using the top 10 distinct salient views produces a similar
retrieval score as to using the top 50 salient views. Each
object in the dataset has its own number of distinct salient
views. The average number of distinct salient views for all the
objects in the dataset is 12.38 views. Executing the retrieval
with the maximum number of distinct salient views for each
object query achieves a similar average retrieval score to the
retrieval performed using the top 70 salient views.

The third experiment compares the retrieval score when
using the maximum number of distinct salient views to the
retrieval score of the existing LFD method. Table 3 shows
the average retrieval score for each class using the maximum
number of distinct salient views and the LFD method. Over
the entire database, the average retrieval score for the max-
imum number of distinct salient views was 0.121 while the
average score for LFD was 0.098. To better understand the
retrieval scores, a few retrieval scenarios are analyzed. Sup-
pose that the number of relevant objects to a given query is
Nrel and that the total number of objects in the database is
N = 30, then the retrieval score is dependent on the rank
of the Nrel relevant objects in the retrieved list. The same
retrieval score can be achieved in two different scenarios.
When Nrel = 10 a retrieval score of 0.2 is attained when
three of the relevant objects are at the end of the retrieved
list, while the same score value is obtained in the case of
Nrel = 5 when only one of the relevant objects is at the end
of the list. This shows that incorrect retrievals for classes with
small Nrel value are more heavily penalized, since there are
fewer relevant objects to retrieve. In Table 3 it can be seen
that for classes with small Nrel values (Nrel < 10, the average
class retrieval scores using the maximum number of distinct
views are small and similar to retrieval using LFD (scores
< 0.2), indicating that the relevant objects are retrieved at
the beginning of the list. For classes with bigger Nrel val-
ues, the retrieval scores for most classes are <0.3 indicating
that in most cases the relevant objects are retrieved before
the middle of the list. The worst performing class for both
methods is the spiral class with a score of 0.338 using max-
imum distinct salient views and 0.372 using LFD; this most
probably is due to the high shape variability in the class.
The retrieval score using our method is quite similar to the
retrieval score of LFD with only small differences in the score
values suggesting that the retrievals slightly differ in the ranks
of the retrieved relevant objects, with most relevant objects
retrieved before the middle of the list. Our method greatly
reduces the computation time for descriptor computation.

The fourth experiment result shows the retrieval perfor-
mance on the Princeton dataset measured using the dedicated
benchmark’s statistics: (1) nearest neighbor, (2) first-tier, (3)
second-tier, (4) E-measure, and (5) DCG. The first three sta-
tistics indicate the percentage of top K nearest neighbors
that belong to the same class as the query. The nearest-
neighbor statistics provides an indication of how well a
nearest-neighbor classifier performs where K = 1. The first-
tier and second-tier statistics indicate the percentage of top
K matches that belong to the same class as a given object
where K = C − 1 and K = 2 × (C − 1), respectively, and
C is the query’s class size. For all three statistics, the higher
the score the better the retrieval performance. E-measure is
a composite measure of precision and recall for a fixed num-
ber of retrieved results. The DCG provides a sense of how
well the overall retrieval would be viewed by a human by
giving higher weights to correct objects that are retrieved
near the front of the list. Table 4 shows the average retrieval
results on the Princeton training dataset based on the bench-
mark statistics using the maximum number of distinct salient
views and the LFD method. The average number of distinct
salient views for all the objects in the Princeton dataset is 11
views. Table 5 shows the per-class nearest-neighbor retrieval
average for both methods. Our method performs better in
classes such as animal, dolphin, brain, and ship. The result
shows comparable performance to the LFD even though we
are only using 11 distinct salient views compared with 100
views in the LFD method.

The last experiment investigates the run-time performance
of our methodology and compares the run-time speed of
our method with the existing LFD method. These experi-
ments were performed on a PC running Windows Server
2008 with Intel Xeon dual processor at 2 GHz each and
16 GB RAM. The run-time performance of our method
can be divided into three parts: (1) salient views selec-
tion, (2) feature extraction, and (3) feature matching. The
salient view selection phase selects the views in which con-
tour salient points are present. This phase on average takes
about 0.2 s per object. The feature matching phase com-
pares and calculates the distance between two 3D objects.
This phase on average takes about 0.1 s per object. The
feature extraction phase is the bottleneck of the complete
process. The phase begins with a setup step that reads and
normalizes the 3D objects. Then, the 2D silhouette views
are rendered and the descriptor is constructed using the ren-
dered views. Table 6 shows the difference in the feature
extraction run time for one 3D object between our method
and the existing LFD method. The results show that feature
extraction using the selected salient views provides a 15-
fold speedup compared with using all 100 views for the LFD
method.
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Table 3 Retrieval score for each SHREC class using the maximum number of distinct views versus using all 100 views (LFD)

No. Class # Objects Avg # distinct Max distinct LFD

salient views salient views score score

1 Human-diff-pose 15 12.33 0.113 0.087

2 Monster 11 12.14 0.196 0.169

3 Dinosaur 6 12.33 0.185 0.169

4 4-Legged-animal 25 12.24 0.274 0.186

5 Hourglass 2 11.50 0.005 0.001

6 Chess-pieces 7 12.14 0.085 0.085

7 Statues-1 19 12.16 0.267 0.250

8 Statues-2 1 13.00 0.000 0.000

9 Bed-post 2 12.00 0.124 0.008

10 Statues-3 1 12.00 0.000 0.000

11 Knot 13 12.00 0.006 0.003

12 Torus 18 11.77 0.194 0.161

13 Airplane 19 12.42 0.101 0.054

14 Heli 5 11.60 0.204 0.158

15 Missile 9 12.00 0.306 0.241

16 Spaceship 1 13.00 0.000 0.000

17 Square-pipe 12 12.31 0.026 0.017

18 Rounded-pipe 15 11.8 0.221 0.184

19 Spiral 13 12.46 0.338 0.372

20 Articulated-scissors 16 12.06 0.027 0.005

21 CAD-1 1 12.00 0.000 0.000

22 CAD-2 1 12.00 0.000 0.000

23 CAD-3 1 13.00 0.000 0.000

24 CAD-4 1 12.00 0.000 0.000

25 CAD-5 1 11.00 0.000 0.000

26 Glass 7 11.86 0.144 0.245

27 Bottle 17 12.12 0.093 0.081

28 Teapot 4 11.50 0.075 0.015

29 Mug 17 12.06 0.035 0.004

30 Vase 14 12.21 0.166 0.149

31 Table 4 11.50 0.099 0.153

32 Chairs 28 12.04 0.173 0.123

33 Tables 16 11.88 0.254 0.183

34 Articulated-hands 18 11.94 0.226 0.146

35 Articulated-eyeglasses 13 12.00 0.161 0.156

36 Starfish 19 12.26 0.158 0.102

37 Dolphin 23 12.35 0.071 0.053

38 Bird 17 12.12 0.239 0.211

39 Butterfly 2 12.00 0.166 0.009

Mean 12.38 0.121 0.098

Table 4 Average retrieval
performance on Princeton
dataset

Method Nearest neighbor First tier Second tier E-measure DCG

LFD 0.699 0.384 0.488 0.267 0.661

LFD salient 11 views 0.426 0.221 0.324 0.188 0.508
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Table 5 Per-class nearest neighbor retrieval performance on Princeton
dataset

Class LFD Our method

Aircraft_airplane_F117 1 0

Aircraft_airplane_biplane 0.929 0.571

Aircraft_airplane_commercial 0.9 0.6

Aircraft_airplane_fighter_jet 0.92 0.84

Aircraft_airplane_multi_fuselage 0.857 0.143

Aircraft_balloonvehicle_dirigible 0.714 0.429

Aircraft_helicopter 0.412 0.176

Aircraft_spaceship_enterprise_like 1 0.818

Aircraft_spaceship_space_shuttle 1 0.833

Aircraft_spaceship_x_wing 1 0.8

Animal_arthropod_insect_bee 0.25 0.25

Animal_arthropod_spider 1 0.818

Animal_biped_human 0.86 0.66

Animal_biped_human_human_arms_out 0.952 0.381

Animal_biped_trex 0.667 0.833

Animal_flying_creature_bird_duck 0.4 0.2

Animal_quadruped_apatosaurus 0.75 0.25

Animal_quadruped_feline 1 0.5

Animal_quadruped_pig 0 0

Animal_underwater_creature_dolphin 0.8 1

Animal_underwater_creature_shark 0.714 0.571

Blade_butcher_knife 1 0.5

Blade_sword 0.8 0.467

Body_part_brain 0.714 0.857

Body_part_face 0.588 0.412

Body_part_head 0.812 0.75

Body_part_skeleton 0.8 0.4

Body_part_torso 0.75 0.75

Bridge 0.4 0.2

Building_castle 0.143 0

Building_dome_church 0.308 0

Building_lighthouse 0 0

Building_roman_building 0.333 0

Building_tent_multiple_peak_tent 0.2 0.2

Building_two_story_home 0.364 0.273

Chess_piece 0.941 0.471

Chest 0.714 0

City 0.6 0.3

Computer_laptop 0.5 0

Display_device_tv 0.167 0

Door_double_doors 0.8 0.3

Fantasy_animal_dragon 0.333 0.167

Furniture_bed 0.5 0.25

Furniture_desk_desk_with_hutch 0.857 0.429

Table 5 continued

Class LFD Our method

Furniture_seat_chair_dining_chair 0.909 0.455

Furniture_seat_couch 0.733 0.267

Furniture_seat_chair_stool 0.571 0

Furniture_shelves 0.846 0.538

Furniture_table_rectangular 0.692 0.423

Furniture_table_round 0.75 0.333

Furniture_table_and_chairs 1 0.4

Gun_handgun 0.9 0.3

Gun_rifle 0.842 0.526

Hat_helmet 0.6 0.1

Ice_cream 0.667 0.417

Lamp_desk_lamp 0.857 0.429

Liquid_container_bottle 0.667 0.5

Liquid_container_mug 0.857 0

Liquid_container_tank 0 0

Liquid_container_vase 0.182 0.091

Microchip 0.857 0.571

Musical_instrument_guitar_acoustic_guitar 1 0.75

Musical_instrument_piano 0.833 0.5

Phone_handle 0.75 0.5

Plant_flower_with_stem 0.2 0.067

Plant_potted_plant 0.8 0.52

Plant_tree 0.765 0.647

Plant_tree_barren 0.455 0.182

Plant_tree_palm 0.6 0.4

Sea_vessel_sailboat 0.8 0.2

Sea_vessel_sailboat_sailboat_with_oars 0.75 0.25

Sea_vessel_ship 0.5 0.8

Shoe 0.75 0.625

Sign_street_sign 0.583 0.5

Skateboard 1 0.2

Snowman 0.5 0

Swingset 1 0.25

Tool_screwdriver 0.8 0.4

Tool_wrench 0.75 0.75

Vehicle_car_antique_car 0.4 0.2

Vehicle_car_sedan 0.6 0.4

Vehicle_car_sports_car 0.684 0.526

Vehicle_cycle_bicycle 1 0.857

Vehicle_military_tank 0.75 0.312

Vehicle_pickup_truck 0.5 0.25

Vehicle_suv 0 0

Vehicle_train 0.714 0.571

Watch 0.6 0

Wheel_tire 0.75 0.5
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Table 6 Average feature extraction run time per object

Method Setup (s) View
rendering (s)

Descriptor
construction (s)

Total time
(s)

Max distinct
views

0.467 0.05 0.077 0.601

LFD 100
views

0.396 4.278 4.567 9.247

7 Conclusion

We have developed a new methodology for view-based 3D
object retrieval that uses the concept of salient 2D views
to speed up the computation time of the LFD algorithm.
Our experimental results show that the use of salient views
instead of 100 equally spaced views can provide similar per-
formance, while rendering many fewer views. Furthermore,
using the top K distinct salient views performs much bet-
ter than just the top K salient views. Retrieval scores using
the maximum number of distinct views for each object are
compared with LFD and differences in retrieval scores are
explained. Finally, a timing analysis shows that our method
can achieve a 15-fold speedup in feature extraction time over
the LFD.

Future work includes investigating other methods to
obtain the salient views. One way is to generate salient views
using a plane fitting method with the objective of fitting as
many salient points on the surface of the 3D object. This
approach may be more computationally expensive as it may
require exhaustive search in finding the best fitting plane;
however, some optimization method may be used to reduce
the search space.
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