Skip to main content
Log in

The role of oxidized polyethylene wax in processing and crystallization of isotactic polypropylene in WPC composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Isotactic polypropylene (iPP), in connection with its good processability, provides a matrix of composites applied in many industries. An influence of additives on iPP supermolecular structure, and consequently on its properties, should not be overlooked. The matter of inappropriate adhesion between a non-polar iPP matrix and polar fillers tends towards analyses and implementations of new kinds of coupling agents, e.g., polar polymeric waxes. Moreover, the presence of waxes in the composite matrix will change the MFR and may affect the iPP crystallization. To this day, literature has confirmed some beneficial effects observed during the application of polymer (e.g., polyethylene or polypropylene) waxes in the iPP composites technology, but did not demonstrate the result of its presence on iPP nucleation and crystallization. In the current paper, we focused on the simultaneous influence of lignocellulosic filler and coupling agent on crystallinity of iPP. Various research methods were applied, such as: WAXS, DSC, FTIR or PLM. Two oxidized polyethylene waxes (acid numbers: 23 and 89, respectively), as well as commercial non-oxidized polyethylene wax, were used as coupling agents. We found that an addition of 3% (by wt) of PE waxes drastically changes the processing parameters of the composites. The influence of waxes was observed in changes of crystallization kinetics, melting temperatures and in the degree of crystallinity. The percentage of crystalline phase in materials was decreased each time after waxes application. Moreover, the shear stress applied during crystallization changed the PE waxes role on iPP crystallization in WPC composite. The beneficial effect of flowing rapeseed straw powder was decreased by the presence of PE waxes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu P, Qu M, Ning Y, Zhang Y, Wang S, Feng N, Wu L (2019) High performance and low floating fiberglass fiber-reinforced polypropylene composites realized by a facile coating method. Adv Compos Hybrid Mater 2:234–241

    Article  Google Scholar 

  2. Yan X, Liu J, Khan MA, Sheriff S, Vupputuri S, Das R, Sun L, Young DP, Guo Z (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf 9:21–33

    CAS  Google Scholar 

  3. Friedrich D (2021) Thermoplastic moulding of wood-polymer composites (WPC): a review on physical and mechanical behaviour under hot-pressing technique. Compos Struct 262:113649–113663

    Article  CAS  Google Scholar 

  4. Lewandowski K, Piszczek K, Skórczewska K, Mirowski J, Zajchowski S, Wilczewski S (2022) Rheological properties of wood polymer composites at high shear rates–evaluation of additional pressure losses as a result of inlet effects. Compos Part A Appl Sci 154:106804–106820

    Article  CAS  Google Scholar 

  5. Tienne LGP, Cordeiro SB, Brito EB, Marques MDV (2020) Microcrystalline cellulose treated by steam explosion and used for thermo-mechanical improvement of polypropylene. J Comp Mater 54:3611–3624

    Article  CAS  Google Scholar 

  6. Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4:286–293

    Article  CAS  Google Scholar 

  7. Bacigalupe A, Molinari F, Eisenberg P, Escobar MM (2021) Adhesive properties of urea-formaldehyde resins blended with soy protein concentrate. Adv Compos Hybrid Mater 3:213–221

    Article  Google Scholar 

  8. Liu C, Yuan B, Guo M, Yang Q, Nguyen TT, Ji X (2021) Effect of sodium lignosulfonate on bonding strength and chemical structure of a lignosulfonate/chitosan-glutaraldehyde medium-density fiberboard adhesive. Adv Compos Hybrid Mater 4:1176–1184

    Article  CAS  Google Scholar 

  9. Paukszta D, Bednarek WH (2018) In situ optical microscope studies at isotactic polypropylene crystallization induced by shear forces—a review. Polym Test 72:238–243

    Article  CAS  Google Scholar 

  10. Mysiukiewicz O, Barczewski M (2020) Crystallization of polylactide-based green composites filled with oil-rich waste fillers. J Polym Res 27:374

    Article  CAS  Google Scholar 

  11. Kubiak A, Kubacka M, Gabala E, Dobrowolska A, Synoradzki K, Siwinska-Ciesielczyk K, Czaczyk K, Jesionowski T (2020) Hydrothermally assisted fabrication of TiO2-Fe3O4 composite materials and their antibacterial activity. Materials 13:4715

    Article  CAS  Google Scholar 

  12. Grzabka-Zasadzinska A, Klapiszewski L, Jesionowski T, Borysiak S (2020) Functional MgO-lignin hybrids and their application as fillers for polypropylene composites. Molecules 25:864–880

    Article  CAS  Google Scholar 

  13. Barczewski M, Mysiukiewicz O, Kloziński A (2018) Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iran Polym J 27:677–688

    Article  CAS  Google Scholar 

  14. Qin YJ, Xu YH, Zhang LY, Zheng GQ, Yan XR, Dai K, Liu C, Shen C, Guo Z (2016) Interfacial interaction enhancement by shear-induced beta-cylindrite in isotactic polypropylene/glass fiber composites. Polymer 100:111–118

    Article  CAS  Google Scholar 

  15. Luo W, Zhang B, Zou HW, Liang M, Chen Y (2017) Enhanced interfacial adhesion between polypropylene and carbon fiber by graphene oxide/polyethyleneimine coating. J Ind Eng Chem 51:129–139

    Article  CAS  Google Scholar 

  16. Troisi EM, Caelers HJM, Peters GWM (2017) Full characterization of multiphase, multimorphological kinetics in flow-induced crystallization of IPP at elevated pressure. Macromolecules 50:3869–3883

    Article  Google Scholar 

  17. Graziano A, Jaffer S, Sain M (2019) Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. J Elast Plast 51:291–336

    Article  CAS  Google Scholar 

  18. Vervoort S, den Doelder J, Tocha E, Genoyer J, Walton KL, Hu Y, Munro J, Jeltsch K (2018) Compatibilization of polypropylene-polyethylene blends. Polym Eng Sci 58:460–465

    Article  CAS  Google Scholar 

  19. Lin JH, Pan YJ, Liu CF, Huang CL, Hsieh CT, Chen CK, Lin ZI, Lou CW (2015) Preparation and compatibility evaluation of polypropylene/high density polyethylene polyblends. Materials 8:8850–8859

    Article  Google Scholar 

  20. Zawadiak J, Orlinska B, Marek AA (2013) Catalytic oxidation of polyethylene with oxygen in aqueous dispersion. J Appl Polym Sci 127:976–981

    Article  CAS  Google Scholar 

  21. Zawadiak J, Marek A, Stec Z, Orlinska B (2009) Oxidized polyethylene. methods for production and applications. Przemysł Chemiczny 88:1006–1010

    CAS  Google Scholar 

  22. Arabiourrutia M, Elordi G, Lopez G, Borsella E, Bilbao J, Olazar M (2012) Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrol 94:230–237

    Article  CAS  Google Scholar 

  23. Zaky MT, Mohamed NH (2010) Influence of low-density polyethylene on the thermal characteristics and crystallinity of high melting point macro- and micro-crystalline waxes. Thermochim Acta 499:79–84

    Article  CAS  Google Scholar 

  24. Piscitelli F, Saccone G, Gianvito A, Cosentino G, Mazzola L (2018) Characterization and manufacturing of a paraffin wax as fuel for hybrid rockets. Propuls Power Res 7:218–230

    Article  Google Scholar 

  25. Ciesinska W, Liszynska B, Zielinski J (2016) Selected thermal properties of polyethylene waxes. J Therm Anal Calorim 125:1439–1443

    Article  CAS  Google Scholar 

  26. Furukawa T, Sato H, Kita Y, Matsukawa K, Yamaguchi H, Ochiai S, Siesler HW, Ozaki Y (2006) Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by Raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry. Polym J 38:1127–1136

    Article  CAS  Google Scholar 

  27. Dikovsky D, Marom G, Avila-Orta CA, Somani RH, Hsiao BS (2005) Shear-induced crystallization in isotactic polypropylene containing ultra-high molecular weight polyethylene oriented precursor domains. Polymer 46:3096–3104

    Article  CAS  Google Scholar 

  28. Avila-Orta CA, Burger C, Somani R, Yang L, Marom G, Medellin-Rodriguez FJ (2005) Shear-induced crystallization of isotactic polypropylene within the oriented scaffold of noncrystalline ultrahigh molecular weight polyethylene. Polymer 46:8859–8871

    Article  CAS  Google Scholar 

  29. Somani RH, Yang L, Hsiao BS (2006) Effects of high molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene. Polymer 47:5657–5668

    Article  CAS  Google Scholar 

  30. Keum JK, Mao YM, Zuo F, Hsiao BS (2013) Flow-induced crystallization precursor structure in high molecular weight isotactic polypropylene (HMW-iPP)/low molecular weight linear low density polyethylene (LMW-LLDPE) binary blends. Polymer 54:1425–1431

    Article  CAS  Google Scholar 

  31. Pantani R, Nappo V, De Santis F, Titomanlio G (2014) Fibrillar morphology in shear-induced crystallization of polypropylene. Macromol Mater Eng 299:1465–1473

    Article  CAS  Google Scholar 

  32. Paukszta D, Markiewicz E, Ostrowski A, Doczekalska B, Brzyska M, Szostak M, Borysiak S (2015) Recycling of lignocellulosics filled polypropylene composites. I analysis of thermal properties, morphology, and amount of free radicals. J Appl Polym Sci 132:1–9

    Google Scholar 

  33. Janeschitz-Kriegl H, Ratajski E (2014) Flow-induced crystallization in polymer melts: how Winter’s gelation concept fits into the picture. Polym Bull 71:1197–1203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the research team: Mrs. Patrycja Sawko, Mrs. Natalia Nowakowska, Mrs. Paula Pietrzak and Mrs. Joanna Platkiewicz.

Funding

This work was supported by the Polish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Paukszta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednarek, W.H., Marek, A.A., Strzemiecka, B. et al. The role of oxidized polyethylene wax in processing and crystallization of isotactic polypropylene in WPC composites. Iran Polym J 31, 1263–1271 (2022). https://doi.org/10.1007/s13726-022-01071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01071-7

Keywords

Navigation