Skip to main content
Log in

A thin-film composite polyarylester membrane prepared from orcinol and trimesoyl chloride for organic solvent nanofiltration

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

It is necessary to recover dimethyl sulfoxide (DMSO) from pharmaceutical organic wastewater. In recent years, organic solvent nanofiltration (OSN), as an important means of recovering organic solvents, is being studied and paid attention constantly. Here, we prepared a solvent-resistant composite nanofiltration membrane with stable performance for the recovery of DMSO solvent using orcinol (OL), a natural alkyl resorcinol compound to synthetize a thin-film composite polyarylester membrane with trimesoyl chloride (TMC) by interfacial polymerization (IP) on the polyetherimide (PEI) substrate crosslinked by ethylenediamine (EDA). The results of chemical characterization such as X-ray photoelectron spectroscopy (XPS) and attenuated total reflection fluorescence transform infrared spectroscopy (ATR-FTIR) show that interfacial polymerization occurs between TMC and orcinol on the surface of PEI and forms polyarylester top-layer. The rejection of crystal violet (CV, 407.99 g/mol) in DMSO takes place by 91%, and the maximum permeance is about 3.1 L.m−2.h−1.bar−1. To further improve selectivity of membrane, microwave heating was adopted as a strengthening method of interfacial polymerization. The results illustrate that the microwave heating can significantly increase the rejection of OL-TMC membrane. The optimized membrane shows stable solvent resistance in DMSO with a rejection of 98% for CV and the permeance of 1.8 L.m−2.h−1.bar−1 and a rejection of 81% for clindamycin phosphate (CLP) with the permeance of 1.9 L.m−2.h−1.bar−1. This study not only opens up an interesting research field for more natural polyphenols as solvent-resistant nanofiltration membrane materials, but also indicates that microwave-assisted heating can be used as an important means during IP process to strengthen the properties of OSN membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Srinivasa S (1964) Separation of hydrocarbon liquids by flow under pressure through porous membranes. Nature 203:1348–1349

    Article  Google Scholar 

  2. Ryan PL, David SS (2017) From water to organics in membrane separations. Nat Mater 16:276–279

    Article  Google Scholar 

  3. David SS, Ryan PL (2016) Seven chemical separations to change the world. Nature 532:435

    Article  Google Scholar 

  4. Patrizia M, Maria FJS, Gyorgy S, Andrew GL (2014) Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 114:10735–10806

    Article  Google Scholar 

  5. Feng Y, Weber M, Maletzko C, Chung TS (2019) Fabrication of organic solvent nanofiltration membranes via facile bioinspired one-step modification. Chem Eng Sci 198:74–84

    Article  CAS  Google Scholar 

  6. Tham HM, Japip S, Hua D, Chung TS (2018) Green layer-by-layer method for the preparation of polyacrylonitrile-supported zinc benzene-1,4-dicarboxylic acid membranes. Chemsuschem 11:2612–2619

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Wei X, Wang GR, Lu TD, Shi Q, Sun SP (2021) Inner-selective coordination nanofiltration hollow fiber membranes from assist-pressure modified substrate. J Membr Sci 626:119186

    Article  CAS  Google Scholar 

  8. Xu S, Wang ZY, Li S, Tian L, Su B (2020) Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application. Sep Purif Technol 241:116751

    Article  CAS  Google Scholar 

  9. Liang Y, Li C, Li S, Su B, Hu MZ, Gao X, Gao C (2020) Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes. Chem Eng J 380:122462

    Article  Google Scholar 

  10. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Sun H, Sadam H, Liu Y, Shao L (2019) Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem Eng J 371:535–543

    Article  CAS  Google Scholar 

  12. Li Y, Wong E, Volodine A, Haesendonck CV, Zhang K, Bruggen B (2019) Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents. J Mate Chem A 7:19269–19279

    Article  CAS  Google Scholar 

  13. Natalia GD, Finn PM, Yurii KG (2020) Recent progress and future prospects in development of advanced materials for nanofiltration. Mater Today Commun 23:100888

    Article  Google Scholar 

  14. Scharzec B, Holtkötter J, Bianga J, Dreimann JM, Vogt D, Skiborowski M (2020) Conceptual study of co-product separation from catalyst-rich recycle streams in thermomorphic multiphase systems by OSN. Chem Eng Res Des 157:65–76

    Article  CAS  Google Scholar 

  15. Adam MR, Othman MHD, Kadir SHSA, Elma M, Kurniawan TA, Ismail AF, Puteh MH, Mustafa A, Rahman MA, Jaafar J, Abdullah H (2021) Ammonia removal by adsorptive clinoptilolite ceramic membrane: effect of dosage, isothermal behavior and regeneration process. Korean J Chem Eng 38:807–815

    Article  CAS  Google Scholar 

  16. Wang Y, Gu J, Zhou A, Kong A, Almijbilee MMA, Zheng X, Zhang J, Li W (2020) Poly[acrylate-co-amide] network composite via photopolymerization for organic solvent nanofiltration separation. Sep Purif Technol 246:116855

    Article  CAS  Google Scholar 

  17. Gao ZF, Shi GM, Cui Y, Chung TS (2018) Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates. J Membr Sci 565:169–178

    Article  CAS  Google Scholar 

  18. Maria FJS, Song Q, Jelfs KE, Munoz-Ibanez M, Andrew GL (2016) Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 15:760–767

    Article  Google Scholar 

  19. Abdellah MH, Pérez-Manríquez L, Puspasari T, Scholes CA, Kentish SE, Peinemann KV (2018) A catechin/cellulose composite membrane for organic solvent nanofiltration. J Membr Sci 567:139–145

    Article  CAS  Google Scholar 

  20. Almijbilee MMA, Wu X, Zhou A, Zheng X, Cao X, Li W (2020) Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Sep Purif Technol 234:116033

    Article  Google Scholar 

  21. Xu YC, Cheng XQ, Long J, Shao L (2016) A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 497:77–89

    Article  CAS  Google Scholar 

  22. Hai Y, Zhang J, Shi C, Zhou A, Bian C, Li W (2016) Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. J Membr Sci 520:19–28

    Article  CAS  Google Scholar 

  23. Zhou A, Shi C, He X, Fu Y, Anjum AW, Zhang J, Li W (2018) Polyarylester nanofiltration membrane prepared from monomers of vanillic alcohol and trimesoyl chloride. Sep Purif Technol 193:58–68

    Article  CAS  Google Scholar 

  24. Aerts S, Vanhulsel A, Buekenhoudt A, Weyten H, Kuypers S, Chen H, Bryjak M, Gevers LEM, Vankelecom IFJ, Jacobs PA (2006) Plasma-treated PDMS-membranes in solvent resistant nanofiltration: characterization and study of transport mechanism. J Membr Sci 275:212–219

    Article  CAS  Google Scholar 

  25. He X, Zhou A, Shi C, Zhang J, Li W (2018) Solvent resistant nanofiltration membranes using EDA-XDA co-crosslinked poly(ether imide). Sep Purif Technol 206:247–255

    Article  CAS  Google Scholar 

  26. Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127

    Article  CAS  Google Scholar 

  27. Michaels AS (1980) Analysis and prediction of sieving curves for ultrafiltration membranes: a universal correlation. Sep Purif Technol 15:1305–1322

    CAS  Google Scholar 

  28. Li W, Bian C, Fu C, Zhou A, Shi C, Zhang J (2016) A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. J Membr Sci 504:185–195

    Article  CAS  Google Scholar 

  29. Yang X, Jiang X, Huang Y, Guo Z, Shao L (2017) Building nanoporous metal–organic frameworks “armor” on fibers for high-performance composite materials. ACS Appl Mater Interfaces 9:5590

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Yang X, Cheng Z, Liu Y, Shao L, Jiang L (2017) Simply realizing “water diode” Janus membranes for multifunctional smart applications. Mater Horiz 4:701–708

    Article  CAS  Google Scholar 

  31. Ye D, Zhang M, Gan L, Li Q, Zhang X (2013) The influence of hydrogen peroxide initiator concentration on the structure of eucalyptus lignosulfonate. Int J Bio Macromol 60:77–82

    Article  CAS  Google Scholar 

  32. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  33. Hu J, Xiao R, Shen D, Zhang H (2013) Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour Technol 128:633–639

    Article  CAS  PubMed  Google Scholar 

  34. Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer-Verlag, New York

    Book  Google Scholar 

  35. Haensel T, Comouth A, Lorenz P, Ahmed SIU, Krischok S, Zydziak N, Kauffmann A, Schaefer JA (2009) Pyrolysis of cellulose and lignin. Appl Surf Sci 255:8183–8189

    Article  CAS  Google Scholar 

  36. Roy S, Yue CY, Venkatraman SS, Ma LL (2011) Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 21:15031–15040

    Article  CAS  Google Scholar 

  37. Albrecht W, Seifert B, Weigel T, Schossig M, Holländer A, Groth T, Hilke R (2003) Amination of poly(ether imide) membranes using di- and multivalent amines. Macromol Chem Phys 204:510–521

    Article  CAS  Google Scholar 

  38. Huang BQ, Tang YJ, Zeng ZX, Xu ZL (2020) Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration. J Membr Sci 596:117718

    Article  CAS  Google Scholar 

  39. Li N, Wang Z, Wang M, Gao M, Wang J (2021) Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. J Membr Sci 624:119095

    Article  CAS  Google Scholar 

  40. Zhang Z, Kang G, Yu H, Jin Y, Cao Y (2019) Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J Membr Sci 570–571:403–409

    Article  Google Scholar 

  41. Zhu CY, Liu C, Yang J, Guo BB, Li HN, Xu ZK (2021) Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. J Membr Sci 627:119142

    Article  CAS  Google Scholar 

  42. Bera A, Trivedi JS, Kumar SB, Chandel AKS, Haldar S, Jewrajka SK (2018) Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions. J Hazard Mater 343:86–97

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Li S, Zhang J, Wang Y, Han Z, Ren L (2014) Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition. Chem Eng J 248:440–447

    Article  CAS  Google Scholar 

  44. Bastin M, Hendrix K, Vankelecom I (2017) Solvent resistant nanofiltration for acetonitrile based feeds: a membrane screening. J Membr Sci 536:176–185

    Article  CAS  Google Scholar 

  45. Zeidler S, Kätzel U, Kreis P (2013) Systematic investigation on the influence of solutes on the separation behavior of a PDMS membrane in organic solvent nanofiltration. J Membr Sci 429:295–303

    Article  CAS  Google Scholar 

  46. Soltane HB, Roizard D, Favre E (2016) Study of the rejection of various solutes in OSN by a composite polydimethylsiloxane membrane: investigation of the role of solute affinity. Sep Purif Technol 161:193–201

    Article  Google Scholar 

  47. Thiermeyer Y, Blumenschein S, Skiborowski M (2021) Fundamental insights into the rejection behavior of polyimide-based OSN membranes. Sep Purif Technol 265:118492

    Article  CAS  Google Scholar 

  48. Li Y, Xue J, Zhang X, Cao B, Li P (2019) Formation of macrovoid-free PMDA-MDA polyimide membranes using a gelation/non-solvent-induced phase separation method for organic solvent nanofiltration. Ind Eng Chem Res 58:6712–6720

    Article  CAS  Google Scholar 

  49. Xing DY, Chan SY, Chung TS (2014) The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chem 16:1383–1392

    Article  CAS  Google Scholar 

  50. Aburabie J, Emwas AH, Peinemann KV (2019) Silane-crosslinked asymmetric polythiosemicarbazide membranes for organic solvent nanofiltration. Macromol Mater Eng 304:1800551

    Article  Google Scholar 

  51. Aburabie J, Neelakanda P, Karunakaran M, Peinemann KV (2015) Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN). React Funct Polym 86:225–232

    Article  CAS  Google Scholar 

  52. Sun SP, Chung TS, Lu KJ, Chan SY (2014) Enhancement of flux and solvent stability of Matrimid®thin-film composite membranes for organic solvent nanofiltration. AIChE J 60:3623–3633

    Article  CAS  Google Scholar 

  53. Lu TD, Chen BZ, Wang J, Jia TZ, Cao XL, Wang Y, Xing W, Lau CH, Sun SP (2018) Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. J Mate Chem A 6:15047–15056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National College Students Innovation and Entrepreneurship Training Program, Grant Number: 202010377024. University Natural Science Research Key Project of Anhui Province, Grant Number: KJ2020A0707.

Author information

Authors and Affiliations

Authors

Contributions

AZ conceptualization, resources, writing, supervision. YW software. AMMA formal analysis. DC methodology. YW review and editing.

Corresponding author

Correspondence to Ayang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 578 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Wang, Y., Almijbilee, M.M.A. et al. A thin-film composite polyarylester membrane prepared from orcinol and trimesoyl chloride for organic solvent nanofiltration. Iran Polym J 31, 1021–1032 (2022). https://doi.org/10.1007/s13726-022-01054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01054-8

Keywords

Navigation