Skip to main content
Log in

Polysaccharide-based blend films as a promising material for food packaging applications: physicochemical properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

To achieve eco-friendly polysaccharide-based blend films, the different weight percentages of chitosan (CH) and oxidized maize starch (OMS) were mixed and the blend films were fabricated by employing the solution casting method. The interaction between the components of the blend films were confirmed by Fourier transform infrared spectroscopy. The presence of hydrogen bonding interaction enhanced the elongation of the blend films from 3.430 ± 0.75% to 43.26 ± 1.21%. The results from the differential scanning calorimetry exhibited a single glass transition temperature for all the films, depicting that the components of the blend films are miscible over the entire composition. Barrier properties such as water vapor transmission rate and oxygen permeability of the blend films were reduced after the inclusion of the OMS into CH. A decrease in the transmittance percentage of the blend films compared to neat CH film was observed, which helps to reduce oxidative deterioration in packed food products caused by UV radiation. The transparency of the films decreased at lower weight percentage of OMS and showed higher transparency as the amount of OMS increased in the blend matrix. The XRD results revealed that the prepared films are amorphous in nature. All the prepared films exhibited a smooth and homogeneous surface morphology which was confirmed by the SEM analysis. The moisture content, water absorption capacity, water solubility and soil degradation of the blend films decreased in contrast with pristine CH film. Hence, the prepared films have the potential to be used for food packaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari SM, Dadashi S (2014) Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    Article  CAS  PubMed  Google Scholar 

  2. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  3. Nesic A, Gustavo CB, Suzana DB, Davidovic S, Radovanovic N, Delattre C (2020) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 135:1–35

    Google Scholar 

  4. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182

    Article  CAS  Google Scholar 

  5. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161

    Article  CAS  Google Scholar 

  6. Chopin N, Guillory X, Weiss P, BideauJ C-J (2014) Design polysaccharides of marine origin: chemical modifications to reach advanced versatile compounds. Curr Org Chem 18:867–895

    Article  CAS  Google Scholar 

  7. Han JH (2014) Edible Films and Coatings: In Innovations in Food Packaging. Elsevier, Amsterdam

    Google Scholar 

  8. Quintero FV, JiménezJP MJA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    Article  Google Scholar 

  9. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    Article  CAS  Google Scholar 

  10. Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol 1:415–448

    Article  CAS  PubMed  Google Scholar 

  11. Tuhin MO, Rahman N, Haque ME, Khan RA, Dafader NC, Islam R, Nurnabi M, Tonny W (2012) Modification of mechanical and thermal property of chitosan-starch blend films. Radiat Phys Chem 81:1659–1668

    Article  CAS  Google Scholar 

  12. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  PubMed  Google Scholar 

  13. Busilacchi A, Gigante A, Mattioli-Belmonte M, Muzzarelli RAA (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98:665–667

    Article  CAS  PubMed  Google Scholar 

  14. Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. Polymeric Biomaterials, Marcel Decker, New York

  15. Bagheri-Khoulenjani S, Taghizadeh SM, Mirzadeh H (2009) An investigationon the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym 78:773–778

    Article  CAS  Google Scholar 

  16. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  PubMed  Google Scholar 

  17. Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisations for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397

    Article  CAS  Google Scholar 

  18. Alexander M, Evgeny M, Alexander S, Sergey V, Svetlana B (2014) Fabrication and optical properties of chitosan/Ag nanoparticles thin film. Composites 244:457–463

    Google Scholar 

  19. Adele F, Elhamalsadat S, Fatemeh A, Ana CM, Ioannis SC (2019) In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym 206:38–47

    Article  Google Scholar 

  20. Deepak K, Lele SS (2018) Cross-linking effect of polyphenolic extracts of Lepidium sativum seedcake on physicochemical properties of chitosan films. Int J Biol Macromol 114:1240–1247

    Article  Google Scholar 

  21. Martino AD, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  PubMed  Google Scholar 

  22. Thein-Han WW, Kitiyanant Y, Misra RDK (2008) Chitosan as scaffold matrix for tissue engineering. Mater Sci Technol 24:1062–1075

    Article  CAS  Google Scholar 

  23. van der Lubben IM, Verhoef J, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    Article  PubMed  Google Scholar 

  24. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  25. Srasti Y, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605

    Article  Google Scholar 

  26. Dutta PK, Yadav S, Mehrotra GK (2021) Modified chitosan films/coatings for active food packaging. Adv Polym Sci 287:203–232

    Article  Google Scholar 

  27. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  28. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. Food Sci Technol 43:837–842

    CAS  Google Scholar 

  29. Li J, Zivanovic S, Davidson PM, Kit K (2010) Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr Polym 79:786–791

    Article  CAS  Google Scholar 

  30. Sun Y, Liu Y, Li Y, Lv M, Li P, Xu H, Wang L (2011) Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydr Polym 84:952–959

    Article  CAS  Google Scholar 

  31. Ahmed S, Ikram S (2016) Chitosan and gelatin based biodegradable packaging films with UV-light protection. J Photochem Photobiol B 163:115–124

    Article  CAS  PubMed  Google Scholar 

  32. Rogovina SZ, Vikhoreva GA (2006) Polysaccharide-based polymer blends: methods of their production. Glycoconj J 23:611–618

    Article  CAS  PubMed  Google Scholar 

  33. Pauli RBD, Quast LB, Demiate IM, Sakanaka LS (2011) Production and characterization of oxidized cassava starch (Manihot esculenta Crantz) biodegradable films. Starch 63:595–603

    Article  Google Scholar 

  34. Namazi H, Hasani M, Yadollahi M (2019) Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int J Biol Macromol 126:578–584

    Article  CAS  PubMed  Google Scholar 

  35. Jianhua L, Bin W, Long L, Jianyou Z, Weilin L, Jianhua X, Yuting D (2014) Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocoll 36:45–52

    Article  Google Scholar 

  36. Kuakpetoon D, Wang YJ (2006) Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr Res 341:1896–1915

    Article  CAS  PubMed  Google Scholar 

  37. Dao PH, Nam TT, Phuc MV, Hiep NA, Thanh TV, Vuong NT, Xuan DD (2017) Oxidized maize starch: characterization and its effect on the biodegradable films, part II: infrared spectroscopy and solubility. Vietnam J Sci Technol 55:395–402

    Article  Google Scholar 

  38. El-Sheikh MA, Ramadan MA, El-Shafie A (2010) Photo-oxidation of rice starch, part I: using hydrogen peroxide. Carbohydr Polym 80:266–269

    Article  CAS  Google Scholar 

  39. Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thakhiew W, Devahastin S, Soponronnarit S (2010) Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films. J Food Eng 99:216–224

    Article  CAS  Google Scholar 

  41. Asma C, Nadege F, Stephane M, Christophe R, Meriem E, Mahmoud B, Djafer B, Didier LC (2017) Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int J Biol Macromol 97:348–365

    Article  Google Scholar 

  42. Ying J, Xun L, Jicheng Y (2020) Preparation and characterization of oxidized starch-chitosan complexes for adsorption of procyanidins. Food Sci Technol 117:108610

    Google Scholar 

  43. Dariusz K, Wiater MK, Nowak J, Baraniak B (2015) Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatine. Int J Biol Macromol 77:350–359

    Article  Google Scholar 

  44. Haixia W, Changhua L, Jianguang C, Chen Y, Anderson DP, Chang PR (2010) Oxidized pea starch/chitosan composite films: structural characterization and properties. J Appl Polym Sci 118:3082–3088

    Article  Google Scholar 

  45. Chen J, Long Z, Wang J, Wu M, Wang F, Wang B, Lv W (2017) Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 24:4449–4459

    Article  CAS  Google Scholar 

  46. Ismail H, Zaaba NF (2011) Effect of additives on properties of polyvinyl alcohol (PVA)/Tapioca starch biodegradable films. Polym Plas Technol Eng 50:1214–1219

    Article  CAS  Google Scholar 

  47. Hiremani VD, Sataraddi S, Bayannavar P, Gasti T, Masti SP, Kamble R, Chougale RB (2020) Mechanical, optical and antioxidant properties of 7-Hydroxy-4-methyl coumarin doped polyvinyl alcohol/oxidized maize starch blend films. SN Appl Sci 2:1877

    Article  CAS  Google Scholar 

  48. Yadav S, Mehrotra GK, Bhartiya P, Singh A, Dutta PK (2020) Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym 227:115348

    Article  CAS  PubMed  Google Scholar 

  49. Gasti T, Dixit S, Sataraddi SP, Hiremani VD, Masti SP, Chougale RB, Malabadi RB (2020) Physicochemical and biological evaluation of different extracts of edible solanum nigrum L. leaves incorporated chitosan/poly (vinyl alcohol) composite films. J Polym Environ 28:2918–2930

    Article  CAS  Google Scholar 

  50. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll 116:290–297

    Article  Google Scholar 

  51. Vargas CG, Costa TMH, Rios AO, Flores SH (2017) Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocoll 65:96–106

    Article  CAS  Google Scholar 

  52. Talon E, Trifkovic KT, Vargas M, Chiralt A, González-Martínez C (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 175:122–130

    Article  CAS  PubMed  Google Scholar 

  53. Shishatskiia AM, Yampolskii YP, Peinemann KV (1996) Effects of film thickness on density and gas permeation parameters of glassy polymers. J Membr Sci 112:275

    Article  Google Scholar 

  54. Riaz A, Lei S, Akhtar HMS, Wan P, Chen D, Jabbar S, Abid M, Hashim MM, Zeng X (2018) Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 114:547–555

    Article  CAS  PubMed  Google Scholar 

  55. Mendes JF, Paschoalin RT, Carmona VB, Neto S, Alfredo R, Marques ACP, Marconcini JM, MattosoLHC MES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458

    Article  CAS  PubMed  Google Scholar 

  56. Vishram DH, Naganagouda G, Tilak G, Sheela K, Vinayak NV, Sarala S, Oshin JD, Shyam KV, Saraswati PM, Ravindra BM, Ravindra BC (2021) Exploration of multifunctional properties of piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging applications. J Polym Environ 81:1–45

    Google Scholar 

  57. Ahmed AM, Alison NG, Saad A, Hui S (2015) Effect of layer and film thickness and temperature on the mechanical property of micro- and nano-layered PC/PMMA films subjected to thermal aging. Materials 8:2062–2075

    Article  Google Scholar 

  58. Sindhu MM, Brahmakumar T, Abraham E (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187

    Article  Google Scholar 

  59. Bi F, Zhang X, Bai R, Liu Y, Liu J, Liu J (2019) Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int J Biol Macromol 134:11–19

    Article  CAS  PubMed  Google Scholar 

  60. Wu S, Wang W, Yan K, Ding F, Shi X, Deng H, Du Y (2018) Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydr Polym 186:236–242

    Article  CAS  PubMed  Google Scholar 

  61. Hiremani VD, Gasti T, Satareddi S, Vanjeri VN, Goudar N, Masti SP, Chougale RB (2020) Characterization of techanical and thermal properties of glycerol mixed oxidized maize starch/polyvinyl alcohol blend films. Chem Data Collect 28:100416

    Article  CAS  Google Scholar 

  62. Rena L, Yana X, Zhoua J, Tonga J, Sub X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643

    Article  Google Scholar 

  63. Lijun DZ, Jinhuan J, Shanfeng Z, Chengye C, Hongjun M (2017) Incorporated α-amylase and starch in an edible chitosan-procyanidin complex film increased the release amount of procyanidins. RSC Adv 7:56771–56778

    Article  Google Scholar 

  64. Nugraha ES, Lan T, Alain C (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  Google Scholar 

  65. Jun-Feng S, Zhen H, Xiao-Yan Y, Xin YW, Min L (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79:145–153

    Article  Google Scholar 

  66. Deepa B, Eldho A, Laly AP, Nereida C, Marisa F, Sabu T (2016) Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials 9:1–11

    Article  CAS  Google Scholar 

  67. Carla SM, Daniella LM, Odilio BGA (2016) Cashew gum-chitosan blended films: spectral, mechanical and surface wetting evaluations. Macromol Res 24:691–697

    Article  Google Scholar 

  68. Jiang Y, Li Y, Chai Z, Leng X (2010) Study of the physical properties of whey protein isolate and gelatin composite films. J Agric Food Chem 58:5100–5108

    Article  CAS  PubMed  Google Scholar 

  69. Jawhar H, Med Ali S, Med Raâfet BK, Bassem C, Khalifa L, Hatem M, Sonia R (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Food Sci Technol 68:356–364

    Google Scholar 

  70. Lu N, Liu Y (2020) Structural, physicochemical, and functional (antioxidant-antimicrobial) properties of 2-O-methyl-β-cyclodextrin inclusion with hexahydro-β-acids in chitosan films. Colloids Surf B 191:111002

    Article  CAS  Google Scholar 

  71. Gnanasambandam R, Hettiarachchy NS, Coleman M (1997) Mechanical and barrier properties of rice bran films. J Food Sci 62:395–398

    Article  CAS  Google Scholar 

  72. Bourtoom T, Manjeet SC (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. Food Sci Techno 41:1633–1641

    CAS  Google Scholar 

  73. Brandelero RPH, Alfaro AT, Marques PT, Brandelero EM (2019) New approach of starch and chitosan films as biodegradable mulching. Rev Boli Quim 11:686–698

    CAS  Google Scholar 

  74. Zhang X, Liu J, Yong H, Qin Y, Liu J, Jin C (2020) Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. Int J Biol Macromol 145:1129–1139

    Article  CAS  PubMed  Google Scholar 

  75. Liu F, Qin B, He L, Song R (2009) Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties. Carbohydr Polym 78:146–150

    Article  CAS  Google Scholar 

  76. Khan MA, Rahman MA, Khan RA, Rahman N, Islam JMM, Alam R, Mondal MIH (2010) Preparation and characterization of the mechanical properties of the photocured chitosan/starch blend film. Polym Plast Technol Eng 49:748

    Article  CAS  Google Scholar 

  77. Xu YX, Kimb KM, Hanna MA, Nag D (2005) Chitosan-starch composite film: preparation and characterization. Ind Crops Prod 21:185–192

    Article  CAS  Google Scholar 

  78. Sun X, Wang Z, Kadouh H, Zhou K (2014) The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films. Food Sci Technol 57:83–89

    CAS  Google Scholar 

  79. Palma-Rodrguez HM, Aguirre-Alvarez G, Chavarr-Hernandez N, Rodrguez-Hernandez AI, Bello-Perez LA, Vargas-Torres A (2012) Oxidized banana starch-polyvinyl alcohol film: partial characterization. Starch 64:882–889

    Article  Google Scholar 

  80. Bonilla J, Atares L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114:303–312

    Article  CAS  Google Scholar 

  81. Akter N, Khan RA, Tuhin MO, Haque ME, Nurnabi M, Parvin F, Islam R (2014) Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films. J Thermoplast Compos Mater 27:933–948

    Article  CAS  Google Scholar 

  82. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702

    Article  CAS  Google Scholar 

  83. Fengyu B, Xin Z, Ruyu B, Yunpeng L, Jing L, Jun L (2019) Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int J Biol Macromol 134:11–19

    Article  Google Scholar 

  84. Narasagoudr SS, Hegde VG, Chougale RB, Masti SP, Vootla S, Malabadi RB (2020) Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll 109:106096

    Article  CAS  Google Scholar 

  85. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2019) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 126:1234–1243

    Article  CAS  Google Scholar 

  86. Zheng K, Li W, Fu B, Fu M, Ren Q, Yang F, Qin C (2018) Physical, antibacterial and antioxidant properties of chitosan films containing hard leaf oat chestnut starch and Litsea cubeba oil. Int J Biol Macromol 118:707–715

    Article  CAS  PubMed  Google Scholar 

  87. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72:521–526

    Article  CAS  Google Scholar 

  88. Cano AI, Chafer M, Chiralt A, Gonzalez-Martinez C (2016) Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polym Degrad Stab 132:1–10

    Article  Google Scholar 

  89. Siddaramaiah RB, Somashekar R (2004) Structure-property relation in polyvinyl alcohol/starch composites. J Appl Polym Sci 91:630–635

    Article  CAS  Google Scholar 

  90. Joana TM, Miguel AC, Antonio AV (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27:220–227

    Article  Google Scholar 

  91. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Victoria M, Grossmann E (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267

    Article  CAS  Google Scholar 

  92. Suriyatema R, Aurasb RA, Rachtanapunc P (2018) Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Ind Crops Prod 122:37–48

    Article  Google Scholar 

  93. Salleh E, Muhamad II, Khairuddin N (2009) Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Acad Sci Eng Technol 55:432–440

    Google Scholar 

  94. Na J, Yang Q, Tingting X, Liu X, Qingjie S (2016) Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite. Starch 69:1600114

    Google Scholar 

  95. Li Z, Zhuang XP, Liu XF, Guan YL, Yao KD (2002) Study on antibacterial O-carboxymethylated chitosan–cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer 43:1541–1547

    Article  CAS  Google Scholar 

  96. Naganagouda G, Vinayak NV, Saraswati PM, Ravindra BC (2020) Spathodea campanulata bud fluid reinforced mechanical, hydrophilicity and degradation studies of poly (vinyl alcohol) matrix. SN App Sci 2:568

    Article  Google Scholar 

  97. Hasan M, Deepu AG, Olaiya NG, Fitri Z, Alfian A, Cut A, Tata A, Samsul R, Abdul Khalil HPS (2020) Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. Int J Biol Macromol 156:896–905

    Article  CAS  PubMed  Google Scholar 

  98. Santosh K, Joonseok K, Hyerim K, Gupta MK, Dutta PK (2012) A new chitosan-thymine conjugate: synthesis, characterization and biological activity. Int J Biol Macromol 50:493–502

    Article  Google Scholar 

  99. Huihua L, Raju A, Qipeng G, Benu A (2013) Preparation and characterization of glycerolplasticized (high-amylose) starch-chitosan films. J Food Eng 116:588–597

    Article  Google Scholar 

  100. Sindhu M, Emilia AT (2008) Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocoll 22:826–835

    Article  Google Scholar 

  101. Maolin Z, Long Z, Fumio Y, Tamikazu K (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57:83–88

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their profound gratitude to University Scientific Instruments Centre (USIC), DST Sophisticated Analytical Instrument Facilities (SAIF), DST PURSE Phase II project (Program Grant No. SR/PURSE PHASE-2/13), Karnataka University, Dharwad, Karnataka, India, for providing an instrumental facility for conduction of research work. The authors express their sincere gratitude to Mr. Mahantesh Kurbet, Manager, Quality Control Department, Millennium Starch India, Pvt. Ltd., Athani, Karnataka, India, for a generous gift of the oxidized maize starch. We also wish to thank Dr. Saraswati P. Masti, Principal Investigator, DST-SERB Project, (project sanction letter No. SB/EMEQ-213/2014, dated: 29-01-2016), Department of Chemistry, Karnataka Science College, Dharwad, Karnataka, India, for providing Dak system Universal Testing Machine (UTM) to study the mechanical properties. One of the authors, Mr. Vishram D. Hiremani, would like to thank Karnatak University, Dharwad, Karnataka, India for providing University Research Studentship.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra B. Chougale.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremani, V.D., Gasti, T., Masti, S.P. et al. Polysaccharide-based blend films as a promising material for food packaging applications: physicochemical properties. Iran Polym J 31, 503–518 (2022). https://doi.org/10.1007/s13726-021-01014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-01014-8

Keywords

Navigation