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Abstract
Motivated by the need to parameterize and functionalize dynamic, multiscale simulations, as well as bridge the gap between 
advancing in silico and laboratory Synthetic Biology practices, this work evaluated and contextualized Synthetic Biology data 
standards and conversion, modelling and simulation methods, genetic design and optimization, software platforms, machine 
learning, assembly planning, automated modelling, combinatorial methods, biological circuit design and laboratory automa-
tion. This review also discusses technologies related to domain specific languages, libraries and APIs, databases, whole cell 
models, use of ontologies, datamining, metabolic engineering, parameter estimation/acquisition, robotics, microfluidics and 
touches on a range of applications. The discussed principles should provide a strong, encompassing foundation for primarily 
dry laboratory Synthetic Biology automation, reproducibility, interoperability, simulatability, data acquisition, parameteriza-
tion, functionalization of models, classification, computational efficiency, time efficiency and effective genetic engineering. 
Applications impact the design-build-test-learn loop, in silico computer assisted design and simulations, hypothesis genera-
tion, yield optimization, drug design, synthetic organs, sensors and living therapeutics.

Keywords Automation · Bioinformatics · Chemical reaction networks · Computer assisted design · Computational 
modelling · Databases · Genetic engineering · Machine learning · Synthetic biology · Systems biology

1 Introduction

The future of Synthetic Biology (SB) was seen as a model-
based (Zhang et al. 2017) engineering discipline (Zhang 
et al. 2017; Konur and Gheorghe 2015; Xia, et al. 2011) 
involving the reprogramming of cells (Nielsen, et al. 2016), 
applicable to biotechnology, achieved primarily by DNA 
manipulation (Chandran et al. 2010). SB “parts” contain-
ing DNA sequence information can be combined together 
into devices for modular reuse (Bilitchenko et al. 2011) for 
artificial genetic recombination. This involves DNA con-
struct production from small circuits up to the genome 
scale (Storch et al. 2020), where genetic constructs refer 

to composites of genetic sequences that can contribute to 
the overall system behaviour at various localizations. This 
review analysed and elucidated these aspirations, empha-
sizing automation provided by computational methods in 
manipulating bioregulatory circuitry, embedded systems, 
robotics, microfluidics, and the potential of machine learn-
ing (ML) within the workflow. Addressing these challenges 
had direct implications in our current research pertaining 
to SB Computer Assisted Design (CAD) (Matzko et al. 
2023; Konur et al. 2021) with consideration for data acqui-
sition, the implementation of small orthogonal or genome 
scale models, laboratory automation and ML. Given that 
automation was proposed as providing efficiency in design 
and application as compared to manual labour, as well as 
the potential for decreased error rate (Gurdo et al. 2023), 
research into cost-effective, high-throughput design-build-
test-learn (DBTL) cycles for parameter space exploration 
should provide laboratories with research advantages. In 
addition to in silico modelling, this paper addresses such 
automation options.
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Our ongoing research continued to expand on prior pub-
lished work in multicellular simulation modelling (Matzko 
et al. 2023), and Synthetic Biology CAD research related 
to facilitating the design of bioregulatory constructs and 
gene regulatory circuits via Infobiotics Workbench (Konur 
et al. 2021). The trajectory of this work would relate to the 
pursuit of the extension of Synthetic Biology CAD to the 
multicellular modelling domain. Such models, particularly 
involving kinetics, were considered to be “virtually absent” 
(Gurdo et al. 2023). However, operating via the School of 
Computer Science AI and Electronics and in collabora-
tive exchanges with the Chemical Biology department, it 
was our conviction to maintain a translational component 
through the lens of bioinformatics approaches. That said, 
computational SB CAD would have many overlaps with Sys-
tems Biology. Given the above rationale it is clear how the 
topics of this review are connected involving relevant data 
standards, databases and data mining for parameterization, 
network analysis and modelling methods, whole cell mod-
els, minimal genomes, biochemical pathways and network 
model generation, SB suites, ML, laboratory automation, 
enabling organizations, combinatorial construct design 
languages, circuit design, genetic optimization and genetic 
construct assembly automation. Rife with information, it is 
our contention that this work can provide beneficial insights 
for many researchers, and a key intention of this work is as a 
robust, noteworthy reference in the fields of computational 
biological modelling and translational, automated Synthetic 
Biology.

SB engineering has been conceptually subdivided into 
DNA synthesis, DNA optimization, genetic component 
determination, construct design from the components, and 
transformation and transfection into host chassis/organisms 
(Oberortner et al. 2017). Computational resources have been 
categorized into specification, design, assembly and build-
ing, testing and analysis, data, simulation and sequence edit-
ing (Appleton et al. 2017). SB has vast potential for design 
across the extreme complexity of biological systems. In 
fact, SB can even be applied to hybrid systems, for exam-
ple a bioreactor contains mechanical components within its 
operations. As noted in the literature, SB applications might 
utilize part/plasmid combinations, biochemical/genetic 
network languages, construct design languages, Multiplex 
Automated Genome Engineering, RBS (Ribosomal Bind-
ing Site) design, CRISPR/Cas9, liquid-handling automation, 
high-throughput cloning, microfluidic device design automa-
tion, microfluidic milling and lithography, primer design, 
flow cytometry, deterministic and stochastic time-course 
simulations, multicellular simulations, reaction–diffusion, 
sequence alignment (e.g. BLAST), restriction enzyme 
cut predictions, codon optimization and rational pathway 
design (e.g. via OptFlux, Cobra 2.0, OptForce (Kahl and 
Endy 2013)). Software popularity has varied over time, for 

example Vector NTI had fallen significantly in use, where 
a modern alternative is Geneious, a molecular biology and 
sequence analysis tool (Dotmatics. Geneious by Dotmatics. 
2023), featuring various molecular cloning methodologies, 
mapping and de novo assembly, primer design, sequence 
analysis and phylogenetics. Such tools can be used in SB 
CAD, e.g. SnapGene (Dotmatics. Snapgene 2022) can be 
used for cloning and construct generation simulations, Gate-
way cloning simulations, Gibson Assembly and primer-
directed mutagenesis.

The domain of SB is extensive and challenging with great 
potential to tackle unaddressed concerns, e.g. in healthcare. 
This review identified in silico and laboratory automation 
opportunities vital to the design-build-test-learn workflow 
with the intention to provide the reader with clarity, scope 
and modernity, particularly from the computational perspec-
tive. By assessing cutting-edge ML breakthroughs with the 
essentiality of combinatorial practices, alongside automated 
hardware and bioregulatory network and genetic manipu-
lations, this review offered a unique understanding of the 
DBTL concept, elucidating concepts across SB, bioinfor-
matics, systems biology and biotechnological hardware. 
The paper serves as a reference for technologies across 
SB and computational modelling workflows. This review 
work has already yielded us practical software engineering 
bioinformatics research outcomes in the form of a cyto-
histological genetics encyclopedia and network explorer, 
BioNexusSentinel, available on GitHub (Matzko 2023), 
which demonstrated that targeted computational biology 
software engineering was made possible by insights from 
this review, and that this review could hence be revisited 
for selective updates, expansions and concepts. The techni-
cian/researcher is encouraged to make informed decisions 
regarding the presented resources, with scope for expanding 
on and developing custom approaches from the extensive 
subject-specific insights that this paper provides, whether 
in silico or translational.

It is our contention that this review provides uniquely 
integrated insights spanning a host of the many vital disci-
plines, providing a unique perspective on the vast range of 
opportunities and challenges that are faced for generating 
increasingly complex Synthetic Biology engineered solu-
tions. The review is written to support such engineers and 
interested parties in understanding the many challenges by 
integrating insights from data standards, modelling, genetic 
design, circuit design, ML, assembly planning, combina-
torial methods, in silico design automation and laboratory 
automation at the hardware and software levels. Certainly, 
it is felt that this review offers an exceptional scope, and 
increased clarity on the DBTL concept than previous work 
that we have encountered, as well as deeper insights infor-
matically, including through in silico modelling, through to 
robotic translation. Our offering provides intricate insights, 
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for instance including biological domain specific languages, 
libraries and APIs, databases, whole cell models, parameter 
estimation/acquisition for evaluating and predicting systems, 
generously compiled into this concise paper. The implica-
tions of this work are significant. With many medical chal-
lenges still remaining unresolved, it is vital to consider this 
paper’s potential to stimulate thinking for in silico computer 
assisted design, hypothesis generation and testing, and the 
wide range of technological benefits that Synthetic Biology 
has the potential to bring about, whether through optimized 
smart therapeutics, biofabrication or otherwise.

Hence, our major contribution with this holistic and 
carefully formulated review is to provide the reader with 
accessibly communicated resources to foster developments 
towards translatable, automated Synthetic Biology pipelines 
considering the DBTL cycle. The research methodology and 
contents of the paper are discussed in Sect. 2.

2  Research methodology

This paper details a literature review related to ongoing 
technical work at our institute, made accessible to a wider 
audience and carried out from the dry laboratory perspec-
tive. This review aimed to augment our research regarding 
the extension of bioregulatory time-course simulations in 
Synthetic Biology CAD software (Konur et al. 2021) spa-
tially into multicellular simulations (Matzko et al. 2023), 
whilst maximizing the objective of translatable computa-
tional CAD given collaborative interactions with the Chemi-
cal Biology department. Translatability would be considered 
as far as downstream robotic automation within the DBTL 
loop. Thus the research would span the DBTL cycle.

Data standards (Sect. 3.1) would be required to house the 
informatics from which upstream to downstream translation 
could manifest, and this paper details many such standards. 
Naturally, databases (Sect. 3.2) would need to be sought to 
provide the relevant data in useable form. And where data 
might not be in readily useable form, data mining could 
be considered (Sect. 3.3), particularly with the ongoing 
revolution in artificial intelligence. Upon the foundational 
discussion of data we investigated modelling implications 
enabled by these data standards and data acquisition strate-
gies (Sects. 4.1, 4.2, 4.3, 4.4) and the state of the art in open 
source Synthetic Biology software suites (Sect. 4.5). Having 
discussed the logistical hierarchy from data to modelling, 
the technical translational component could be addressed. 
Hence, the DBTL loop was introduced based in the literature 
(Sect. 5) along with relevant ML for the domain (Sect. 5.1) 
with implications in affecting the loop. With the observation 
of ongoing manual work in the Chemical Biology labora-
tory, automation was explored as part of an investigation into 
accelerating and improving these methodologies (Sect. 5.2), 

and these ideas would be expounded on through the literature 
by exploring combinatorial design strategies (5.3). Combi-
natorial strategies were deemed crucial in high throughput 
experimentation, which is associated with bioregulatory 
genetic circuit design principles (Sect. 5.4), finally culmi-
nating in the necessary considerations of genetic optimi-
zation (Sect. 5.5) and the automated planning of assembly 
protocols to physically generate genetic constructs of interest 
(Sect. 5.6). The essentiality of experimental data acquisition 
is also discussed in the context of Sect. 5.

Search criteria would include themes of artificial intel-
ligence, ML and datamining for Synthetic Biology, natu-
ral language processing, systems biology model archives, 
Synthetic Biology automation, Synthetic Biology parts 
repositories, systems biology tools, Synthetic Biology tools, 
analytical methods including Gillespie Algorithms and 
Flux Balance analysis, kinetics parameterization, genome 
scale and whole cell models, genetic optimization and pro-
tein folding. The research was executed in the context of 
wider multicellular simulation research (Matzko et al. 2023; 
Matzko 2023) and within the context of the Chemical Biol-
ogy laboratory at the University of Bradford, which from 
our observations evidenced a heavily manual and iterative, 
low-throughput research cycle, albeit with sophisticated 
analytical modalities and careful experimental planning. 
This paper documents review work intersecting both these 
requirements.

The research drew from attendances at the 9th Interna-
tional Work-Conference on Bioinformatics and Biomedi-
cal Engineering June 2022 in Gran Canaria (Matzko et al. 
2022), Synthetic Biology UK November 2022 and The Fes-
tival of Genomics & Biodata January 2024 in London.

3  Data in synthetic biology

3.1  Data standards

To sustain reproducibility, engineering fields utilize work-
sheets and biology uses minimal information standards, e.g. 
MIAME for microarrays and MIFlowCyt for flow cytom-
etry (Myers et al. 2017). SB standards were recommended 
for describing parts, genetic construct designs, sequences, 
assembly methods, vectors, integration points for transfor-
mation, CRISPR-based integration and host/chassis organ-
ism identity. A lack of quantitative parts datasheets was 
proposed to be a limiting factor in SB CAD design (Lux 
et al. 2011).

Many exchange standards are built upon the Extensible 
Markup Language (Swat, et al. 2009). The Systems Biol-
ogy Markup Language (SBML) (SBML 2022) represents 
biological/biochemical networks, including mathematically, 
and has been harnessed in automated methods (Keating et al. 
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2020). Tools and APIs can validate, analyse and simulate 
SBML models, which are commonly simulated via ordi-
nary differential equations (ODE) and stochastic Gillespie 
algorithms. SBML can harness ontologies or semantic web 
technologies allowing software to explore network meta-
data. SBML can be translated to and from domain specific 
languages (DSLs) such as Antimony (Smith et al. 2009) and 
IBL (Konur et al. 2021), but typically lacks genetic details 
(Baig, et al. 2020). By contrast, the Synthetic Biology Open 
Language (SBOL) allows hierarchical, modular, annotated 
and extensible genetic design representations (Appleton 
et al. 2017). The FASTA format primarily contains nucleo-
tide or amino acid (AA) sequence information, whilst Gen-
Bank and Swiss-Prot offered annotation capabilities. SBOL 
can also represent experimental details, unique identifiers, 
ontologies and uniform resource identifiers, including for 
external models, and was put forward to address GenBank 
format limitations regarding representing experimental data 
and genetic construction documenting (Ham et al. 2012).

Other formats might be encountered whilst investigating 
SB modelling/data. In the multicellular domain, NUFEB 
(Li et al. 2019) used VTK, POVray and HDF5 (.h5) output 
formats. Meanwhile, the COMBINE standard can be used 
to archive various standards for sharing (Myers et al. 2017). 
Pretrained ML model formats can depend on the framework 
or format of choice, e.g..h5,.pb,.safetensors,.pt,.pth,.onnx.

3.2  Databases

Computational modelling for SB requires experimental data, 
ML tends to require large amounts (Rampasek and Gold-
enberg 2016; Perrakis and Sixma 2021). Data in literature 
and within online databases includes chemical reaction path-
ways, kinetics data, protein data, genomic data and expres-
sion data. To fulfil its potential both in de novo design and 
specific applications, e.g. medical, SB must fully explore 
applicable data and not confine itself to parts repositories.

The NCBI archive (Oberortner et  al. 2017) provided 
access to genomes, with AA and nucleotide sequence data 
available in FASTA and GenBank formats. Design reposi-
tories for SB, such as SynBioHub (McLaughlin et al. 2018), 
and the iGEM Registry of Standard Biological Parts were 
available. JBEI-ICE (Joint BioEnergy Institute's Inventory 
of Composable Elements) was a registry for access to bio-
logical parts (Ham et al. 2012) with a collection of con-
nected tools. Computational model repositories included 
BioModels (Biomodels Repository 2022), BiGG Models 
(Systems_Biology_Research_Group. BiGG Models 2023) 
and the CellML repository (The_CellML_Project. CellML 
Model Repository 2022; Büchel et al. 2013). An annotated 
SBOL parts registry was SBOLme for metabolic engineering 
(Myers et al. 2017). MetaCyc, KEGG, the Nature Pathway 
Interaction Database (PID), Reactome and WikiPathways 

contained curated biochemical pathways (Büchel et  al. 
2013). With the Human Metabolome Database, human 
metabolite data was searchable including 3D structures, 
diseases, proteins, pathways and reactions (Wishart, et al. 
2018). The Protein Data Bank (PDB) and UniProt were 
available as protein-related resources. Specialized databases 
like the Transporter Classification Database also existed. 
The ChEBI database provided chemical data of biologi-
cal interest (Keating et al. 2020). A detailed exploration of 
EMBL-EBI and NCBI can be encouraged. The Pan-Cancer 
Atlas (Miles and Lee 2018) aimed to assist precision medi-
cine. gnomAD database has been referenced in phenotyping 
studies (Rosenhahn et al. 2022) and provides allele popula-
tion scale frequencies, also classified for pathogenicity.

The Reactome pathway browser (Reactome. Reactome 
Pathway Browser. 2022) provided a map separated according 
to cellular functions, allowing the identification of anno-
tated genetic mutations associated with disease phenotypes. 
Reactome was arguably more ergonomic than Recon3D’s 
(Brunk et al. 2018) extensive interactive browser (Recon 
2022) (Fig. 1). The Reactome Knowledgebase is manually 
curated (Gillespie et al. 2022) and concerns molecular data 
emphasizing human disease and physiology; detailing gene 
expression and mutations. Reactome possessed information 
on 52.5% of the predicted protein-coding human genome 
(10,726 genes). Reactome utilized Gene and Disease Ontol-
ogy annotations and Gene Set Analysis was supported, with 
datasets available from ExpressionAtlas and Single Cell 
ExpressionAtlas. Reactome used Systems Biology Graphical 
Notation (SBGN) for its pathway diagrams, visualized using 
Cytoscape.js. The druggable genome could be visualized 
with annotations provided by Reactome IDG. In a March 
2024 email from QIAGEN, a company operating with hun-
dreds of millions of dollars, they stated the connectivity of 
Reactome pathways to their commercial QIAGEN Ingenuity 
Pathway Analysis (QIAGEN IPA) service (QIAGEN. QIA-
GEN Ingenuity Pathway Analysis (QIAGEN IPA). 2024).

Expression Atlas (EBML_EBI. Expression Atlas. 2022) 
and the Human Protein Atlas (HPA) (Human_Protein_Atlas. 
The Human Protein Atlas 2022) were resources for pheno-
typic expression profiles. The HPA contained histological 
section graphics with marker expression levels, protein func-
tion details, survival rates, and used external resources such 
as the Cancer Genome Atlas. RNA-seq data was available, 
which uses Next Generation Sequencing to sequence the 
transcriptomic profile of cells. Transcriptomics data acquisi-
tion can also arise from DNA microarray technology (Gurdo 
et al. 2023), however the use of probes compared to RNA-
seq restricts detection to known sequences. Protein localiza-
tion/compartmentalization can be associated with specific 
functions, which cells achieve via trafficking (Watson et al. 
2022). Localization data was available at the Gene Ontol-
ogy Cellular Component and Jensen COMPARTMENTS 
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databases. The HPA was considered the gold-standard in 
protein localization.

The SABIO-RK online database offered scientist-curated 
biochemical kinetics data (Rojas et al. 2007), with reac-
tion information obtained via databases including KEGG. 
Parameters included rate/equilibrium/dissociation/inhibi-
tion constants and maximal velocities (Golebiewski et al. 
2007). Export could be in the SBML format (Rojas et al. 
2007) and SABIO-RK has been used for kinetic model gen-
eration (Büchel et al. 2013; Dräger et al. 2015). Integration 
of SABIO-RK queries was reported for CellDesigner and 
SYCAMORE (Golebiewski et al. 2007).

This subsection noted many useful resources, however 
with countless bioinformatics resources undoubtedly many 
were excluded from this compilation. Our research impli-
cated the importance of experimentally derived pathway 
networks coupled with omics resources, with different types 
of omics potentially presenting with different layers of regu-
latory control, and hence different perspectives on the true 
state of a biological system. In fact, the current biological 
state is the result of the physical molecular configuration 
resultant of the temporally past upstream interactome. It is 
the task of the biological modeller or researcher to under-
stand the implications of experimental assays and interpret 
bioinformatics resources at different regulatory levels to 
infer a complete picture of the present state. For example, 
RNA-seq data is evidently highly popular, but restricted to 
the transcriptome, with uncertainty to the true downstream 
state of the system, discernible from the metabolome or 
proteome. Neither does RNA-seq represent the true capac-
ity of a given genome, only that which is transcriptionally 
active in the present or past. Indeed, a range of techniques 

are available for data collection across the omics (Gurdo 
et al. 2023).

3.3  Data mining

Biological text mining tools are capable of “named entity 
recognition” (NER) and functional enrichment analysis 
(Baltoumas, et al. 2021). Functional enrichment analysis 
aims to identify genes that might be over or under expressed 
in particular phenotypes, e.g. via g:Profiler2 and aGOtool. 
NER can use ontologies and “concept-normalization” to 
map a word or phrase to a term (Pattisapu, et al. 2020). 
OnTheFly utilized the EXTRACT tagging service for this 
purpose (Baltoumas, et al. 2021), and also possessed Opti-
cal Character Recognition. aGOtool could locate documents 
related to identified genes and proteins, achieved through a 
text corpus from PubMed. The STRING and STITCH APIs 
could be used to assess protein interactions with resulting 
node-based graphs such as of interaction evidence and bind-
ing affinities.

2023 was a breakout year for machine learned large lan-
guage models (LLMs) (Else 2023) trained on large volumes 
of “human-generated text”, an eminent example being Chat-
GPT by OpenAI. Such technology was proposed to serve 
fields as diverse as stem cell research (Cahan and Treutlein 
2023). Biomedical language models included BioBERT, 
PubMedBERT and BioGPT (Luo, et al. 2022), trained on 
vast corpora of biomedical literature. BioGPT is a domain-
specific generative Transformer language model trained on 
15 million PubMed abstracts. BERT utilized “masked lan-
guage modelling” with probabilistic sentence predictions. 
Instead, the Generative Pre-Trained Transformer (GPT) 

Fig. 1  Reactome (Left) and Recon3D via Virtual Metabolic Human (Right) are impressive resources for reaction networks with the capacity to 
download detailed computational models
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would predict word tokens, including via Byte-Pair encoding 
(Vaswani, et al. 2017). LLMs can also assist with program-
matic tasks. We have considered the possibility of extend-
ing our ongoing research (Matzko 2023) through the use of 
LLMs. Graph neural networks are another domain that could 
be considered (Gurdo et al. 2023).

4  Biochemical/bioregulatory modelling 
and analysis methods

In order to perform simulations, which have hypothesis gen-
eration and predictive potential, models must be established. 
This section details simulation and chemical reaction net-
work (CRN) resources and principles, as well as introducing 
Synthetic Biology CAD software for genetic circuit design.

4.1  Network analysis and modelling methodologies

Simulators solve biochemical reactions and transitions by 
operating on syntactically compatible models. An example 
is libRoadRunner (Choi et al. 2018) with stochastic and 
ODE support (Available from 2022). NGSS (Next Genera-
tion Stochastic Simulator) (Sanassy et al. 2015) for Gillespie 
algorithms was discussed in our previous work (Matzko 
et al. 2023; Konur et al. 2021), alongside SSAPredict for 
algorithm selection based on model topology. Reaction-
based models can be interrogated by parameter estimation, 
sensitivity analysis and parameter sweep analysis (Riva 
et al. 2022) at considerable computational expense. Thus, 
the move to GPU from CPU architecture was encouraged. 
Model analysis can be performed via numerical analysis, 
e.g. on matrix representations of state, or statistical analysis 
on stochastic runs (Appleton et al. 2017). Kinetic param-
eter estimation is possible via genetic algorithms, particle 
swarm and hill-climbing methods. BioPSy and COPASI 
software provided parameter estimation capabilities. Sen-
sitivity analysis assesses the dynamics of a system relative 
to its parameters.

Gene regulatory networks involve the manipulation of 
“cis-regulatory module” DNA sequences for the activation 
or inhibition of transcription (Delile et al. 2017), and have 
been described as bipartite directed graphs (Yaman et al. 
2012) modellable in Boolean fashion or through probabilis-
tic differential equations (Delile et al. 2017). Contrasted with 
kinetics models, Boolean models can provide a convenient 
simplification (Karagöz et al. 2021) with utility in modelling 
domains such as signalling cascades (Letort et al. 2019) or 
phenotypic states (Rubinacci et al. 2015).

Stochastic simulation algorithms (SSAs), whilst compu-
tationally intensive by contrast to deterministic ODEs, are 
said to produce accurate simulations retaining the inherent 
stochasticity of biological metabolic networks (Sanassy 

et al. 2015). This arises from their discrete modelling con-
trasted to the continuous nature of deterministic ODEs. 
Classical kinetics was considered unsuitable for genetic 
regulatory systems, which involve large fluctuations in 
species counts (Appleton et al. 2017). Stochastic simu-
lations assess propensities of reactions over successive 
infinitesimal time intervals, rendering them computation-
ally expensive under conditions of high propensity. Hence 
the existence of hybrid-algorithms using both stochastic 
and ODE methods in COPASI (Hoops et al. 2006). The 
argument was made for the use of bond graphs in dynamic 
biological modelling (Pan et al. 2021) to correct for ther-
modynamic inconsistencies, e.g. via BondGraphTools for 
Python. A major challenge to kinetics modelling besides 
computational expense is the limited availability of experi-
mentally determined kinetics data. Kinetics modelling was 
thus deemed “cost-prohibitive” (Gurdo et al. 2023). How-
ever, a lack of kinetics data was considered a limitation in 
translatable, cost effective modelling for certain expres-
sion systems. The possibility of using machine learning 
to enhance kinetics parameterization is noted in Sect. 5.1.

Flux balance analysis (FBA) can guide metabolic engi-
neering of interacting pathways (Sekiguchi et al. 2021). 
FBA is a kinetic rate free, constraint-based approach uti-
lizing an objective function (Motamedian et al. 2017) that 
mathematically analyses the flow (e.g. mmol/gDW/hr) 
through a metabolic network (Orth et al. 2010), associated 
with the field of fluxomics (Gurdo et al. 2023). For growth, 
the objective function may be the maximization of bio-
mass (Motamedian et al. 2017; Dukovski et al. 2021). FBA 
has been used to predict missing reactions and gene knock-
outs for optimized end-product formation, e.g. knockouts 
by modulating upper and lower flux bounds (Rowe et al. 
2018). However, without kinetic parameters, chemical con-
centrations are undefined and FBA is confined to steady 
state evaluations (Orth et al. 2010). FBA tools included 
Escher-FBA, OptFlux, COBRA Toolbox, COBRApy, 
PSAMM and FAME (Rowe et al. 2018). COBRA stands 
for constraint-based reconstruction and analysis (Gurdo 
et al. 2023). FBA optimization of flux values via objec-
tive function at the genome-scale was considered to be 
extremely rapid even on conventional hardware (Duko-
vski et al. 2021). FBA uses a stoichiometric matrix with 
rows of metabolites and columns of reactions to simulate 
under a steady state assumption. However, a limitation 
of FBA was described as a lack of “explicit gene regula-
tion”. Also FBA presents with flux inaccuracies (Gurdo 
et al. 2023). Amongst FBA variants, thermodynamic flux 
analysis is an alternative that considers the Gibb’s free 
energy to drive reactions, such as via the pyTFA package 
(Lent et al. 2023). Due to the Michaelis Menten propor-
tionality between Vmax and enzyme concentration [E], 
in this method perturbations of Vmax would be used to 
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simulate variable [E] under factors such as assumed pro-
moter strength for the enzyme.

COPASI (COPASI. COPASI 2022) is an open-source bio-
chemical simulator (Hoops et al. 2006), with GUI (Graphical 
User Interface) version, capable of model editing and analy-
sis. Operating on CRNs, COPASI has deterministic ODE 
capabilities, stochastic algorithms, ODE/stochastic hybrid 
methods, steady state computations, stoichiometric network 
analysis, sensitivity analysis, metabolic control analysis, 
optimization, parameter estimation and flux analysis. Kinetic 
functions could be defined and chosen from an integrated 
library. Optimization used objective functions, steepest 
descent, genetic algorithms and evolutionary strategies for 
maximizing or minimizing model variables.

4.2  Whole cell models

Recon3D may be the most extensive public human meta-
bolic network model, containing 3,288 open reading frames, 
13,543 reactions, 4140 metabolites (Brunk et al. 2018) and 
12,890 protein structures. Contrast this scale to EcoCyc-
18.0-GEM (Weaver et al. 2014) for E. coli and Path2Models 
(Büchel et al. 2013) in Fig. 2. Other genome scale metabolic 
reconstruction models for E. coli and other organisms are 
available on BiGG Models (Systems_Biology_Research_
Group. BiGG Models 2023). Recon3D could be explored on 
the Virtual Metabolic Human website (VMH. Virtual Meta-
bolic Human. 2022), including via Recon Map 3 (Recon 
2022). Pathway enzymes could be cross-referenced with 
databases such as KEGG, PDB, CHEBI, PharmGKB and 
UniProt via external links.

Recon3D utilized a subset (17%) of human proteins from 
UniProt to generate a 10,600 reaction computational model 

made available at BiGG models (UCSD_SBRG. BiGG 
Models. 2019). Recon3D possessed 3D protein structural 
information from the PDB and included atom-scale models 
produced through homology modelling via protein sequence 
alignment. Metabolite structures were included from various 
sources. Structural data was hence achieved for 85% of the 
human metabolome, including the aforementioned 12,890 
protein structures. Drug metabolic perturbation effects were 
assessed, assisted by resources such as the Connectivity Map 
(Broad_Institute 2022).

4.3  Minimal genomes

Minimal genomes can present as a starting point for devel-
oping synthetic biological systems. Mycoplasma genitalium 
contains only 525 genes (Sleator 2016). Comparisons with 
other bacteria provided rationale for estimating 256 essential 
genes, whilst other methods suggested 375 genes via trans-
poson mutagenesis data. JCVI-syn3.0 was a physiologically 
stable synthetic cell developed with an approximately mini-
mal genome, based on Mycoplasma mycoides (Rees-Garbutt 
et al. 2020). 240 essential genes were identified, along with 
quasi-essential genes numbering 229 with minor or major 
cell abnormalities. The method utilized the Tn5 transposase.

The JCVI-Syn3.0 researchers computationally assessed 
tens of thousands of gene knockouts for implementation with 
Mycoplasma genitalium ATCC 33530/NCTC 10195. The 
model was parameterized from 900 publications and 1900 
experimental observations and such models of Mycoplasma 
genitalium are perhaps the most complete of any cell. Mine-
sweeper and GAMA algorithms performed deletions with 
subsequent simulation ensuring that division still occurred 
in silico. These algorithms produced tens of thousands of 
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EcoCyc, Recon3D, Path2Models comparison

Path2Models - Human Recon3D - Human EcoCyc-18.0-GEM - E. Coli

Fig. 2  A comparison of three genome scale models. Recon3D was by far the most data-rich SBML model encountered, as evidenced also on the 
BiGG model website (Systems_Biology_Research_Group. BiGG Models 2023)
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genomes having used 3000 CPUs operating over months. 
GAMA primarily knocked out genes less likely to disrupt 
division, followed by random knockouts and recombina-
tion, predicting a 360 gene minimal genome. The in silico 
cell could grow/divide in a simulated SP4 growth medium. 
Reduced Gene Ontology category terms from UniProt per-
mitting continuity included DNA repair/replication/topol-
ogy, transcription, regulation, the cell cycle/division, pro-
tein transport/folding, lipid production and RNA processing. 
BLAST (sequence alignment) was used to compare JCVI-
Syn3.0 to the GAMA_237 and Minesweeper_256 models. 
The whole cell model of Mycoplasma genitalium (Karr and 
Brandon;.  2015) could be run through SimulationRunner.m 
or MGGRunner.m via MatLab.

4.4  Biochemical pathway/network model 
generation and optimization

Chemical Reaction Networks (CRNs) were considered criti-
cal for modelling in both Synthetic and Systems Biology 
(Poole et al. 2022), with ongoing efforts to automate the 
process, with tools created for synthetic network generation 
(Riva et al. 2022). Despite the successes of constraint-based 
(flux balance) approaches, explicit concentration-based 
modelling requires kinetics data (Rosmalen et al. 2021). 
For kinetic networks, rate laws must be defined (Dräger 
et al. 2015). A model might be outlined and subsequently 
parameterized (Poole et al. 2022), perhaps with estimates. 
Tools capable of defining rate laws included COPASI, 
CellDesigner and SABIO-RK (Dräger et al. 2015). Spe-
cialist tools existed, such as Odefy, which could generate 
differential Hill-type equations from Boolean networks. 
Various methods for “model reduction” existed (Rosmalen 
et al. 2021). Model reduction software included FastCore, 
NetworkReducer and minNW. Other approaches included 
MOMA for reduction, which was proposed in relation to 
next generation constraint-based modelling using GECKO, 
REMI, MOMENT or RBA. SMGen, with GUI, generated 
reaction networks with CPU parallelization (Riva et al. 
2022). SMGen had SBML and BioSimWare export; where 
BioSimWare was used by some GPU simulators. There was 
no evidence that SMGen pursued biological reality beyond 
arbitrary constraint-generated CRNs. Models for SMGen 
were defined through stoichiometry and kinetic rate con-
stants and utilized the law of mass-action.

BioCRNpyler, written in Python and programmatically 
scripted (Poole et al. 2022), was designed to generate SBML 
format CRNs with combinatorial capacity. The simulator of 
choice was Bioscrape. BioCRNpyler could combine modular 
components (essentially SB parts and devices) into large 
models. Alternatives to BioCRNpyler include BioNetGen, 
PySB, Tellurium, Virtual Parts Repository (VPR), iBio-
Sim, COPASI and MATLAB Simbiology. Models could 

be constructed from species and reactions, and could take 
on a variety of “propensity functions” such as mass-action, 
Hill and user specified functions. Mechanisms included 
binding, cooperative binding, catalysis, Michaelis Menten, 
transcription, translation, dilution, degradation (nuclease/
protease), activation (Hill function) and repression (nega-
tive Hill function).

SBMLsqueezer 2, also a CellDesigner plugin, made 
use of the SABIO-RK database via RESTful API to gener-
ate large-scale biochemical kinetics models (Dräger et al. 
2015), with selectable gene-regulatory rate law alterna-
tives including Hill-Hinze, Hill-Radde, Weaver’s equation, 
S-systems, H-systems etc. Hill function kinetics can pro-
vide switch-like behaviour, suitable for transcription factor 
dynamics, and transcription is a non-linear reaction with 
power-law approximations connected to Taylor’s theorem 
(Chakraborty et al. 2022). SBMLsqueezer 2 would manipu-
late SBML via JSBML with libSBML support (Dräger et al. 
2015). Reaction type was determined by Systems Biology 
Ontology and MIRIAM annotations. A pipeline was sug-
gested using a BiGG database model, or generated by KEG-
Gtranslator, with SBMLsqueezer 2 providing kinetic law 
generation, and SBMLsimulator was suggested for fitting 
models to experimental data. For the Path2Models project, 
a pipeline was developed for the generation of computa-
tional biochemical pathway models in SBML from KEGG, 
MetaCyc and BioPAX (Büchel et al. 2013). Upon conver-
sion to SBML, the models would have kinetic rate equa-
tions (via SBMLsqueezer) and flux bounds added. KEGG 
metabolic pathways are described via “processes”, down-
loadable as KEGG Markup Language (KGML), allowing 
for “process-based” reconstructions, translatable to SBML 
via KEGGtranslator. Only 0.22% of reactions could utilize 
SABIO-RK, although as much as 12.2% for Homo sapiens. 
Path2Models only considered the simplest form of rate law 
for reversible reactions. Genome-scale metabolic models 
were generated from KEGG, primarily, and MetaCyc via 
libAnnotationSBML and SuBliMinal Toolbox software 
(RAVEN Toolbox and KEGGtranslator are alternatives). 
Models were specified minimal growth media. Errors were 
generated in terms of AA essentiality in Path2Models and it 
incorrectly generalized biochemical constituents for certain 
lifeforms. The SKiMpy Python package was recently noted 
for “semi-automated” kinetic model generation (Lent et al. 
2023).

The conversion of SBOL to SBML has potential for 
automating the generation of behavioural simulations from 
genetic designs; an unrealized aspiration of GenoCAD 
(Czar et al. 2009). It was suggested that the automation of 
model construction on the basis of design repositories had 
not been achieved (Misirli, G.k,, et al. 2019), perhaps the 
most promising options being the VPR and SB suites such as 
iBioSim. The VPR was said to contain SBOL designs with 
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corresponding SBML models (Poole et al. 2022), with suffi-
cient metadata for automation (Misirli, G.k,, et al. 2019). An 
example workflow generated SBOL using Cello, with import 
into iBiosim for conversion to SBML (Appleton et al. 2017) 
and simulation via COPASI. The reverse is SBOL generation 
from CRNs, as performed by MoSec, a sequence generation 
program (Misirli et al. 2011). MoSec generated EMBL/Gen-
Bank and SBOL formatted DNA sequences from SBML or 
CellML models. The SBML and CellML files would require 
Standard Virtual Parts and MIRIAM-compliance.

Retrosynthesis can optimize and complete gaps in bio-
chemical pathways, a tool of interest being SciFinder-N 
(American_Chemical_Society. 2023). Brute-force chemi-
cal pathway optimization is computationally demanding, 
and multithreaded RetSynth was developed to address 
this (Whitmore et al. 2019). RetSynth could perform FBA 
for product yield optimization via CobraPy and visualize 
the pathways. RetSynth could compile information from 
metabolic databases including PATRIC, KBase, MetaCyc, 
KEGG, MINE, the ATLAS of Biochemistry and SPRESI.

4.5  Synthetic biology suites

A “Synthetic Biology Suite” is a platform designed to house 
Synthetic Biology CAD requirements under a single roof. 
Usually the emphasis is bioregulatory genetic construct 
design and simulation. Figure 3 presents an overview of 
such technologies.

Infobiotics Workbench (IBW) is an open source SB suite. 
IBW integrated various binaries, such as model checkers and 
Gillespie algorithms, and was designed to be an effective 
modelling, simulation, verification and sequence generation 
(via ATGC) tool, with its own ontology-inspired program-
ming language (IBL) for biological circuit design (Konur 
et al. 2021). IBW ran Gillespie simulations through NGSS 

and integrated SSA Predictor, an ML solution for identifying 
the optimal Gillespie algorithm for a model network topol-
ogy. In practice SSA Predictor presented with inaccuracies 
(Matzko et al. 2023). A GPU parallelized CUDA Gillespie 
stochastic simulation algorithm was under development for 
IBW (Konur et al. 2021), although its status remained uncer-
tain. Formal verification could check models for time course 
simulation conditions such as molecular quantity thresholds. 
IBW could automatically add terminators, RBSs via Salis’ 
RBS calculator and spacers. Synthetic Biology genetic part 
sequences could be determined from the iGem repository 
or a local database created from Biofab and Rebase. User 
defined directives could guide ATGC to manage restriction 
sites. Case studies have used genetic regulatory networks 
(circuits) with molecular switches to dynamically regulate 
expression levels; e.g. GFP expression regulation via XOR 
gate constructed from genetic parts (Konur, et al. 2014). 
In previous iterations, IBW was intended for the design, 
analysis and optimization of multicellular systems (Blakes 
et al. 2014). Decomposition/decoupling of reaction networks 
could have allowed for tractable and modular optimization. 
Our ongoing research continued to investigate the spatiotem-
poral extension of the NGSS component of IBW (Matzko 
et al. 2023).

iBioSim modelled biochemical systems through in silico 
genetic circuit design, with optional multicellular grid rep-
resentations. Operons could be designed in vSBOL (Vis-
ual SBOL) and an online registry could be communicated 
with to select parts. SBOL designs use an embedded part 
sequencer, SBOLDesigner (Watanabe et al. 2019). iBioSim 
could import and export in SBML, SBOL, Labelled Petri 
Net models (LPN) and SED-ML (Myers 2015). Analysis 
of models used deterministic ODEs, Monte Carlo, Markov 
Chain and FBA. A similar software, Tinkercell (Tinker-
Cell_Website. TinkerCell. 2022), was created for the product 

Fig. 3  A summary of Synthetic Biology Suites and Domain Specific Languages (DSLs) discussed in this section. DSLs can exist within Syn-
thetic Biology Suites and are used in the design of bioregulatory circuits
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design and analysis cycle. Plug-ins could allow for stochastic 
simulations, directed evolution, DNA optimization, online 
searches and experimental data import. Tinkercell used 
deterministic and tau-leaping stochastic simulations and 
possessed automated or manual rate equation assignments 
for designed constructs (Chandran et al. 2010). C, Python 
and Octave languages could be used for scripting. Tinker-
cell had text-based modelling via the Antimony language 
(Smith et al. 2009) and allowed for the drag and drop design 
of operons, including into plasmid representations. Another 
suite of tools, Clotho, was developed for iGEM (Internation-
ally Genetically Engineered Machine) competitions (Xia, 
et al. 2011). Various Clotho apps could be used to operate 
on metadata objects. An interesting feature was provisional 
risk assessments based on NIH Guidelines, flagging Parts, 
Vectors and features using BLAST against virulence factors.

Tellurium, applied through Jupyter Notebook or Spyder 
IDE, was created for Systems Biology and SB modelling, 
simulation and analysis (Choi et al. 2018). It used phraSED-
ML and SimpleSBML for model design and the Antimony 
language for translation to and from SBML. Tellurium uti-
lized libRoadRunner for deterministic and stochastic simu-
lations, assessing parameter changes by metabolic control 
analysis. Network structural analysis used libStructural 
and Tellurium utilized AUTO2000 for bifurcation analysis, 
allowing for the assessment of parametric changes, bi-sta-
bility and oscillations. Tellurium could parameter estimate 
by model fitting to experimental data and used a “differential 
evolution optimizer” from SciPy for parameterization via 
global optimization. Known data was contrasted to predicted 
via normalized root mean squared error.

5  Design automation and combinatorial 
approaches in synthetic biology

Previously, we mentioned combinatorial possibilities in 
CRN generation (Poole et al. 2022). Rational, semi-rational 
and combinatorial approaches to pathway design are pos-
sible (Appleton et al. 2017), with the potential to utilize 
genetic parts in combinatorial experiments, even with 
population level consequences. The power of combinatorial 
approaches to solve otherwise intractable problems likely 
overrepresented them in industry compared to rational 
approaches overrepresented within academia. Rational 
designs (Stephanopoulos 2012) can be given a combinato-
rial treatment to select for mutants with best performance 
by high-throughput, and high-throughput has been sug-
gested for part characterization (Buecherl and Myers 2022). 
Genetic design automation (GDA) was described as involv-
ing part selection, combinatorial methods, assembly and 
analysis; with emphasis on standards and design portability 
of well-established parts.

Figure  4 depicts an approximated schematic for the 
DBTL loop for SB. In this case ML is proposed as a modal-
ity through which learning can be automatically adminis-
tered to combinatorial design, however ML feedback might 
alternatively interact with other stages of the cycle, calibrat-
ing the automated system towards an idealized state. The test 
metrics would depend on the specific requirements of the 
product, and can be generalized as assays or micrograph-
ics. Assays may include sequencing (e.g. RNA-seq, ribo-
seq (Foo et al. 2023)), flow cytometry, mass spectrometry, 
transcriptomics, metabolomics and proteomics to extract 
characterizations of the generated cells or cell populations. 
Metabolite concentration data can be considered for model-
ling (Gurdo et al. 2023). Microarrays might be used, as well 
as various forms of chromatography and DNA assays (e.g. 
agarose gel electrophoresis). Automated liquid handling with 
photometric screening was reported (Helleckes et al. 2023). 
Micrographic analysis is an alternative, although a variety of 
other testing options might be available, including the use of 
magnetic resonance (NMR, even MRI) and X-ray crystallog-
raphy to characterize the synthetic system being generated. 
Imaging, such as micrographs, might take various forms, 
for example including whole organism behavioural studies/
phenomics (Rosenhahn et al. 2022) or microbial phenom-
ics such as growth rate and sporulation in yeast (Foo et al. 
2023). Often behavioural characteristics such as growth are 
used as objectives functions in modelling (Motamedian et al. 
2017; Dukovski et al. 2021). Electron microscopy and serial 
sectioning can be combined (Larsen et al. 2021) to produce 
digital reconstructions for analysis (Liimatainen et al. 2021), 
with implications in 3D culture engineering, such as tis-
sue engineering. For instance, AutoCUTS-LM (Automatic 
Collector of Ultrathin Sections for Light Microscopy) pos-
sessed an ultramicrotome with collection of sections by tape 
at a rate of 800 per hour, coupled with scanning electron 
microscopy (Larsen et al. 2021). Electron microscopy was 
reportedly capable of resolving biological neural networks, 
and neuron centroid detection utilized the machine learned 
solution UNetDense.

Semiconductors have been designed through Electronic 
Design Automation (EDA) for decades (Densmore and Bha-
tia 2013). Biological Design Automation (BDA) was pro-
posed to involve protocols relayed to microfluidics, liquid 
handling robots and bioprinters. This could be coupled with 
ML and an iterative design process. Microfluidic systems 
could provide for regulated environments for experimenta-
tion, with a parallel drawn with EDA “frequency response 
analysis” (Lux et  al. 2011). In terms of the automated 
genetic design phase of a DBTL cycle (Fig. 4), Cello, GEC, 
BioCompiler and GenoCAD were singled out, however a 
manually curated library of devices is a large part of Cello’s 
success (Beal and Rogers 2020). In assessing the capacity 
of available resources, design and test were ascribed to the 
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successes of Autoprotocol, Aquarium, Antha and OpenTrons 
API. Automated analytics was attributed to automated flow 
cytometry analysis (TASBE), other assays (Galaxy) and 
microscopy (SuperSegger and Fogbank).

It is worth noting that while mechanistic models have 
design implications, another perspective is that the mod-
elling phase resides in the learn stage of the DBTL loop 
(Gurdo et  al. 2023). Whilst modelling is the modality 
through which design is achieved, this perspective defines 
the learn phase as the interpretation of collected test phase 
data into modelling modalities.

5.1  Machine learning for synthetic biology CAD

ML (Fig. 5) can find solutions beyond human intuition 
(Fawzi et al. 2022). Artificial neural networks are layers 
of interconnected nodes operating through weighted func-
tions (Rampasek and Goldenberg 2016). Such technology 
has been applied to biological research including protein 
folding, molecular biology, neuroimaging-based diagnosis, 
impact of point mutations and nucleic acid interactions. 
However, many biological problems have low sample sizes, 
which is not conducive to deep learning, although data may 
be manipulable to increase trainability. Thus, pre-existing 
data is essential, for example AlphaFold exploited motifs 
and evolutionary information for protein structure infer-
ence (Callaway 2022) using the data rich PDB (Varadi 

et al. 2022). For the design of riboswitches, the Rfam data-
base was used (Palaniappan 2022). Perhaps kinetics data 
(SABIO-RK) presents as a potential target (Dräger et al. 
2015). Other repositories, including metadata from the VPR 
(Misirli, G.k,, et al. 2019), may present with potential. Our 
research trajectory would lead us towards considering multi-
omics (Matzko 2023). Regarding available ML frameworks, 
TensorFlow is an open-source example from Google (Ram-
pasek and Goldenberg 2016) and provisioned free access to 
remote CPU, TPU and GPU computing via Google Colab. 
TensorFlow’s technical complexity was simplified by high 
level wrappers like Keras and Pretty Tensor. Alternative 
deep learning frameworks include Torch7, Theano, Caffe, 
Neon by Nervana, Deeplearning4J and H2O-3. pyTorch 
Python library has proven to be convenient to use through 
an IDE (integrated development environment) such as Visual 
Studio Code on Windows. Although as noted, Google Colab 
provisions for remote computing, useful particularly if one 
is operating on limited local hardware.

Protein structure has significance to pathological states, 
e.g. leukodystrophy (Akdel, et al. 2022), and the struc-
ture–function relationship is a well known principle in bio-
logical study. Structural and functional predictions can be 
made from AA sequence motifs (Torres and Fuente-Nunez 
2019), which is beneficial to protein design and docking 
(e.g. via Rosetta 3 (Huang et al. 2016)) and useful for in 
silico drug design. Docking software can evaluate the 

Fig. 4  A general schematic of the DBTL cycle
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ligand potential of billions of small molecules for drug 
development (Callaway 2022). However, small structural 
differences between experiment and prediction can have 
a significant impact on drug matches. Protein folding pre-
dictions had been made via structural homologs or phys-
ics/energetics (Brunk et al. 2018; David et al. 2022). Such 
predictions involved the rearrangement of an AA sequence 
into a favourable “low-energy state”, considered to be an 
intractable problem (Perrakis and Sixma 2021). However, 
AlphaFold made no consideration for energy minima, rather 
applying ML to homolog templates and multiple sequence 
alignment (David et al. 2022) via neural networks (Calla-
way 2022) upon half a century of experimental data (Per-
rakis and Sixma 2021). AlphaFold could predict dynamic 
domain behaviours, although interactions were not avail-
able in its database. RoseTTAfold and AlphaFold-Multimer 
were able to achieve limited multimeric predictions. Colab-
Fold allowed the submission of an AA sequence for struc-
ture prediction (Callaway 2022). AlphaFold data could be 
accessed via API, which was used by archives such as Uni-
Prot to display protein structures, which also contains X-Ray 
determined structures from the PDB (Varadi et al. 2022), 

including Nobel Prize winning structural elucidations upon 
which AlphaFold was trained. AlphaFold can have serious 
structural flaws when compared to X-Ray results (Varadi 
et al. 2022; David et al. 2022; Thornton et al. 2021). Since 
the Therapeutic Target Database had only a few thousand 
targets compared to the tens of thousands of human pro-
teins, new virtual screening tools for therapeutic targets 
might arise from AlphaFold (Tong et al. 2021). AlphaFold 
reportedly led to drastic improvements in identifying disor-
ders (Callaway 2022). It can be speculated that hybrid ML 
and classical physical algorithms might be developed, where 
computationally expensive physical predictions could be 
used sparingly where necessary if proven to enhance model 
performance.

Elsewhere, Deep Learning via Python was applied to 
Riboswitches (Palaniappan 2022) for their classification in 
a project called RiboFlow, including the use of convolutional 
neural networks (CNNs) and bidirectional recurrent neural 
networks with “Long Short-Term memory” (RNNs) derived 
from TensorFlow (Premkumar et al. 2020). Each of the 32 to 
39 riboswitch classes was regulated by a particular ligand, 
for example glutamine, fluoride, cobalamin etc. The Rfam 

Fig. 5  Synthetic Biology applicable machine learning frameworks 
and some applications encountered in this section. The upper right 
illustrates a structure prediction from the AlphaFold Protein Struc-
ture Database (EMBL-EBI. 2023), whilst the Riboswitch structure 
(centre) was acquired from the Rfam database (Elixir. Rfam 2024). 
The lower graphic shows a very simple illustration of a multilayer 

perceptron artificial neural network. The above diagram is far from 
exhaustive and ML Frameworks, architectures and libraries continue 
to evolve, including architectures such as Transformers (Brown, et al. 
2020) and Diffusers. The reader can be encouraged to seek documen-
tation within an architecture of their choosing should this domain be 
of interest to them
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database for non-coding RNAs was used to obtain FASTA 
sequences via File Transfer Protocol. “Feature vectors”, 
essentially an array of encoded data points, were obtained 
and normalized for ML, including mononucleotide and dinu-
cleotide frequencies. The research presented the potential for 
riboswitch discovery, with class membership probabilities 
implying aptamer strength. Such work could be applied to 
riboswitch targeting drugs, such as antibiotics.

Elsewhere still, the CAD design of purpose-built liv-
ing multicellular organoids was pursued (Kriegman et al. 
2020), with implementations via microsurgical approxima-
tions. Evolutionary models were deemed favourable over 
learning methods due to the flexibility conferred to desired 
behaviour, however artificial neural networks were sug-
gested for narrowing the design space. Simulations were 
re-constrained according to observed physical behaviours, 
thus tying together multiple ML methods, Synthetic Biology, 
surgical methods and spatiotemporal physical simulations. 
Physics informed neural networks might be considered for 
dynamic simulations of such a nature (Gurdo et al. 2023).

Whilst it is prudent to target and validate against big 
biological data as in above examples, computational sce-
narios featuring somewhat abstract kinetic enzyme path-
ways have been probed with ML strategies with optimiza-
tion towards maximizing fluxes through specific reactions 
(Lent et al. 2023). The ML models would hence be able 
to probe the entire design space to select for the desired 
criteria. However, that work presented with abstractions 
with author acknowledged assumptions. Hence, laboratory 
automation, discussed next, could accelerate the process of 
data collection whilst generating inferable real world data 

for supervised learning where it is not already available. 
Real world biological models must be considered the gold 
standard, however, with high-throughput data acquisition a 
scenario of diminishing returns might be envisaged between 
the benefits of biological combinatorial experiments versus 
computational prediction models.

5.2  Automated laboratories and enabling 
organizations

DNA Assembly methods have been automated using the 
OT-2 (Fig. 6) liquid handling robot by OpenTrons, along 
with external thermocycler (Storch et al. 2020) for DNA 
amplification via PCR. The OT-2 system came with a 
python-based API for the manipulation of protocols. The 
combination of the OpenTrons system and BASIC assembly 
method was termed DNA-BOT. OpenTrons was a laboratory 
automation provider, and there was potential to use foundries 
and automated laboratories such as Strateos (Buecherl and 
Myers 2022) (Fig. 7). Another company, Synthace (Syn-
thace. Synthace website. 2022), promoted DOE (design 
of experiments) visual scripting, translated into machine 
instructions using liquid handlers, dispensers and analyti-
cal devices with high-throughput. DOE can be highly para-
metric, which Synthace referred to as “High Dimensional 
Experimentation” (Miles and Lee 2018).

Standardized methods with automated laboratories run on 
software-prepared protocols can address experimental repro-
ducibility issues (Miles and Lee 2018). Sensors were used 
for precise experimental parameterization with program-
matic robotic cloud laboratories with remote access. The 

Fig. 6  The OpenTrons OT-2 (left) as compared to a microfluidic palette (NIST. 'Microfluidic Palette' 2009) (right). For efficiency reasons, 
microfluidics has been considered the future of biotechnology
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“Transcriptic Common Lab Environment” (TCLE) featured 
web-interface trackable assays controlled by a scheduler run-
ning experiments via robotics that operated via Intel Nus, 
miniature PCs, operating with precision liquid handling, 
plate management, centrifugal evacuation of plates, media 
switching, self-decontamination, absorbance and fluores-
cence validation, reagent injection, temperature control and 
PCR. “Autoprotocol” was developed for preparing human 
and computer reproducible protocols. Having already men-
tioned microsurgical techniques (Kriegman et al. 2020), it 
can be speculated that it might even be possible to include 
microsurgical automation protocols in certain cases. Fog or 
edge computing for decentralized, heterogenous systems 
could be considered to localize processing where appropri-
ate, with benefits for distributed computing and latency/
bandwidth reduction (Torabi et al. 2022). Strategies in this 
domain consider data replica placement throughout the dis-
tributed system. Given that the above automation relates to 
the “Internet Of Things” (IoT), such architectures may take 
into consideration intelligent resource scaling of such dis-
tributed systems (Etemadi et al. 2021).

While liquid-handling robotics can hasten research via 
high-throughput, they occupy a large amount of space, and 

can be expensive and wasteful (Linshiz et al. 2016). Small 
volume laboratory experimentation was considered the 
future of biotechnology. A microfluidics platform utilizing 
electronically controlled pneumatically actuated microvalves 
allowed precision fluidic control at 150nL, including mixing, 
routing and automatic rinsing. PR-PR was software, with 
GUI, for instruction generation in robotic and microfluidic 
devices (Oberortner et al. 2017), providing high level pro-
gramming processed by LabView for solenoid microvalve 
control (Linshiz et al. 2016).

Biofoundries were reported as high-tech organizations for 
genetic reprogramming (Hillson et al. 2019). Biofoundries 
provided and promoted high-throughput, automated systems, 
CAD, ML, training, logistics, infrastructure, expertise, sus-
tainability and standardization. The Regenerative Medicine 
Manufacturing Society promoted cell manufacturing for 
cell therapies, 3D bioprinting, bioreactors, cell counting/
sorting, biofabrication of tissues/organs, AI (artificial intel-
ligence) automation, cell harvesting, materials transport, 
training and supplying laboratories (Hunsberger et al. 2020). 
ASTM International worked towards standardizing bioinks 
for bioprinting, such as for drug delivery systems, tissue 
scaffolds, prosthetics, organoids and tissue/organ products. 

Fig. 7  Views of a Strateos laboratory demonstrating robotic automation
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Biofoundries are reported to utilize the DBTL cycle to 
generate thousands of microbial strain variants through 
parallelized strategies, with screening in microbioreactors 
(Helleckes et al. 2023). Investigations aimed to resolve the 
automation of cryopreserved samples from an automatic 
deep-freezer for use with downstream BioLector micro-
bioreactors and a Tecan Freedom EVO robotics platform. 
The robotic setup would include a robotic manipulator arm, 
microplate reader, centrifuge and microtiter plate handling. 
The process would include disinfection, preculture thawing 
and optical density triggered genetic expression induction of 
cultures via IPTG (Isopropyl β-D-1-thiogalactopyranoside). 
As a result of the phenotyping assays (in this case spectro-
photometric), the generation of larger datasets was deemed 
to have shifted the “bottleneck” of the DBTL cycle towards 
the learn phase.

The following involves a non-exhaustive detailing of cut-
ting edge technologies, hardware and services encountered 
at The Festival of Genomics & Biodata in London 2024. 
Hardware included a Tecan single cell dispenser (Tecan_
Trading_AG. Uno 2024), DNA fragmentation via Meg-
aruptor 3 allowing for subsequent long-read sequencing via 
technologies by PacBio and Oxford Nanopore sequencers 
(Diagenode. 2024), as well as chromatin and DNA shearing 
via Diagenode’s Bioruptor (Diagenode. Shearing technolo-
gies Bioruptor. 2024). Such companies offered a range of 
services, for example Diagenode offered ATAC-seq (Assay 
for Transposase-Accessible Chromatin) to analyse chromatin 
accessibility and ChIP-seq (Chromatin Immunoprecipitation 
Sequencing) to assess protein-DNA interactions. They also 
offered a DNA-methylation profiling range, as well as total 
RNA-seq and mRNA-seq. Also on display was the Pro-
mega  Maxwell® Benchtop Automated DNA/RNA extrac-
tor (Promega_UK. 2024) for simplifying the purification 
of nucleic acids for downstream Next Generation Sequenc-
ing (NGS) and qPCR. NGS hardware included Illumina 
platforms (Illumina_Inc. 2024) and PromethION platform 
from Oxford Nanopore. The PromethION 24/48 (Oxford_
Nanopore_Technologies_plc. 2024) offered a staggering 

4 NVIDIA onboard GPUs, 512 GB RAM and 60 TB of 
storage. The single cell gene expression kit by Scale Bio-
sciences (SCALEBIO. SINGLE CELL RNA SEQUENC-
ING KIT. 2024) offered multiplexing, i.e. multiple cell 
high throughput, involving cell barcoding. Unchained Labs 
provisioned services for viral vector and lipid nanoparticle 
delivery, including hardware for lipid nanoparticle quality 
(Unchained_Labs 2024). Vendors also offered reagents for 
cell disassociation from tissue samples. Not noted at the 
festival, although possibly represented, would be cell sort-
ing devices, such as via Flow Cytometry and Fluorescence-
Activated Cell Sorting. Digital PCR, a more quantitative 
alternative to standard polymerase chain reaction, was also 
represented. It is easy to envision how such technologies 
can be linked together, including phenotypic profiling, for 
modern Synthetic Biology research and development, and 
the festival saw research representing leading organizations. 
For instance, sequenced data can be compared to one or 
more reference genomes or expression profiles.

5.3  Combinatorial construct design languages

While “forward-engineering” was considered viable for the 
future, combinatorial optimization (Fig. 8) was said to have 
great utility in SB (Naseri and Koffas 2020). For example, 
Proto Biocompiler could select parts and optimize circuit 
design based on specifications (Myers et al. 2017) as a lan-
guage for genetic regulatory network generation (Beal et al. 
2011). Such technologies can be coupled to other automa-
tion categories, notably assembly design. For example, 
JBEI developed Device Editor for combinatorial part-based 
DNA constructs with visualization through VectorEditor, 
while using J5 for automated DNA assembly design (Myers 
et al. 2017). As GDA was being pursued, design rules and 
standardization were being promoted, with cloning the focus 
of software development rather than function design (Lux 
et al. 2011), which would need to be addressed. BDA and 
GDA could utilize DSLs not dissimilar to the “Hardware 

Fig. 8  Technologies related to combinatorial construct design lan-
guages and laboratory implementations of combinatorial approaches 
as discussed in this section. Domain specific languages, e.g. GEC, 

can be used for genetic part selection. The robotics solution BioAu-
tomata was applied to ML combinatorial automation
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Description Languages” of EDA (Bilitchenko et al. 2011; 
Konur et al. 2021; Smith et al. 2009; Pedersen and Phillips 
2009).

GEC was a formal language, with interface implemen-
tations, designed for simulation and modelling cycles to 
select for idealized SB genetic constructs (Pedersen and 
Phillips 2009) for combinatorial part automation (Pedersen 
and Andrew;. GEC Manual.  2016) using constraint-based 
programmatic syntaxes at the part level. Multiple compila-
tions could result, allowing for rapid generation of operon 
variants (Pedersen and Phillips 2009). Selection capabilities 
were limited by the lack of well described parts registries 
containing detailed molecular properties. With Visual GEC 
discontinued by Microsoft, Lattice Automation and Asimov 
were approaching the industry with custom tailored software 
designs (Buecherl and Myers 2022). Similarly, Eugene was a 
human-readable “ecosystem” of languages for SB, inspired 
by EDA netlists of connected components (Bilitchenko et al. 
2011).

A laboratory combinatorial implementation involved the 
iBioFAB automated robotics platform integrated with ML 
and Spearmint source code (HamediRad et al. 2019), with 
the resulting platform named BioAutomata. Golden Gate 
assembly was performed by iBioFAB with the iScheduler 
software. Lycopene production (HamediRad et al. 2019; 
Exley et  al. 2019) would be the output variable, whilst 
inputs would be via part selection. A T7 promoter region 
was mutated for strength, generating 12 promoters, and an 
RBS calculator was used to generate two RBSs of different 
strengths. The combination of promoters and RBSs yielded 
24 unique expression levels, judged via eGFP fluorescence 
bound to the three expressed genes in the pathway. This 

project hence demonstrated the potential for ML to predict 
expression levels, i.e. phenotypic behaviour, from parts 
selection. Ultimately such design processes benefit from 
quantifiable dependent outputs relative to input independ-
ent variables, where the input variables of the experimental 
system can be given combinatorial treatment, and outputs 
can be of varying dimensionality, although in the above case 
would represent a univariate expression output.

5.4  Circuit design

Circuit design was encountered in relation to Synthetic Biol-
ogy Suites (Sect. 4.5), and refers primarily to relatively small 
networks of interactions brought about by small synthetic 
genetic constructs, unlike genome scale reconstructions. 
Circuit design is also closely related to the aforementioned 
“Combinatorial Construct Design Languages”, as genetic 
constructs possess regulatory characteristics that control 
the behaviour of bioregulatory circuits. This discipline is 
expanded upon here (Fig. 9).

SB first considered simple genetic circuits before their 
modular usage (Naseri and Koffas 2020), which would natu-
rally increase the complexity of models. Genetic circuits can 
include disease marker detection designs, e.g. in lung cancer, 
and drug delivery (Buecherl and Myers 2022). However, 
wet-lab testing was still considered necessary since predic-
tion tools had limited accuracy (Naseri and Koffas 2020) and 
required significant data input from high-throughput experi-
mental transcriptomics, proteomics and metabolomics. For 
example, Tn-Core could use Tn-seq (transposon insertion 
sequencing) and RNA-seq data to generate models. Note that 

Fig. 9  In silico bioregulatory circuit design related technologies dis-
cussed in this section. Categories (orange) include reaction network 
generation, Boolean network descriptions, model selection and net-
work optimization. Software are in light blue ovals, genetic sequenc-
ing data is in tomato coloured diamonds and once again domain 

specific languages (cyan) have relevance to biological modelling (as 
also seen in relation to SB suites) this time in the form of Verilog. 
The illustrative symbols to the right are vSBOL for a typical manu-
ally designed circuit involving a promoter, RBS, coding sequence and 
terminator
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Tn-seq can be used to study functional disruptions of genes 
by transposon introduction.

Logic gates with switching capabilities allow for deci-
sion making circuits (Yeoh et al. 2019). Gates can be per-
ceived as nodes in the interactome of a genetic circuit, and 
potentially controllable in Boolean fashion (Nielsen, et al. 
2016). NOT gates can operate via repressors (Cui et al. 
2021). AND gates require the presence of multiple signals 
to allow for expression. OR gates require only the activation 
of one of multiple pathways. Complex (composite) logic 
gates include NAND, NOR and XOR. A deoxyribozyme-
based circuit of 23 logic gates was reportedly able to play 
noughts and crosses (Miyamoto et al. 2013). Circuits include 
logic gates, toggle switches, oscillators (e.g. circadian), 
repressilators, clocks, French flag, pulse width modulators, 
memory, counters, decoders, encoders, multiplexers, percep-
trons and biosensors (Chakraborty et al. 2022). One model 
used oscillator-driven DNA tweezers operating alongside an 
RNA aptamer. An automated biomodel selection platform 
(BMSS) was created in Python 3 and tested with models 
containing NOT, AND and OR gates along with inducible 
and constitutive expression, providing SBOL circuit design 
and SBML output of the best matched models contrasted to 
experiment (Yeoh et al. 2019). The BMSS system utilized 
fluorescence data from microplate readers, along with sys-
tem perturbation evaluations.

Verilog “Hardware Description Language” was repur-
posed for genetic circuit design (Nielsen, et al. 2016) and 
was parsed by Cello into a DNA sequence (Taketani et al. 
2020). Genetic circuit generation from Verilog involved 
the formation of a netlist Boolean gate network description 
(Jones, et al. 2022). The user constraints file provided restric-
tions for the selection of part alternatives (Chakraborty et al. 
2022), arranged into a DNA sequence according to Eugene 
language rules (Jones, et al. 2022). Combinatorial construct 
design algorithms were used for part alternatives or part 
order (Nielsen, et al. 2016) with subsequent simulation and 
possible identification of regulatory defects with compari-
sons made to experimental flow cytometry. The Cello work-
flow was applied to smart therapeutics (Taketani et al. 2020).

SYNBADm was a Matlab implementation for automated 
optimization of genetic circuit design (Otero-Muras et al. 
2016) utilizing multi-objective optimization for pareto opti-
mality, an approach also mentioned in relation to TopoFilter 
for 3 enzyme networks (Chakraborty et al. 2022). TopoFilter 
was considered to have limited scalability due to its brute 
force approach. SYNBADm supported mass action and Hill 
kinetics upon construction of biological components/parts, 
as well as providing time-course simulations (Otero-Muras 
et al. 2016). This would require libraries of “components” 
and objective functions based around features such as pro-
duction costs and circuit behaviours. SYNBADm was scal-
able to 9 nodes (Chakraborty et al. 2022). It was put forward 

that bioregulatory networks resemble neural networks, and 
hence ML has a suitable role to play in relation to them.

5.5  Genetic optimization

Once a genetic construct has been initially designed, it is 
prudent to consider genetic optimization, not least due to the 
redundancy of the triplet code for encoding amino acids in 
codons. Subsequently, the required sequences may be syn-
thesized de novo and/or stitched together through restric-
tion and ligation. Genetic optimization alters the features 
of a genetic sequence, such as codon optimization and RBS 
translation initiation rates (Swainston et al. 2018), as well as 
exotic exercises such as optimizing riboswitches (Wu et al. 
2019). Codon optimization may prevent ribosome stall-
ing, ensure correct translation termination, modulate gene 
expression, prevent growth impairment, prevent frameshifts 
and prevent the misincorporation of AAs. It allows genes to 
be recycled between organisms (heterologous expression) 
(Villalobos et al. 2006; Gaspar et al. 2016).

EuGene (not Eugene language) was a DNA optimization 
program that exploited online databases for codon usage, 
context tables and orthologs for sequence alignment (Gaspar 
et al. 2016). EuGene used data extraction from FASTA and 
GenBank, combined with homolog searches using BLAST. 
The PDB and KEGG databases provided EuGene more 
information on homologs, as well as protein structure and 
genomic expression levels. EuGene performed alignment 
using the MUSCLE algorithm. CAI (Codon Adaptation 
Index) was calculated through highly expressed genes. How-
ever, CAI use was advised against (Villalobos et al. 2006). 
The heterologous gene redesign algorithm used genetic algo-
rithms (slow) or simulated annealing (fast) (Gaspar et al. 
2016).

Gene Designer could edit and annotate in silico DNA 
constructs with functions including the addition of polyhis-
tidine-tags or sequencing primers into a DNA sequence, the 
identification of restriction sites, and flagging for methyla-
tion sensitive restriction enzymes (Villalobos et al. 2006). 
Gene Designer could search for Open Reading Frames by 
their start and stop codons; as well as a search capability for 
RBSs and sequence motifs. It allowed manual codon triplet 
code manipulations, and could simulate cloning in silico 
via restriction sites, with cut plasmids selected for liga-
tion considering overhangs. An alternative to CAI involved 
Codon Usage Tables. Gene Designer’s Codon Optimizer 
used a probabilistic Monte Carlo based algorithm able to 
find different, but essentially equivalent, outcomes. In-built 
vector types (Dixon 2023) included an E. coli plasmid (pT7-
SNAP), and a mammalian plasmid (pMCPm™).

Available via web application (Berkeley_Lab. BOOST 
Build 2022), JAR format and REST API, BOOST was a 
suite of software tools intended for the SB design-build 
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transition (Oberortner et al. 2017), emphasizing automated 
DNA construct design for vendor synthesis. Consideration 
could be made regarding GC (strongly hydrogen bonding) 
content, repeats, secondary structures and restriction sites. 
BOOST commenced with codon usage optimization via 
Codon Tables. Violations could undergo “codon juggling” 
by translation to a polypeptide with codon modification via 
reverse-translation. “Relaxed Weight” or complete randomi-
zation could even out codon usages and reduce excessively 
used codons. With DNA length a factor for genetic construct 
assembly success, excessively short sequences were flagged 
and long sequences partitioned according to success prob-
ability. BOOST, for its three tools (Juggler, Polisher, Parti-
tioner), accepted DNA sequences in various formats.

RiboLogic was developed in Python to design Riboswitch 
sequences (Wu et al. 2019). Input involved ligand-binding 
aptamer sequences along with estimated dissociation con-
stants and perhaps secondary structures of the activated 
state. RiboLogic optimized surrounding sequences for ligand 
binding simulations and utilized simulated annealing opti-
mization with temperature reduction for possible sequences, 
along with random mutations and scoring mechanisms.

5.6  Automating genetic construct assembly 
protocols

DNA assembly generates constructs from DNA components/
parts, and assembly standardization has been pursued by 
the SB community (Walsh et al. 2019), despite continued 
variability. DNA assembly involves vector design, assembly 
planning and liquid handling (Appleton et al. 2017). Tradi-
tionally, such techniques were manual, with restriction and 
ligation in separate steps. However, high-throughput DNA 
assembly was sought using assembly planning tools such 
as DNALD and Raven. Algorithms for joining two DNA 
fragments per assembly step were developed (Densmore 
et al. 2010). As DNA assembly evolved, one-pot restric-
tion ligation toolkits were released (Exley et al. 2019). To 
generate variations of genetic constructs, the assembly of a 
“goal part” could be sought algorithmically, with each step 
represented on an “assembly graph” (Densmore et al. 2010), 
with time and financial costs estimated from resulting graph 
steps and levels. Algorithms for these purposes were imple-
mented through the Clotho framework.

A liquid-handling platform (Freedom EVO 150) was 
compared to manual DNA assembly using the MoClo meth-
odology (Walsh et al. 2019) using variations of 5 part con-
structs. Transformation efficiency was measured in colony 
forming units (CFU) per volume, as observed by coloration. 
GenBank files were read by software called Puppeteer to 
create combinatorial variants with a fixed sequence of part 
types, and subsequent generation of a DNA assembly plan 
and protocols for humans and robots. Pipetting commands 

for a Tecan system were generated more rapidly with Pup-
peteer than if programmed with EvoWare. Manual versus 
automated CFU percentage outcomes demonstrated no dif-
ference. Thus a single assembly may be more suitable for a 
human, whilst larger numbers would suit robotics.

J5 was a web-based tool for design automation in scarless 
DNA assembly (Hillson et al. 2012) across multiple assem-
bly methods. In a case study, GFP was tagged for localiza-
tion and degradation, with combinatorial design potential. 
In such experiments, variants could number in the thousands 
and J5’s combinatorial assembly planning could save time. 
Constraints were applied to parts for combinatorial selection 
via Eugene-based rules, similarly to tools like Cello (Jones, 
et al. 2022). J5 could perform BLAST to check for flanking 
sequence similarity and potential incompatibilities (Hillson 
et al. 2012). Endonuclease generated overhangs must not 
combine with the wrong targets, which J5 could manage. As 
many as 2.4 billion overhang combinations were assessed. J5 
performed simulated annealing, and could generate a PCR 
setup control file for the eXeTek liquid-handling robot, with 
future intent to apply such methods to the Tecan EvoLab.

DNA Constructor software was used to design DNA 
combinatorial library construction protocols for a microflu-
idics platform (Linshiz et al. 2016). J5 and Device Editor 
were used to construct a combinatorial library. Assembly 
protocol outputs from DNA Constructor took the form of 
an”interactive assembly tree” via the DOT language of 
Graphviz (used for Figs. 3, 4, 5, 8, 9 in this review). Iso-
thermal Hierarchical DNA Construction was automated on 
a 16 input and output well microfluidic chip. One pot Gib-
son assembly was used with the pETBlue-1 plasmid expres-
sion vector. Automated transformation of the plasmid into 
E. coli utilized the microfluidic chip, with subsequent plating 
of the cells. On-chip assays assessed cell growth, protein 
expression and colorimetry. Hence, combinatorial genetic 
sequence methods and library construction were combined 
with assembly protocols for microfluidics assays of trans-
formed cells.

6  Discussion and conclusions

This review elucidated SB automation across the DBTL 
cycle to inform wet and dry laboratories regarding avail-
able technological opportunities. Standards were ubiquitous 
and provide for numerous benefits and capabilities (Matzko 
et al. 2023; Myers et al. 2017; Keating et al. 2020; Beal 
and Rogers 2020). DSLs (Konur et al. 2021; Smith et al. 
2009) provide for syntactic translation, human readability, 
model construction, genetic designs, constraints and com-
binatorial capabilities (Bilitchenko et al. 2011; Czar et al. 
2009; Pedersen and Phillips 2009). Libraries and APIs exist 
for in silico manipulations (Myers et al. 2017), including 
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web services for data acquisition (Dräger et al. 2015). For 
design, modelling and ML, data is vital (Rampasek and 
Goldenberg 2016; Perrakis and Sixma 2021), and resources 
were outlined to the extent of whole cell modelling (Reac-
tome. Reactome Pathway Browser. 2022; Brunk et  al. 
2018; Weaver et al. 2014) and minimal genomes (Sleator 
2016) via mutagenesis and knockouts (Rees-Garbutt et al. 
2020). However, the argument was made that modelling can 
occur during the test to learn transition (Gurdo et al. 2023). 
The use of ontologies allowed for functional descriptions 
(Rees-Garbutt et al. 2020) and cataloguing (Golebiewski 
et al. 2007), while datamining offers opportunities for data 
extraction (Büchel et al. 2013; Baltoumas, et al. 2021; Luo, 
et al. 2022). Kinetics solvers provide for dynamic simula-
tions with consideration for concentrations and perturbations 
(Matzko et al. 2023; Konur et al. 2021; Choi et al. 2018; 
Sanassy et al. 2015), which can be analysed in a variety of 
ways (Konur and Gheorghe 2015; Riva et al. 2022; Hoops 
et al. 2006), while Boolean models provide a simplifica-
tion (Karagöz et al. 2021). FBA simulation is suitable for 
metabolic engineering (Sekiguchi et al. 2021) and does not 
require kinetic rate parameterization. Parameter estimation 
is achievable algorithmically through maximal experimental 
data characterization (Choi et al. 2018; Hoops et al. 2006). 
Meanwhile, high performance computing speeds up com-
putations (Konur et al. 2021; Riva et al. 2022; Rees-Garbutt 
et al. 2020) and ML has been used to make SB associated 
predictions (Rampasek and Goldenberg 2016; HamediRad 
et al. 2019). Protein structure prediction associated with 
docking computations has potential in drug design (Calla-
way 2022; Huang et al. 2016). Genetic optimization allows 
genes to be used effectively between organisms (Villalobos 
et al. 2006) and to enhance genetic devices (Wu et al. 2019) 
with potential for biomedical sensor design (Wang et al. 
2016). Automated genetic editing allows for assembly plan-
ning (Villalobos et al. 2006) for genetic constructs (Dens-
more et al. 2010) with combinatorial design potential (Walsh 
et al. 2019). Databases can be used to generate reaction net-
works (Büchel et al. 2013; Dräger et al. 2015), and model 
reduction algorithms exist (Rosmalen et al. 2021). Tissue 
engineering automation holds promise for multicellular 
organoid models (Kriegman et al. 2020) and tissue function 
predictions (Hunsberger et al. 2020). Robotics (Storch et al. 
2020) have been available, including from enabling organi-
zations (Buecherl and Myers 2022). However, microfluidics 
and “Lab-on-a-Chip” (Linshiz et al. 2016) may represent the 
future alongside ML.

In conclusion, Synthetic Biology is a complex field that 
artificially recombines and optimizes bioregulatory genetic 
sequences fit to purpose, with software/DSLs/hardware and 
data acquisition across its workflow. Data provisions the 
capacity to design interaction networks for functional eluci-
dation, practical applications, DOE and ML opportunities. 

Combinatorial approaches and evolutionary methods with 
high throughput have been industry preferred methods 
and should not be underestimated. For example, emerg-
ing combinatorial strategies based on CRISPR-Cas9 for 
eukaryotic DBTL, where manual learning took the form of 
genotype–phenotype mapping using synthetic yeast chro-
mosomes, including defect assessment from behavioural 
phenomics and Gene Ontology mapping for differential 
gene expression (Foo et al. 2023). In this case chromosomal 
design via BioStudio was based on the Sc2.0 project of 
Saccharomyces cerevisiae, with assembly from chemically 
synthesized DNA chunks via mitotic and meiotic recombi-
nation. Genetic locus-to-locus comparisons could be made 
between experimental and control strains as a means of 
manual learning, emphasizing the importance of perturba-
tion and modification of not only model organisms, but for 
debugging genetic constructs and synthetic chromosomes 
against a standard. Presumably, a broader challenge may be 
in replicating such experimental strategies to reflect medical 
physiological conditions, such as perturbations of histologi-
cal scenarios for medicine, e.g. cancer mutagenesis.

A range of ML options are available and undoubtedly 
inbound, which may be explored through frameworks, 
databases of results, or pretrained models, which could be 
applied to high-throughput and high dimensional automated 
Synthetic Biology studies. Indeed, because supervised learn-
ing requires prior labelling, a process that is essentially an 
approximated interpolation, reinforcement learning would 
be a more fruitful option for directing machines towards 
objectives with unknown state requirements and for experi-
mental design optimization. Supervised learning would be 
suited more towards classification predictions based on large 
amounts of pre-existing data (Perrakis and Sixma 2021). 
As the amount of data from reinforcement strategies might 
grow, the larger the dataset for supervised learning, where 
supervised learning might map the experimental parameter 
inputs to the outputs, hence constituting a closing of the 
experimental DBTL loop through model parameterization. 
A careful evaluation of the human research/development 
cycle along with objectives and acceleration through ML 
high-throughput automation might prove worthwhile to 
minimize trial and error costs. The likely strategy would be 
a systematic exploration of a constrained parameter space.

A range of test options, including assays, are available 
within the DBTL loop. These, or pre-existing data, are con-
sidered essential for allowing the closing of the loop by tran-
sitioning to the learn stage. Deeper, comprehensive analysis 
of the individual loop phases can be advised. Indeed, such 
studies exist, for instance emphasizing the criteria in the 
test phase (Helleckes et al. 2023). The prospect of a com-
munity-driven open-source platform could be considered to 
map DOE and DBTL through the stages of computational 
design, high-throughput machine automated combinatorial 
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design, and maximally automated analysis of the products. 
Given the likely utilization of commercial products, such 
an academic platform might be of interest to industry as a 
marketing device, and as a possible driver of standardiza-
tion and competition for efficient, cost-effective, accessible 
automation.

There is a notable contrast between genome scale recon-
structions and the design of, potentially orthogonal, small 
circuit designs. The latter can be used for orthogonal opera-
tions such as biochemical sensor design. However, the more 
complex a design, the more likely disruptions due to a lack 
of orthogonality might be. In silico modelling and predic-
tions require considerable work to achieve realistic outcomes 
compared to in vivo or in vitro models, particularly in terms 
of spatiotemporal dynamics, a domain of particular inter-
est to us. Thus such modelling involving time-course and 
dynamic spatial characteristics have CAD implications, 
likely most suited to hypothesis generation in the short 
term given the challenges regarding kinetics data (Gurdo 
et al. 2023) and in our experience the translation between 
biochemical and physical modelling (Matzko et al. 2023). 
The effectiveness of such CAD systems depend on the qual-
ity of data and the quality of processing operations, which 
may finally culminate in increasingly accurate digital repli-
cas of Synthetic Biology scenarios through the exploration 
and expansion of existing software and services, with many 
benefits ranging from costs, to ethics and logistics.
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