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Abstract
Many important systems, both natural and artificial, are complex in nature, and models and simulations are one of the main 
instruments to study them. In this paper, we present an approach where a complex social system is represented at a high 
level of abstraction as a network, thereby addressing several challenges such as quantification, intervention, adaptation and 
validation. The network represents the factors that influence the mental health and wellbeing in children and young people. In 
this article, we present an approach that links a system dynamics simulation to simulate the network and ranking algorithms 
to measure the vertices’ behaviors. The network is enhanced by adding edge strengths in the form of correlations between 
vertices (established through literature). Such an approach allows us to exploit the network structure to qualify and quantify 
the vertices of the network, to overlay different processes over the network topology, to add and remove new vertices, and 
therefore interact dynamically. This in turn allows for the qualification of vertices’ importance and network resilience. System 
dynamics simulation allows for policy analysis, where different scenarios are analyzed by stimulating a set of vertices and 
the effect over the network is observed. This approach allows for an abstract, flexible, yet comprehensive way of analyzing 
a complex social network at any scale.

Keywords Simulation and modeling · Ranking algorithm · Complex systems · Mental wellbeing

1 Introduction

Modeling an evolving complex system is challenging due 
to continuous change. The openness of systems’ bounda-
ries allows external influences, and self-organization causes 
internal influence within the system (Rotmans and Loorbach 
2009; Gupta and Misra 2016). This causes change in behav-
ior (Portugali 2012; Mahon et al. 2008) and makes it difficult 
to perceive the system’s dynamics. The complexity is due to 

having multiple intertwined parts within the system (Plsek 
and Greenhalgh 2001). A generic approach is required to 
reassess the system’s behavior with every change. Such 
systems can be represented and analyzed using a network 
structure of vertices and the edges as vertices’ connections. 
Therefore, we suggest an approach which constructs a model 
based on one of the system’s fundamental properties to rank 
the vertices based on each change. Our proposed approach 
combines a ranking algorithm with a simulation method 
where the algorithm reassesses vertices’ ranks based on their 
topological structure, edge values, and the system’s bound-
ary with every change.

Complex systems can be represented as a network-like 
structure of vertices and edges (Ladyman et al. 2013). The 
networks that represent similar systems may have different 
abstraction levels (de Bruijn and Herder 2009; Borsboom 
et al. 2021). Such networks represent the equilibrium state 
and broad view of a complex system. However, because of 
complex systems’ self-organizing and openness features 
(Rotmans and Loorbach 2009; Portugali 2012), a slight 
influence may impact multiple vertices and produce unex-
pected behavior change. Using a simulation method and a 
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ranking algorithm, we aim to improve our understanding of 
the system’s dynamics and its behavior types within a given 
network.

Vertices within a complex system have diverse function-
alities that indicate and limit their behavior within a distinct 
range (de Bruijn and Herder 2009; Ladyman et al. 2013). 
For example, within a complex social system, stress (can be 
a vertex) functions differently from exercise (can also be a 
vertex). Both of these vertices are connected and influence 
each other based on the edge directions and values (Page 
et al. 1998; Gleich 2009, 2015). The edge values indicate 
the strength of the influence between two vertices. A slight 
change in exercise level may lead to a drastic behavioral 
change in stress level; however, the opposite may not be 
valid. Another uncertainty is establishing boundaries 
(de Bruijn and Herder 2009; Read 2012; Johnson 2012), 
which depends on the network representing these vertices 
(Aboutaleb and Monsuez 2015); two networks may repre-
sent different aspects of the same system depending on the 
underlying issue (Batty 2015). To handle these uncertainties, 
a ranking algorithm provides functionality to each vertex 
based on their topological structure, incoming edges’ val-
ues, and network scale, which also normalizes the behavior 
range.

A single tampering diffuses throughout the complex sys-
tem, which causes behavior change in multiple vertices (Rot-
mans and Loorbach 2009). For example, in a complex trans-
port system, changing road pay toll may affect the behavior 
of multiple vertices; for example, a drop in congestion and 
emission gives an improvement in road safety and travel 
time and promotes the  use of alternate roads. Such behav-
iors may appear incrementally or suddenly and may remain 
temporarily or permanently in the system (Bertelsen 2003; 
Duit and Galaz 2008), which may indicate a new emergent 
or chaotic behavior (Rotmans and Loorbach 2009; Portugali 
2012). This may uncover essential knowledge concerning 
the system behavior types, the validity of the underlying 
network, or the model.

An adaptive model can help to uncover values that may 
cause fluctuation or variation in a system’s behavior and 
perceive vertex’s behavior limitations. For example, we can 
detect ranks that cause peculiar vertex behavior by tuning 
edge values. Another function that such models may pro-
vide is the accuracy of the network representing the complex 
system. For example, by removing or adding one or more 
vertices, we can observe if the system continues to show 
similar behavior. Such information increases the validity of 
the network and further realizes chaos or emergent behavior 
in a system.

When representing a complex system, some networks 
can be reduced to a minimum number of vertices to bet-
ter perceive their connections and behaviors. The growth 
in the number of vertices and edges increases the system’s 

complexity. This leads to unpredictability and uncertainty 
in perceiving behavior and future states from a large-scale 
network perspective. It may become difficult to decom-
pose (Branlat and Woods 2010; Boes et al. 2015) or use 
such reductionist approaches (Plsek and Greenhalgh 2001; 
Aboutaleb and Monsuez 2015; Sijmons 2012) as the 
intended behavior may never emerge. Thus, a holistic view 
(Aboutaleb and Monsuez 2015; Sterman 2006) is needed to 
reveal the vertices’ behavior as the target system changes 
and evolves.

Approaches such as interviews and surveys are generally 
used to collect data and quantify the vertices in complex net-
works that represent mental wellbeing factors. This requires 
to understand the range of variation and interval for each 
specific vertex, design surveys and interviews, collect data, 
analyze and normalize the data, and apply it to the network 
for simulation. Such methods, even though useful, can be 
applicable for subset of vertices; however, as complex net-
works evolve, it becomes time-consuming, computationally 
expensive, and challenging to collect data and quantify them. 
Additionally, decomposition prevents observing the system 
behavior from a holistic perspective. Coupling a ranking 
algorithm with system dynamic simulation method quickly 
quantifies the vertices in such complex networks within a 
normalized variation range, and adjusts the ranks with every 
change and scale.

We propose a hybrid modeling approach that uses PageR-
ank to assess vertices’ behavior states by ranking them based 
on incoming edge values and topological structure. Next, by 
coupling the PageRank to system dynamic simulation, the 
model iterates over each vertice’s incoming edges, modifies 
its values, and reassesses the vertex rank. The model iterates 
through multiple scenarios based on data from a complex 
network for children’s and young people’s mental wellbeing 
(Raghothama et al. 2023a, b). Using comparison analysis we 
uncover behavior and their types, detect outlier ranks and 
suspicious behavior, verify the assessment, and validate the 
model’s output behavior.

The remainder of the paper discusses the modeling chal-
lenges and the importance of such approaches for policy 
analysis. Next, we describe our approach in detail and give 
a walk-through of the experiment. The results illustrate dif-
ferent behavior types based on the changes in edge values 
and network scale. To that end, we discuss and conclude our 
findings, including various types of behaviors, limitations, 
applicability, and the objectives of the approach.

2  Background

Change in the system may happen due to the openness (Por-
tugali 2012; Read 2012) of system boundaries and its struc-
tures toward self-organization (Sijmons 2012). Openness 
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refers to the system’s ability to evolve and change. Data 
modification or system growth causes change in systems 
behavior (Rotmans and Loorbach 2009; Kudyba 2018). 
Due to continuous change, the behavior of these systems 
becomes unpredictable and causes uncertainty to predict its 
future state (Rotmans and Loorbach 2009; Batty 2015), such 
as the behavior type.

Handling changes through modeling is a challenging 
task without prior knowledge of each vertex behavior in 
current and future states (Allen 2011). The consequences 
are uncertain, and the behaviors are unpredictable (Branlat 
and Woods 2010; Marshall 2012). A modeling approach is 
required to continuously measure this variation to observe 
the behavior’s future state by readjusting its information to 
fit the change.

Decomposition approaches become less informative when 
dealing with evolving complex systems (Branlat and Woods 
2010; Boes et al. 2015). Such approaches are used to per-
ceive the system from a subsystem’s perspective; however, 
the challenge with such approaches is that it is impossible 
to observe the emergent behavior caused from a larger-scale 
network perspective with a higher degree of connectivity 
(Ladyman et al. 2013). The larger these systems become, 
the harder it becomes to understand the system’s behavior.

Network boundaries may differ depending on which 
aspects of the system they represent (Batty 2015). An evolv-
ing complex system may lead to the emergence of a new 
behavioral aspect that was not investigated previously by 
modelers. To observe newly emergent behaviors, it may 
require re-representation of the network and the generation 
of a new model, or it may require continuously revising the 
previous networks and models to fit into the evolved sys-
tem without losing critical information. Instead of creating 
multiple models to observe such behaviors, a generic model 
is required to handle the changes in systems’ boundaries. 
To overcome this issue, a self-adaptive (Boes et al. 2015) 
model can continuously adapt the vertices’ ranks after each 
modification.

Our approach uses a ranking algorithm to facilitate the 
modeling of the evolving complex networks (Kudyba 2018). 
The ranking algorithm ranks vertices within a normalized 
range, where the rank does not exceed that range. This is 
done according to the network topology and incoming edge 
values. When a system evolves, a new vertex and edge are 
added, or the edge values are changed. In this case, the 
approach readjusts the vertices’ ranks based on the change. 
By maintaining vertices’ ranks after each change, the algo-
rithm causes a probability distribution over all the vertices 
within the network where the sum of all the ranks converge 
to 1.0 (Brin and Page 1998). Linking a ranking algorithm 
to a simulation method provides a pattern of ranks for each 
vertex, which allows uncovering different behavior types and 
further validates the underlying network.

Representing a system as a network of vertices and edges 
allows policymakers to better understand the relationship 
between its parts and therefore come up with better policy 
options (Thorngate and Tavakoli 2009). Modeling allows 
policymakers to view the future states of various inter-
vention scenarios (Grüne-Yanoff and Weirich 2010; Batty 
2015; Sterman 2006). Models that simulate complex net-
works should provide policymakers with means to self-learn 
(Thorngate and Tavakoli 2009; Sterman 2006) without the 
presence of modelers or experts. Further, these models 
should be flexible enough to cover multiple scenario analy-
ses from different network perspectives to achieve rigorous 
decisions or be able to expand the system.

Policymakers and professionals can cause external influ-
ences through interventions and change system behavior 
(Marshall 2012). Difficulty arises when these changes hap-
pen within different sub-systems and contradict each other 
when viewed from the whole system perspective (Johnson 
2012; Sterman 2006). The lack of adaptiveness in modeling 
can be risky since the results will be for a situation that no 
longer exists (Branlat and Woods 2010) and may mislead 
policymakers and professionals in making a proper decision 
(Sterman 2006).

An adaptive approach grants models flexibility for read-
justment, so that policymakers manage scenario analysis 
from various organizational perspectives for unforeseen situ-
ation (Walt et al. 2008; Sterman 2006). Adaptive modeling 
approaches not only provide policymakers with information 
on where the significant variation happens, but also assist 
observing diverse behavior for various subsystems, and fur-
ther adding and analyzing new vertices’ impact which are 
not part of the system yet. Such observations can alert poli-
cymakers of intervention consequences of different network 
scales for a situation which is yet to happen.

3  Hybrid modeling approach

A network which represents a complex system contains 
vertices which are labeled with information about the sys-
tem parts, such as stress or vulnerability, and have behav-
ior indicated by the edges values and directions. A ranking 
algorithm such as PageRank (Page et al. 1998; Gleich 2015) 
quantifies the vertices based on each vertex topological posi-
tion and the incoming edges values. PageRank’s primary 
use is to rank web pages in Google Search engine to dis-
play them from the most important to the least. Thus, in this 
approach, we influence the system by changing each vertex’s 
incoming edges’ values. Figure 1 flowchart represents the 
modeling approach flowchart. We combined the PageRank 
algorithm to system dynamic simulation to iterate over the 
vertices, influence the vertices, and reassess the vertices’ 
ranks after each influence.
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We use the following input variables to construct the 
model:

• List of vertices V: The list represents the system parts 
and the number of the parts indicate the network scale.

• List of edges E: The list represents the edges which con-
nects the vertices. As the network scale changes, the con-
nectivity also changes.

• List of values W: The list represents the edge values. 
Each value indicates the influence strength between pair 
of vertices.

Based on the input variables, we construct a directed graph 
G using the list of vertices V, edges E and edges’ values W of 
a network. Furthermore, we have an influence factor which 
is used to influence the incoming edge values. In Fig. 1, we 
represent the influence factor with i, which begins at 1 and 
increases to MaxInf. MaxInf is the maximum value to influ-
ence the system. The model iterates over each vertex u one 
by one, identifies the incoming edges e[v][u] through v ver-
tices, and influences the e[v][u] by multiplying w[v][u] to 
the influence factor: i. After each influence, we assess all the 
vertices’ ranks using PageRank and increase the influence 
factor by 1. The procedure continues for all the available 
vertices in the network until there is no vertex u to modify.

There are two options for testing scenarios: individu-
ally or collectively. Individual scenario analysis ignores the 
impact of other scenario influences by resetting the edge 
values to their initial values. On the contrary, collective 
scenario analysis considers the impact of multiple scenario 
influences concurrently. As a result, in collective scenario 
analysis, policymakers can observe the influence of multiple 
decisions on their system. The function G(V,E,W) (dashed 
block in Fig. 1) allows resetting the graph to its initial state.

We developed the model using Python in the PyCharm 
IDE. The main library that we used to construct the directed 
graph and use the PageRank algorithm is Networkx (Hag-
berg et al. 2008). We set the PageRank’s damping factor 
� to 0.65 and used pagerank-numpy, which handles the 
quantification of vertices with negative incoming links, to 
avoid invalid output behavior. There are 64 vertices and 167 
edges, which take approximately 44 s to run the model for 
the whole network and simulate the effect of each vertex on 
the rest of the vertices as the value changes. This indicates 
that the model can handle significantly larger networks as 
well. Hence, based on the memory-profiler (Pedregosa and 
Gervais 2022) Python package measurement, the memory 
usage to run the model for the whole network is approxi-
mately 70.9 megabytes, which is insignificant. As a result, 
no specific hardware is required to run the model simulation.

It is noteworthy that aside from the damping factor, there 
are other input parameters, and tuning them depends on the 
underlying network type and structure. It is necessary to tune 
these parameters to avoid outlier values and observe proper 
behavior. One of the reasons that a model may show invalid 
behavior is the presence of vertices with no outgoing edges. 

Fig. 1  Hybrid modeling approach flowchart
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Such vertices are called dangling nodes (Page et al. 1998; 
Gleich 2015) and the behavior can cause rank sink. Similar 
behavior can be observed when there is a cluster of vertices 
linking each other (Page et al. 1998; Gleich 2015) and create 
a cycle. Negative edge values (Gleich 2009) also may trig-
ger the rank sink. A suitable damping factor (Bressan and 
Peserico 2009) is required to avoid this behavior by reducing 
the probability of iteration over the vertices. Based on our 
experiments, a damping factor within the range of [0.3,0.65] 
is considered suitable for such networks, else the system will 
show no dynamic or permanent rank sinks.

The model provides a list of ranks for each vertex, which 
illustrates their behavior and types based on the given 
network. Behaviors can be categorized into four types: 1) 
permanent incremental variation, 2) temporal incremental 
variation, 3) temporal sudden fluctuation, and 4) perma-
nent sudden fluctuation. These behaviors emerge due to 
the significant influences in various parts of the system and 
the changes in edge’s influence factor. Hence, with respect 
to the number of incoming edges and values, vertices can 
have one of the aforementioned behaviors. Both temporal 
and permanent variations happen incrementally. Due to the 
intertwined nature of complex systems containing negative 
and positive correlation coefficients, vertices may also show 
temporal behaviors. On the contrary, fluctuations can have 
other underlying reasons. Permanent fluctuations can be due 
to a missing edge or a vertex in a network, and temporal fluc-
tuations can be due to a new emergent or chaotic behavior. 
Both temporal and permanent fluctuations may lead to rank 
sink. Tuning the damping factor adjusts a reasonable prob-
ability of iteration over such vertices to avoid sinking (Bres-
san and Peserico 2009). Nevertheless, an improper damping 
factor causes rank convergence and may prevent observing 
any behavior.

Linking PageRank with system dynamic simulation 
facilitates the model with verification and validation fea-
tures. First, it allows verifying whether the sum of all the 
ranks converges to 1.0 (Brin and Page 1998). This is due to 
the probability distribution of the PageRank over the whole 
network, which also allows verification of the algorithm’s 
accuracy. Second, it allows validating the model’s output 
behavior by checking if each vertex’s rank lies within the 
range of [ −1,+1 ]. The feature can also be used to detect rank 
sinks (Page et al. 1998; Gleich 2015).

4  Experiment

We performed the experiments using the network illustrated 
in Fig. 2, which represents the factors that describe chil-
dren’s and young people’s mental wellbeing (Raghothama 
et al. 2023a, b). The network structure is validated by the 
experts in the field through multiple workshops. The network 

has factors categorized into Core, Education, Family, Social, 
Skills, Work, and Relationships each with different vertices 
connected through edges.

Three experiments were designed for three different 
purposes. The aim of the first experiment was to identify 
the most influential vertices from both a global and local 
PageRank perspective (Boodaghian Asl et al. 2021b); this 
allows policymakers to perceive external and internal lever-
age points. The aim of the second experiment was to run 
multiple simulation scenarios and validate the model output 
behavior (Boodaghian Asl et al. 2021a); this allows policy-
makers to identify the optimal scenarios for intervention. For 
this article, we ran multiple scenario experiments to observe 
vertices’ behaviors and classify their types, which helps to 
understand the target system functionality and the underly-
ing network validity.

For the first experiment (Boodaghian Asl et al. 2021b), 
we assigned each edge’s value to ( ± 1.0 ) based on the edges’ 
correlation types (negative or positive). To quantify the ver-
tices, we use PageRank in two different ways: global and 
local PageRank. Using a path analysis method, we iterated 
over all the vertices and listed all the paths connecting two 
vertices. To calculate the local PageRank, we isolate the 
listed paths from the rest of the vertices. However, to calcu-
late the global PageRank, we considered the impact of the 
rest of the vertices on the listed paths. Finally, we measure 
the global and local rank divergence to identify the fluctua-
tions in system behavior.

For the second experiment (Boodaghian Asl et  al. 
2021a), we prepared two different lists as edge values. 
The first list contained ± 1 correlation coefficients, and 
the second list contained correlation coefficients collected 
from various literature. Despite an exhaustive search, 
we could only find correlation coefficients for ten edges 
from the following papers: (Goswami 2012), (Folayan 
et al. 2020), (Drukker et al. 2003), (Im and Kim 2012), 
(Rajmil et al. 2003), (Ramirez et al. 2015), (Wang et al. 
2018), (Baldwin et al. 2011), (Assari et al. 2020), (Assari 
et al. 2018), and (Saab and Klinger 2010), which mainly 
cover the Core, Family, and Education sub-networks. The 
coefficients were encoded into a network, with the rest of 
the edges staying at moderate correlation coefficients of 
± 0.5 depending on the correlation type. The reason for 
this choice is that the correlation coefficient range varies 
between the range of [ −1,+1 ]; hence, by assigning the 
missing values to moderate correlation coefficients, we 
avoid biased behavior. During the experiment, we sim-
ulate and validate the output behavior using both lists, 
which were mainly from the Core and Family networks. 
To observe the system behavior on different scales, we 
segregated the network (2) into Core, CoreFamily, and the 
Whole network. This is due to the diverse correlation coef-
ficients collected from different papers. Core represents 
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the central part of the network where the system begins 
to evolve (note that we have excluded Stress from the net-
work, since it is indirectly connected to Core). Next, we 
append Family to Core and construct a new network. This 
allowed us to observe and compare the behavior as the 
network evolves, based on the influence on the incoming 
edge values and the rank variation.

For the third experiment, which is the main focus of this 
article, we modify the following data to observe system 
behavior:

• Edge value: In this case, we use the influence factor 
i, which starts from 1 to MaxInf=100, to change the 
edges value e[v][u] and observe the variation in verti-
ces ranks.

• Network scale: In this case, we prepared the following 
networks with different scales to illustrate the rank vari-
ation as the network evolves by segregation of the mental 
wellbeing network in Fig. 2:

– Core: The sub-network contains only the vertices 
from the Core sub-network.

– CoreFamily: The sub-network contains the vertices 
from the Family and Core sub-networks.

– CoreFamilyEducation: The sub-network contains 
the vertices from the Education, Core and Family 
sub-networks.

– Whole: This represents the mental wellbeing net-
work.

This modification causes a change in each vertex’s rank. As 
influence factor increases gradually, we can observe how 
vertices’ behaviors vary. Furthermore, we can compare 
and observe the behaviors and their types within different 
network scales. As a result, each vertex in a corresponding 
network will possess a list of ranks through which we can 
observe behaviors’ fluctuations and variations.

5  Results

We selected six different scenarios to present the results 
based on the model simulation. Each scenario analysis is 
based on the individual simulation to observe the influence 
of the source vertex on the target vertex. The source vertex 
is where we use the influence factor to modify the incoming 
edges’ values, and the target vertex is where we observe the 
indirect impact. Since the sum of all the ranks in a given 

Fig. 2  Complex network for children and young people mental wellbeing (Raghothama et al. 2023a, b)
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network should be equal to 1, thus, a rank change in a source 
vertex affects the rank in any target vertices. In this way, 
we can observe the behaviors and their types as the ranks 
vary. Both the source and target vertices are indirectly linked 
and can be from different sub-networks. Table 1 displays 
six scenarios’ sources, targets and the sub-network these 
vertices belong. Each scenario is illustrated through a 2D 
graph, where the x-axis represents the influence factor, and 
the y-axis represents the target vertex changing rank. In each 
graph, we illustrate the target vertex behavior within differ-
ent network scales.

Our scenario analysis shows variation in vertices’ ranks 
when we modify the source vertex incoming edges values or 
change the network scale. Figures 3 and 4 show the vulner-
ability vertex behavior based on the change in two sources. 
Figure 3 illustrate a positive behavior of vulnerability when 
we influence the advocacy vertex, however, same target ver-
tex have negative behavior when the influence is on the self-
efficacy vertex. These behaviors only become visible when 
the network evolves. As an example, when the network is 

at its smallest scale (Core), vulnerability show no behavior 
variation in both scenarios. Overall, vulnerability has a per-
manent incremental variation behavior type.

Further scenario analysis indicates that some target 
vertices’ behaviors stay steady throughout the simula-
tion, irrespective of the change in edge values or network 
scale. Figures 5 and 6 illustrate two behaviors of secure 
attachment based on the change applied to family eco-
nomic stability and housing conditions incoming edges’ 
values. In this scenario, secure attachment behavior stays 

Table 1  Scenarios

Source Target Sub-networks

Advocacy Vulnerability Core/Core
Self-efficacy Vulnerability Core/Core
Family economy stability Secure attachment Family/Family
Housing condition Secure attachment Family/Family
Being bullied Abuse Education/Family
Being bullied Secure Attachment Education/Family

Fig. 3  Impact of advocacy on vulnerability 

Fig. 4  Impact of self-efficacy on vulnerability 

Fig. 5  Impact of family economic stability on secure attachment 
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steady irrespective of changes or network growth. This 
is due to the family economic stability having no incom-
ing edge to influence the system. On the contrary, secure 
attachment behavior shows permanent, sudden fluctuations 
before becoming steady. From the simulation perspective, 
secure attachment shows higher ( ∼ 0.001) variation within 
the CoreFamilyEducation network compared to other 
networks.

In the last four scenarios, we compare two different tar-
get vertices’ behaviors from the same source of influence. 
Figures 7 and 8 illustrate the influence of being bullied on 
abuse and secure attachment. In both scenarios, being bul-
lied causes temporal sudden fluctuation on target vertices 
where the fluctuation has a positive impact on the whole 
network and also a negative impact on the CoreFamilyEdu-
cation network. Such fluctuations are prone to rank sink, 
which has values out of the [ −1,+1 ] range. The outcome 
also indicates that being bullied is prone to temporal sud-
den fluctuation regardless of the network scale. Due to high 
fluctuations and rank sinks, vertices behavior is flat on the 
graph, which requires further numerical analysis to observe 
minor variation. The figures also illustrate negative ranks 
caused by negative correlation coefficients.

To that end, the results illustrate that the significant 
change in vertices behavior mainly occur before the edge 
value reaches a value of 30 (illustrated on the x-axes of the 
graphs). Following this, vertices resemble steady behavior. 
This is due to the PageRank probability distribution through-
out the network (Brin and Page 1998). The results also illus-
trate that, as the network evolves, vertices have significant 
behavioral variation to adapt to changes. This can be due 

to the emergence of highly influential vertices, which are 
absent in small-scale networks.

6  Discussion

The data extracted from model simulations shows permanent 
incremental variation as the network evolves. PageRank’s 
functionality is to rank web pages in order to sort and display 

Fig. 6  Impact of housing conditions on secure attachment Fig. 7  Impact of being bullied on abuse 

Fig. 8  Impact of being bullied on secure attachment 
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them from the highest to lowest ranks. Our objective is to 
quantify the vertices within the complex network to pro-
vide a way to observe behavior adaptation. Vertices’ rank 
changes as a network evolves, and their popularity may shift 
as other vertices join the network. This behavior divergence 
can be due to the presence of a highly influential vertex 
from a common sub-network such as family (Figs. 3, 4). 
Both temporal incremental variation and temporal sudden 
fluctuation appeared only within the edge value of [5,10] 
approximately and may indicate a new emergent or chaotic 
behavior (3). However, PageRank treats vertices according 
to their topological position in the network and not their 
content or intended representation (Page et al. 1998; Gleich 
2015). Whether using a ranking algorithm or data to quan-
tify, incoming edges and their values steer the behavior, 
and by modifying them, we advance the impact strength. 
Thus, vertices adaptive behavior is clearly observable by 
altering incoming edge values, irrespective of the quantifica-
tion approach. Finally, permanent sudden fluctuation can be 
due to various reasons, such as the presence or absence of 
a vertex or edge, dangling nodes (Ipsen and Selee 2007), or 
cyclic network (Page et al. 1998; Gleich 2015). If the behav-
ior persists as the network evolves, it may require further 
validation of the underlying network (Rotmans and Loor-
bach 2009). Due to the adjustment of the damping factor to 
0.65, the result revealed no permanent fluctuation (known 
as rank sink) (Page et al. 1998; Bressan and Peserico 2009; 
Gleich 2015). The results also reveal that as the simulation 
progresses, vertices’ behavior varies insignificantly and fol-
lows steady behavior; moreover, vertices’ behavior change 
insignificantly in small-scale networks, and as the network 
evolves, vertex behavior shows significant variation.

PageRank is compatible with different network types, 
but may require tuning the input parameters. PageRank 
was developed to overcome the challenge of the growing 
number of web pages on the World Wide Web (Page et al. 
1998; Gleich 2015). Within a complex mental wellbeing 
network, vertices’ rank varies, but the behavior follows a 
uniform pattern. The model simulation output reveals that 
if a complex network consists of both negative and positive 
correlation coefficients, some vertices’ ranks may vary in 
the range of [ −1,+1 ] (Figs. 7, 8); else, vertices’ ranks vary 
in the range of [0,+1]. However, PageRank is sensitive to 
a vertex’s degree of connectivity. From the model out-
put, we also learned that vertices with no incoming edges, 
such as work intensification or family economic stability, 
cannot cause a change in vertices’ behavior; as a result, 
the network shows no stable behavior. Both incoming and 
outgoing edges play a significant role in influencing the 
rank. Through our approach, the behavior of vertices with 
no incoming edge remains stable, and their impact on the 
network remains unchanged. Conversely, vertices with 
no outgoing edge absorb the rank if the damping factor 

and the number of iterations are high. This may require 
modelers to consider representing vertices with minimum 
in and out degrees when developing a complex network. 
Furthermore, the algorithm has no properties of its own. 
Such algorithms only consider the number of incoming 
and outgoing edges with a minimum of two connected 
vertices. Whether the network represents a biological 
structure (Farhana Nimmy and Shohelur Rahman 2014; 
Kaushal and Singh 2020) or a local area network, PageR-
ank measurement is purely from a topological perspective.

Scenario analyses assist policymakers in determining 
which interventions have significant benefits. Interventions 
may show peculiar impact when considering other organiza-
tions’ influences (Thorngate and Tavakoli 2009) and contra-
dict each other. To avoid contradictions, the approach has 
the potential to facilitate scenario analysis from multiple 
network perspectives. Figures 3 and 4 illustrate two differ-
ent policy interventions influencing vulnerability. Within 
the Core network, intervention causes no impact, but when 
considering networks such as Family, Education or Whole, 
vulnerability begins to show greater behavior change. From 
policymakers’ perspective within Core, both advocacy and 
self-efficacy have no impact on Vulnerability, when viewed 
from other networks’ (organizations’) perspective, self-effi-
cacy has a negative impact, yet advocacy causes beneficial 
impact. Furthermore, fluctuations may reveal leverage points 
to intervene.

Linking PageRank and systems dynamic simulation can 
reinforce validation for complex network modeling. To 
assure the ranks adapt to changes, the sum of all the verti-
ces’ ranks should converge to 1.0 (Brin and Page 1998) with 
each change; otherwise, the approach is unreliable to main-
tain its adaptive feature. This requires further investigation, 
which may uncover inaccuracies in the model’s structure or 
input parameters. Another feature that promotes validation 
is the ability to uncover permanent outliers. Outliers may 
emerge through permanent sudden fluctuation and lead to 
rank sink (Page et al. 1998; Gleich 2015), which may require 
precise tuning of PageRank parameters (Bressan and Pes-
erico 2009).

Tuning PageRank impacts vertices behavior within a 
complex system (Bressan and Peserico 2009; Gleich 2009). 
Parameters such as type of network, number of iterations, 
probability of iteration, edge value and type, and number of 
incoming and outgoing edges can contribute to observing 
proper behavior. In this paper, the mental wellbeing network 
had no dangling node, which means vertices had outgoing 
edge(s); however, due to cyclic topology, rank sinks may 
occur, which is handled by adjusting the damping factor. 
For a more precise output, it is required to repeat the experi-
ment by tuning other parameters such as dangling nodes and 
number of iterations, which may provide a more accurate 
outcome about the underlying system.
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Even though the approach handles adaptation and reveals 
where and when fluctuation and variation occur, due to 
the intertwined nature of complex systems, many vertices 
within the path can trigger such behaviors. For example, 
Figs. 7 and 8 show two temporal sudden fluctuations. Both 
fluctuations emerge in two networks with the same edge 
value from the same vertex being bullied. This means that 
either being bullied or other vertices in the same path cause 
this behavior. Thus, pattern and path analysis are required 
to confirm the precise vertex of fluctuation. Additionally, 
such behaviors can have various reasons, such as chaotic 
behavior, new emergent behavior, or misrepresentation of 
the system, which may raise uncertainty about their valid-
ity. Other limitations include the lack of data gathered from 
various publications. Combining data from multiple experi-
ments and sources into a network can potentially inflate the 
uncertainty, increase the risk of bias, and give incorrect sys-
tem behavior. Due to the limited research in these areas, the 
collected data were only for the Core, Family and Education 
networks. More data and analysis are required to ascertain 
their validity.

Various analyses are performed to observe the vertices’ 
behavior and co-linearity. In this article, we illustrate the 
behavior of abuse and secure attachment, which are not 
directly connected. Both are affected by changing the value 
of being bullied. The analysis was performed on other ver-
tices that are not directly connected to abuse or to secure 
attachment. The result indicates that the impact of being 
bullied emerges in similar behavior on many vertices in 
the network. Further results of such analysis are illustrated 
by Boodaghian Asl et al. (2021a) that indicate in which 
scenarios vertices emerge co-linearity and uncover which 
scenarios cause significant adverse and beneficial changes 
through variance analysis. Furthermore, Boodaghian Asl 
et al. (2021b) also indicates the divergence of the local and 
global ranks and which vertices cause significant change 
in the rank through path analysis. As a result, both articles 
(Boodaghian Asl et al. 2021a) and (Boodaghian Asl et al. 
2021a) indicate that the presence of recognition value placed 
on wellbeing at school vertex within the path causes signifi-
cant behavior change.

7  Conclusion

This study proposes a hybrid approach that constructs a 
model based on a system’s fundamental properties, which 
in turn allows the model to adapt to changes occurring in 
edge value and network topology. The primary objective was 
to quantify the network to perceive where and when fluctua-
tions and variations occur in the vertex’s behavior. Addition-
ally, the approach facilitates objectives such as instant quan-
tification and simulation and promotes model verification 

and validation. These objectives may serve various purposes, 
such as supporting policymakers to uncover leverage points 
from different networks’ perspectives, helping researchers 
investigate and justify hypotheses, and assisting modelers 
with objective validation by uncovering outlier values and 
inaccurate behavior.

The approach facilitates four types of simulation analysis. 
First, a single scenario can be analyzed and compared from 
multiple network perspectives. Such analysis can help to 
determine which sub-network encompasses the most influ-
ential vertices and the causes of significant impact. Second, 
it can be referred as multi-scenario analysis. The purpose is 
to investigate the impact of a single vertex on multiple target 
vertices. Such analysis can help to perceive which vertices 
are significantly influenced by the modification from a single 
network perspective. The third type is to analyze the impact 
of multiple vertices on a single target vertex, which may help 
to spot the leverage points with the highest impact. Finally, 
the approach can analyze vertices’ impact type and strength 
before implementing them into the real system.

We classified vertices’ behaviors into four types: 1) per-
manent incremental variation, 2) temporal incremental vari-
ation, 3) temporal sudden fluctuation, and 4) permanent sud-
den fluctuation. Due to the intertwined and complex nature 
of these systems, such behaviors may happen to various ver-
tices simultaneously and raise uncertainty and unpredictabil-
ity. By adopting PageRank, our modeling approach provides 
functionality, behavior limitations, and boundary uncertain-
ties to vertices. Thus, vertices are quantified according to 
the network topology and incoming edge value. This also 
limits the behavior of the vertices to perform within a cer-
tain range. For boundary uncertainty, PageRank’s adaptive 
feature allows network analysis on any scale as long as the 
model maintains its adaptiveness. PageRank performs well 
with various abstraction levels; hence, it becomes difficult to 
perceive information regarding the validity of the underlying 
network, whether it is ill-structured or not. Therefore, we 
can only provide behavior types, which may require further 
analysis and expert knowledge to scrutinize the causes of 
peculiar behaviors.

The model also has advantages over other simulation 
approaches. First, by relying on network topology, we can 
provide insight about the system’s behavior without the need 
for too much data. Second, we can analyze a new aspect that 
is not defined in the real system yet. Our approach has the 
ability to change the network’s scale instantly. Such a feature 
allows adding vertices, which are not previously defined, and 
analyzing their impact before adding them to the real system. 
Moreover, since the model iterates over edges by modifying 
the strength, it will allow policymakers to observe various 
behaviors of the vertices within the network.

To conclude, our approach confirms that the model con-
tinuously adapts the vertices’ ranks to the changes. The 
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outcome reveals that a significant rank change occurs in the 
beginning of simulation and gradually becomes insignifi-
cant and steady. Furthermore, the approach identifies which 
vertices can have a positive or negative impact on children’s 
mental wellbeing by measuring the variance of ranks and 
which sub-networks encompass the most influential vertices 
by running the same experiment with different combinations 
of sub-networks. In this experiment, the outcome suggests 
vertices located within Family and Education sub-networks 
cause behavior changes and also indicates that the variance 
is comparatively higher when other sub-networks such as 
Relationships and Social influence the behavior (Figs. 3, 
4). In general, the model’s flexibility allows vertex analysis 
from multiple network perspectives.
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