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Abstract
Adverse drug reactions (ADRs) are leading causes of death and drug withdrawals and frequently co-occur with comorbidi-
ties. However, systematic studies on the effects of drugs on comorbidities are lacking. Drug interactions with the cellular 
protein–protein interaction (PPI) network give rise to ADRs. We selected 6 comorbid disease pairs, identified the drugs used 
in the treatment of the individual diseases ‘A’ and ‘B’– 44 drugs in anxiety and depression, 128 in asthma and hypertension, 
48 in chronic obstructive pulmonary disease and heart failure, 58 in type 2 diabetes and obesity, 58 in Parkinson’s disease 
and schizophrenia, and 84 in rheumatoid arthritis and osteoporosis—and categorized them based on whether they aggravate 
the comorbid condition. We constructed drug target networks (DTNs) and examined their enrichment among genes in disease 
A/B PPI networks, expressed across 53 tissues and involved in ~ 1000 pathways. To characterize the biological features of the 
DTNs, we performed principal component analysis and computed the Euclidean distance between DTN component scores 
and feature loading values. DTNs of disease A drugs not contraindicated in B were affiliated with proteins common to A/B 
networks or uniquely found in the B network, similarly regulated common pathways, and disease-B specific pathways and 
tissues. DTNs of disease A drugs contraindicated in B were affiliated with common proteins or those uniquely found in the 
A network, differentially regulated common pathways, and disease A-specific pathways and tissues. Hence, DTN enrich-
ment in pathways, tissues, and PPI networks of comorbid diseases will help identify drug contraindications in comorbidities.

Keywords Comorbidities · Interactomes · Adverse drug reactions · Drug contraindications · Drug target networks · 
Protein–protein interactions

1 Introduction

Comorbidity is the phenomenon in which one or more dis-
eases co-exist with a primary disease in patients. Comor-
bidities pose a significant threat to patient well-being and 
are the norm, rather than exception, among chronic condi-
tions (Gadermann et al. 2012). The number of comorbidi-
ties increases with age and leads to elevated mortality risk. 
Mortality risk increased by 25% in patients with 3–4 chronic 
comorbidities, and by 80% in those with 5 or more comor-
bidities, when compared with individuals having no chronic 
conditions, over a period of 14  years from 1992–2006 
(Caughey et al. 2010). The prevalence of comorbidities 
increases from 10% in 0–19-year-olds to 78% in individuals 
aged 80 or more (Van den Akker et al. 1998). The primary 
disease in 73.8–98.2% of the respondents of the US National 
Comorbidity Survey (NCS) survey was accompanied by 
at least one comorbid condition (Gadermann et al. 2012). 
Strikingly, the estimates of individual disease morbidity 
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(based on the respondents’ perception of their health condi-
tion) decreased substantially when adjusted for comorbid-
ity, particularly for disorders that contributed immensely to 
global disease prevalence, such as neurological disorders, 
chronic pain, anxiety disorders, major depressive disorder, 
and diabetes (Gadermann et al. 2012).

The likelihood of experiencing adverse drug reactions 
(ADRs) may increase with disease comorbidity (Morales 
et al. 2017; Mittmann et al. 2012; Bassi et al. 2017). Drugs 
that are beneficial in the treatment of one disease may cause 
adverse events and aggravate or even cause comorbid condi-
tions, e.g. beta-blockers that treat hypertension and heart dis-
ease may aggravate asthma (Morales et al. 2017). ADRs are 
the fourth leading cause of death in the U.S., with 100,000 
deaths and ~ 2 million patients experiencing such reactions 
per year. Nineteen drugs were withdrawn from the U.S. mar-
ket during 1998–2007 due to patient fatalities (Giacomini 
et al. 2007). These statistics highlight the importance of 
re-examining drug design and development, in the light of 
mechanisms governing comorbidities.

Network medicine is an integrative framework for exam-
ining the mechanistic effects of disease-associated genes in 
the human protein–protein interaction (PPI) network (or the 
‘interactome’) (Barabási et al. 2011). This emerging systems 
biology paradigm has prompted a systematic data-driven 
investigation of drug effects on diseases. This framework 
combines theory and computation to facilitate the translation 
of biological data into biologically insightful and clinically 
actionable results. Its primary applications include identify-
ing (or repurposing) drug targets and pathways for therapeu-
tic intervention and biomarkers for improved disease screen-
ing and patient stratification (Brahmachari 2012).

Drugs that target proteins may perturb the PPI network 
to elicit the intended therapeutic responses or contribute 
to unintended adverse events (Chan and Loscalzo 2012). 
Perturbations at the genomic or proteomic level may affect 
specific PPIs and other proteins in the neighborhood network 
due to the extensive interconnectivity of the components in 
the PPI network. This, in turn, may disrupt cellular functions 
and have deeper implications for disease comorbidity and 
phenotypic responses to drugs (Barabási et al. 2011).

Adverse events precipitated by drugs in individual dis-
eases have been investigated within the framework of the 
PPI network (Mizutani et al. 2012; Fliri et al. 2005; Wang 
et al. 2013; Campillos et al. 2008; Brouwers et al. 2011; 
Hase et al. 2009). However, the effects of multiple drugs 
and their contraindications on comorbid conditions remain 
largely unexplored. Nevertheless, several studies have 
described the influence of three critical biological factors on 
drug action, namely, disease-associated PPI networks, bio-
logical pathways, and tissue-specificity. Pairs of drugs used 
for the same disease induce adverse events when the network 
modules of their protein targets overlap with each other and 

with the network of disease-associated genes (‘overlapping 
exposure’) (Cheng et al. 2019). A 2.6-fold greater risk of 
side effects was seen with drugs that target genes having 
5 specific genetic features, including tissue-specific gene 
expression (Duffy et al. 2020). The findings from this study 
also suggested that side effects arise from drug delivery to 
multiple tissues (including those unrelated to the disease) 
(Duffy et al. 2020).

In this study, we attempt to elucidate the mechanisms 
underlying drug contraindications in pairs of comorbid 
diseases by examining drug target networks (DTNs). The 
overlaps of the DTNs with the PPI networks of disease-
associated proteins, biological pathways and tissue-specific 
genes were identified as critical factors influencing ADRs 
in comorbidities.

2  Methods

2.1  Selection of comorbid and non‑comorbid 
disease pairs

For our analysis, we selected six pairs of comorbid diseases 
and three pairs of non-comorbid diseases as negative con-
trols based on literature evidence.

The following were the six comorbid disease pairs:

 (I) Anxiety—Depression: 75% of the individuals pri-
marily diagnosed with depression in the Nether-
lands Study of Depression and Anxiety (NESDA) 
also had a (lifetime) history of comorbid anxiety 
disorder (Lamers et al. 2011). Conversely, 81% of 
the individuals with a primary diagnosis of an anxi-
ety disorder had a (lifetime) history of comorbid 
depressive disorder (Lamers et al. 2011).

 (II) Asthma—Hypertension: Logistic regression mod-
els have shown that asthmatics were 36% more 
likely to have hypertension compared to non-
asthmatics in a study conducted among Canadian 
adults (Dogra et al. 2007). Moreover, asthmatics 
with comorbid hypertension exhibited morbid 
asthma symptoms as evidenced by increased usage 
of short-acting β-agonists and corticosteroids, and 
increased hospitalization and visits to the emer-
gency department (Christiansen et al. 2016).

 (III) Chronic obstructive pulmonary disorder (COPD)—
Heart failure: Retrospective analysis has revealed 
that 20.5% of the patients diagnosed with COPD 
had undiagnosed heart failure (Rutten et al. 2005). 
Conversely, 35% of the patients admitted with heart 
failure showed comorbid COPD (Iversen et  al. 
2008).
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 (IV) Type 2 diabetes—Obesity: Obesity has been noted 
in 78.2% of individuals with type 2 diabetes (Iglay 
et  al. 2016). Conversely, a higher prevalence 
(30.9% versus 4.5%) of type 2 diabetes has been 
noted in cohorts with individuals showing a higher 
body mass index (BMI ≥ 40 versus BMI > 25) (Pan-
talone et al. 2017).

 (V) Rheumatoid arthritis—Osteoporosis: 32.6% of the 
patients with rheumatoid arthritis (RA) had osteo-
porosis (Llorente et  al. 2020). This percentage 
for osteoporosis comorbidity increased to 50% in 
menopausal women with RA (Llorente et al. 2020). 
Moreover, RA patients seemed to exhibit a higher 
risk of fractures of bones with higher mineral den-
sity compared with healthy controls (Llorente et al. 
2020).

 (VI) Parkinson's disease—Schizophrenia: Comorbid-
ity between Parkinson’s disease and schizophrenia 
has been noted despite their links to seemingly 
converse states of the dopaminergic signalling 
pathway. A hypodopaminergic state in the nigros-
triatal pathway characterized by reduced levels of 
dopamine (in comparison with baseline levels) 
has been historically cited as a causative factor for 
Parkinson’s disease, whereas a hyperdopaminergic 
state characterized by enhanced levels of dopamine 
in the mesolimbic pathway has been historically 
linked to schizophrenia (Kuusimäki et al. 2020). 
A retrospective study showed that 1.5% of Parkin-
son’s disease patients had a schizophrenia diagno-
sis earlier in life and that schizophrenia increases 
the risk (odds ratio = 1.17) for Parkinson’s disease 
later in life (Kuusimäki et al. 2020). This comor-
bidity may result from the use of dopamine antago-
nists in schizophrenia treatment, which can induce 
Parkinsonian symptoms or alter Parkinson’s disease 
risk via undiscovered mechanisms, as well as from 
schizophrenia-induced phase-dependent dopamine 
dysregulation that increases vulnerability to Parkin-
son’s disease (Kuusimäki et al. 2020). Additionally, 
psychiatric symptoms are common in drug-naïve 
patients with early-onset Parkinson's disease, and 
behavioral symptoms overlapping with those seen 
in schizophrenia are often observed in drug-naïve 
patients with late-onset PD (Pachi et al. 2021; Wad-
dington 2020).

The following were the three non-comorbid disease 
pairs:

 (I) Multiple sclerosis—Peroxisomal disorders: Multi-
ple sclerosis and peroxisomal disorders were used 
in an earlier study (Menche et al. 2015) to show 

that diseases lacking overlapping network modules 
do not exhibit a comorbid association.

 (II) Schizophrenia—Rheumatoid arthritis: Schizophre-
nia and rheumatoid arthritis have been known to 
show an inverse prevalence, i.e., low incidence of 
rheumatoid arthritis among schizophrenia patients 
and vice versa (Vinogradov et al. 1991; Oken and 
Schulzer 1999; Benros et al. 2014).

 (III) Asthma—Schizophrenia: Schizophrenia has been 
less commonly associated with asthma, although 
other psychiatric morbidities such as anxiety dis-
orders and depression have been known to occur 
among asthma patients (Boulet 2009).

2.2  Compilation of disease‑associated genes

The genes associated with 3 non-comorbid disease pairs and 
6 comorbid pairs were compiled from the DisGeNET data-
base (Piñero et al. 2016) (version 7) (Supplementary Data 
File 1). 100 top-ranking genes associated with each of the 14 
diseases were curated based on their gene-disease associa-
tion scores (GDA). The GDA score for a gene is computed 
based on multiple pieces of evidence, namely, the number 
of publications supporting its association with the disease, 
the number and types of database sources (based on curation 
method, i.e. expert-curated or computationally predicted) 
and the model organisms in which the association was vali-
dated. The range of the GDA scores varied across the 100 
top-ranking genes for each of the 14 diseases. However, a 
minimum GDA of ≥ 0.01 was chosen to ensure that at least 
one publication reported the gene-disease association. Not 
all genome-wide association and targeted gene sequenc-
ing studies in the DisGeNET database involve drug-naïve 
populations, except for a few, such as studies conducted 
with untreated first-episode psychosis patients. Therefore, 
the influence of drug treatment on the disease-associated 
gene sets is unavoidable. Additionally, the patient population 
is naturally stratified into various groups responding differ-
ently to specific drugs based on their genetic predispositions 
(Loscalzo 2023). However, single-cell sequencing studies 
have begun to offer a clearer view of drug-induced pertur-
bations at single-cell resolution (Srivatsan et al. 2020) and 
the impact of genetic variants on the multicellular underpin-
nings of disorders (Jin et al. 2020).

2.3  Construction of disease PPI networks

The PPI networks of the proteins encoded by the disease-
associated genes were assembled by extracting their pro-
tein interactors from the Human Protein Reference Data-
base (HPRD; version 9) (Keshava Prasad et al. 2008) and 
the Biological General Repository for Interaction Data-
sets (BioGRID; version 4.3.194) (Stark et al. 2006) using 
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the Cytoscape plugin, Bisogenet (Martin et  al. 2010). 
The input nodes for disease network construction were 
the 100 top-ranking genes compiled from the DisGeNET 
database. The network building options were: organism—
Homo sapiens, biorelation type—protein–protein interac-
tion, data sources—BioGRID and HPRD, method—input 
nodes and its neighbors upto a distance of 1.

2.4  Compilation of drugs indicated for specific 
diseases

The Drug Bank database (Wishart et al. 2008) (version 
5.1.8) was used to compile the lists of drugs indicated for 
each of the 14 diseases. Then, we used the TWOSIDES 
database (Tatonetti et  al. 2012) (version 0.1)—a pub-
licly available database of drugs and associated adverse 
events—to categorize these drugs with respect to their 
effects on the disease pairs. We separated the drugs into 
two groups, namely, disease A drugs that are (a) con-
traindicated and (b) not contraindicated in disease B, and 
disease B drugs that are (c) contraindicated and (d) not 
contraindicated in disease A. Drugs associated with spe-
cific adverse effects (belonging to (a) and (c)) were iden-
tified using their ‘condition concept names’ (which are 
descriptions of adverse events) (see Supplementary Data 
File 2 for the condition concept names and Supplementary 
Data File 3 for the drug lists). For example, to identify the 
anxiolytic drugs that may cause depression, the condition 
concept names, depression, major depression, depressive 
symptom, depression suicidal, depression postoperative, 
postpartum depression, depressive delusion, and agitated 
depression, were selected. The list of anxiolytic drugs was 
then compared with the list of drugs associated with these 
condition concept names. The matching drugs were com-
piled into groups ‘a’ and ‘c’, for example, “drugs effective 
in anxiety and contraindicated in depression”. Similarly, 
groups ‘b’ and ‘d’ drugs were compiled.

2.5  Construction of drug‑target networks

We compiled the proteins targeted by the drugs (Sup-
plementary Data File 4) belonging to the 4 categories 
described above from the Drug Bank database (Wishart 
et al. 2008), by querying the DGIdb (drug-gene interaction 
database) web portal (Griffith et al. 2013). To construct 
the DTNs, we compiled the PPIs of the drug targets from 
HPRD (Keshava Prasad et al. 2008) and BioGRID (Stark 
et al. 2006) using Bisogenet (Martin et al. 2010). The net-
work building options were identical to those described in 
the section for disease network construction.

2.6  Calculation of network similarity measures

Matching node ratio  (NM) was measured as the ratio of the 
total number of common nodes shared between the two 
disease PPI networks (in a comorbid pair) and the total 
number of unique nodes in these two networks (Brown 
et al. 2019).

An = Number of nodes in disease A PPI network, 
Bn = Number of nodes in disease B PPI network.

Matching link ratio  (LM) was measured as the ratio 
of the total number of common links (i.e. edges) shared 
between the two disease PPI networks and the total num-
ber of unique links in these two networks (Brown et al. 
2019).

Al = Number of links in disease A PPI network. 
Bl = Number of links in disease B PPI network.

The formula shown above was also used to calculate 
the matching link ratio for links of path lengths 2 and 3 in 
the two disease networks. Links of specific path lengths 
were retrieved using the Cytoscape application, Network-
Analyzer (Assenov et al. 2008; Shannon et al. 2003).

2.7  Calculation of comorbid associations

Relative risk  (RRAB) measures comorbidity by comparing 
the observed prevalence of a pair of comorbid diseases (A 
and B) in the population with the expected number. The 
expected number is calculated based on the prevalence of 
the individual diseases A and B in the population.

NA = Total number of patients diagnosed with disease 
A. NB = Total number of patients diagnosed with disease 
B.

NAB = Total number of patients diagnosed with both dis-
ease A and disease B.

N = Total number of patients in the population.
For the calculation of relative risks of disease pairs, 

we downloaded the HuDiNe dataset (http:// sbi. upf. edu/ 
data/ hudine/) containing processed hospital claims data 
of 13,039,018 U.S. individuals who had applied for sup-
port from the U.S. Medicare program during 1990–1993 
(Hidalgo et al. 2009). Individual disease and comorbidity 
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data (i.e.  NA,  NB and  NAB) was available for 5 out of our 
6 comorbid disease pairs (i.e. excluding anxiety—depres-
sion), and for 2 out of the 3 non-comorbid pairs (i.e. 
excluding multiple sclerosis—peroxisomal disorders). The 
diseases were specified in the form of their ICD-9 codes 
(at three-digits level). The population size N was consid-
ered to be 13,039,018, i.e. the total number of individuals 
represented in HuDiNe.

2.8  Pathway enrichment analysis

WebGestalt (Liao et al. 2019a) was used to compute the 
distribution of genes involved in specific signalling pathways 
in the DTNs and compare it with the background distribu-
tion of genes belonging to this pathway among all the genes 
associated with any pathway in the Reactome database (Liao 
et al. 2019b). Statistical significance of the enrichment was 
computed using Fisher's exact test and corrected for multiple 
hypotheses using the Benjamini–Hochberg method.

2.9  Gene expression enrichment analysis

The enrichment of the DTNs for genes expressed in specific 
tissues was computed using the GTEx database (Consortium 
2015) (version 8). GTEx contains RNA-sequencing data 
from 53 postnatal human tissues. Genes that showed high 
or medium expression (transcripts per million (TPM) ≥ 9) 
in specific tissues were included in the analysis, provided 
that they were not housekeeping genes, i.e. those detected 
in all the tissues with transcripts per million ≥ 1, a criterion 
described in the Human Protein Atlas (Uhlén et al. 2015). 
TPM is a metric that measures the relative abundance of 
transcripts. Gene matrix transposed (GMT) files that con-
tained the 52 tissues and the genes whose expression levels 
in these tissues matched the criteria described above were 
created. These GMT files served as inputs for gene over-
representation analysis based on hypergeometric distribu-
tion. Tissues enriched with disease-specific single nucleotide 
polymorphisms (SNPs) were identified using TSEA-DB (Jia 
et al. 2020). TSEA-DB is a reference database for informa-
tion on disease-associated tissues, specifically, the tissues in 
GTEx that show significant enrichment for genes harboring 
disease-associated variants compiled from the GWAS cata-
log (Jia et al. 2020).

BaseSpace Correlation Engine (https:// covid- 19. ce. 
bases pace. illum ina. com/c/ nextb io. nb) was used to iden-
tify the correlations between the gene expression profile 
induced by maprotiline in PC3 cells (Broad Connectivity 
Map (CMAP 2.0) (Subramanian et al. 2017)), the profile 
associated with major depressive disorder and generalized 
anxiety disorder (GSE98793 (Leday et al. 2018)), and the 
tissue expression profile of the adrenal cortex. The software 

uses a non-parametric rank-based approach to compute the 
overlap of two gene sets (Kupershmidt et al. 2010).

2.10  Principal component analysis

Principal component analysis (PCA) was used to capture the 
relationships of the DTNs with disease networks, biological 
pathways and tissues. For each comorbid pair, negative log-
transformed P values indicating the statistical enrichment 
of the disease networks/biological pathways/tissues in the 4 
DTNs (constructed from drugs eliciting four types of reac-
tion in the two diseases) were assembled into a data matrix. 
This data matrix contained disease protein sets/biological 
pathways/tissues as rows and DTNs as columns; each cell 
in the matrix contained a –log10P value. Log transforma-
tion and unit variance scaling were performed to reduce 
the influence of extreme values on the obtained PCs (Love 
et al. 2015). PCA using singular value decomposition (SVD) 
with imputation was performed with a web-based tool called 
ClustVis (https:// biit. cs. ut. ee/ clust vis/) (Metsalu and Vilo 
2015). The data matrix was pre-processed such that 70% 
of missing values were allowed across the rows and col-
umns. PC scores are calculated as linear combinations of the 
original variables (-log10P) and the corresponding weights 
(otherwise known as component loadings). The importance 
of each disease protein set/pathway/tissue is reflected by the 
magnitude of their corresponding loading values on PC1 and 
PC2. Finally, for each of the comorbid pairs, the Euclidean 
distance between the PC scores of each of the DTNs was 
computed for all the component loading values pertaining 
to the particular biological modality. This resulted in a list of 
the specific disease protein sets/pathways/tissues that were 
potentially closely related to each of the different DTNs.

3  Results

To identify potential mechanisms of ADRs within comor-
bid diseases, we systematically studied pairs of comorbid 
diseases (‘disease A’ and ‘disease B’) and their FDA-
approved drugs. We selected three pairs of non-comorbid 
diseases as negative controls and six pairs of comorbid 
diseases for our analysis. The non-comorbid pairs were: (I) 
multiple sclerosis—peroxisomal disorders (Menche et al. 
2015), (II) schizophrenia—rheumatoid arthritis (Vinogra-
dov et al. 1991; Oken and Schulzer 1999; Benros et al. 
2014), (III) asthma—schizophrenia (Boulet 2009). The 
comorbid pairs were (IV) anxiety—depression (Lamers 
et al. 2011), (V) asthma—hypertension (Dogra et al. 2007; 
Christiansen et al. 2016), (VI) chronic obstructive pulmo-
nary disorder (COPD)—heart failure (Rutten et al. 2005; 
Iversen et al. 2008), (VII) type 2 diabetes—obesity (Iglay 
et  al. 2016; Pantalone et  al. 2017), (VIII) rheumatoid 

https://covid-19.ce.basespace.illumina.com/c/nextbio.nb
https://covid-19.ce.basespace.illumina.com/c/nextbio.nb
https://biit.cs.ut.ee/clustvis/
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arthritis—osteoporosis (Llorente et al. 2020) and (IX) Par-
kinson's disease—schizophrenia (Kuusimäki et al. 2020). 
Four categories of drugs were compiled for each disease 
pair based on their clinical activity, namely, disease A 
drugs that are (a) contraindicated and (b) not contraindi-
cated in disease B, and disease B drugs that are (c) con-
traindicated and (d) not contraindicated in disease A. Four 
corresponding DTNs were also constructed (see Methods 
for detailed descriptions and steps (a)-(c) in Fig. 1).

3.1  Disease network similarity and comorbid 
associations

Relative risk is an experiential measure of comorbidity. It 
compares the observed prevalence of a comorbid disease 
pair in the population with the prevalence expected based 
on the number of patients with the individual diseases. 
We computed the relative risk of the disease pairs from 
the hospital claims data of 13,039,018 U.S. individuals in 
the HuDiNe dataset (Hidalgo et al. 2009) (see Methods). 

Fig. 1  Framework for characterizing the drugs that target comorbid 
disease pairs. Our methodology to characterize DTNs involved seven 
steps: a Retrieval of the drugs indicated for use against each of the 
diseases using Drug Bank and their categorization into four groups 
based on their clinical activity in the comorbid diseases. b Identifica-
tion of the proteins collectively targeted by the drugs in each of the 
groups by querying Drug Bank through DGIdb. c Construction of 
DTNs using the protein targets as input nodes and assembling their 
immediate neighbors in the human PPI network using data from 
BioGRID and HPRD. d Performing gene enrichment analysis with 
the four DTNs (for each disease pair) in 3 biological data types: (d1) 
disease PPI networks, (d2) tissue gene expression and (d3) biologi-
cal pathways. e Generation of a data matrix containing the enriched 
disease protein sets/tissues/pathways as rows, DTNs as columns and 
-log10P values in the cells, and using the matrix as an input for PCA. 

f Extraction of component loadings of each of the enriched disease 
protein sets/tissues/pathways corresponding to each of the PCs. g 
Calculation of the Euclidean distance between the PC scores of each 
of the DTNs and the component loadings of the disease protein sets/
tissues/pathways. These steps helped identify top disease protein 
sets, tissues and pathways that were closely associated with each of 
the DTNs. Databases: BioGRID (Biological General Repository for 
Interaction Datasets), DGIdb (Drug Gene Interaction database), Dis-
GeNET (Disease Gene association NETwork), Drug Bank, GTEx 
(Genotype-Tissue Expression), HPRD (Human Protein Reference 
Database), Reactome, TSEA-DB (Tissue-Specific Enrichment Analy-
sis DataBase) and TWOSIDES. Abbreviations: PPI—Protein–Protein 
Interaction, DTN—Drug Target Network, PCA—Principal Compo-
nent Analysis and TPM—Transcripts Per Million



Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:10  Page 7 of 18    10 

We then explored whether this relative risk of comorbidity 
would be reflected in the similarity of the disease networks. 
The disease networks were constructed using the 100 top-
ranking genes associated with each of the 14 diseases (see 
Methods). For each of the disease pairs (including comorbid 
and non-comorbid negative control pairs), we systematically 
identified the proteins (a) shared between the two disease 
networks, (b) unique to disease A and (c) unique to disease B 
(Table 1). In Table 1, while we observed overlaps of higher 
statistical significance between the networks of comorbid 
disease pairs compared to non-comorbid pairs, the odds ratio 
of enrichments remained similar (see Supplementary Note 1 
for factors contributing to this similarity).

Then, we computed four network similarity measures, 
namely, matching node ratio  (NM) for all the nodes shared 
between the two disease networks, and the matching link 
ratio  (LM) (Brown et al. 2019) for all the (i) shared links 
(i.e. edges), (ii) shared links of path length 2 (connecting 
two nodes via one intermediate node) and (iii) shared links 
of path length 3 (connecting two nodes via two intermediate 
nodes) between the two disease networks.

We found that the relative risk between diseases was pro-
portional to the matching node and link ratios (Fig. 2). The 
negative control disease pairs showed low relative risks and 
smaller disease network overlaps, whereas 3 out of the 5 

comorbid pairs showed high relative risks and larger network 
overlaps, namely, asthma—hypertension, COPD—heart fail-
ure and type 2 diabetes—obesity. However, this trend was 
not seen in 2 comorbid pairs, namely, rheumatoid arthri-
tis—osteoporosis and Parkinson’s disease—schizophrenia. 
Specifically, their higher relative risks (compared with other 
comorbid pairs), were not accompanied by a corresponding 
increase in the network overlap. This anomaly can, perhaps, 
be explained by multiple factors (see Discussion). As an 
overall trend, we noted that the relative risk of disease pairs 
varied in tandem with the similarity of their networks. Based 
on this, we speculated that drug action on the druggable 
proteins shared between the two disease networks may give 
rise to contraindications in comorbid pairs.

3.2  Druggability of disease networks

We examined the enrichment of the disease protein sets 
(common to both networks, unique to disease A and 
unique to disease B) for a group of 4,463 druggable pro-
teins (Hopkins and Groom 2002), similar to the approach 
followed in a previous study (Sun et al. 2015). Drugs that 
follow Lipinski's ‘rule-of-five’ are bound by these pro-
teins with high affinity at specific binding sites (Lipin-
ski et al. 1997). We found that druggable targets were 

Table 1  Overlap of the disease networks. The table shows the statistics of the overlaps shared between the two diseases in each of the nine dis-
ease pairs that were examined in our study

Disease pair # Proteins 
in disease A 
network

# Proteins 
in disease B 
network

# Shared 
proteins

p-value of overlap Odds ratio 
of overlap

% Shared pro-
teins in disease A 
network

% Shared proteins 
in disease B 
network

Multiple sclerosis 
(A)—Peroxisomal 
disorders (B)

2418 727 284 5.97E-70 2.9 12 39

Schizophrenia (A)—
rheumatoid arthritis 
(B)

2662 2424 918 6.86E-208 2.56 34.5 38

Asthma (A) –
Schizophrenia (B)

3041 2662 1084 1.36E-228 2.41 36 41

Anxiety (A)—Depres-
sion (B)

3342 3054 1732 1.86E-628 3.06 52 57

Asthma (A)—Hyper-
tension (B)

3041 2515 1371 1.85E-500 3.23 45 54.50

Chronic obstructive 
pulmonary disease 
(A) –heart failure (B)

3736 2922 1505 3.12E-371 2.48 40 51.50

Type 2 diabetes (A) –
Obesity (B)

2471 2490 1232 3.66E-503 3.6 50 49

Rheumatoid arthritis 
(A)—osteoporosis 
(B)

2424 3681 1206 1.30E-270 2.43 50 33

Parkinson’s disease 
(A)—schizophrenia 
(B)

3200 2662 1232 2.88E-310 2.6 38.50 46
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most significantly enriched among the proteins shared 
between the two disease networks (Table 2). This trend 
was observed in 5 out of the 6 comorbid pairs (Table 2). In 
anxiety–depression, druggable targets were most enriched 
among proteins exclusively found in the depression net-
work (Supplementary Note 2 and Supplementary Table 1).

Based on this result, we hypothesized that (i) the DTNs 
of the group ‘a’ and ‘c’ drugs (effective in disease A and 
contraindicated in disease B or vice versa) may show 
the highest enrichment for the proteins/pathways/tissues 
shared between the two disease networks and (ii) the 
DTNs of the groups ‘b’ and ‘d’ drugs (effective in disease 
A and not contraindicated in disease B or vice versa) may 

Fig. 2  Comparison of disease 
network similarity measures 
and comorbid associations. The 
graph shows the relationship 
between relative risk (black 
data points) and four measures 
of network similarity, namely, 
matching node ratio (green data 
points), matching link ratio 
of all shared edges (red data 
points), matching link ratio of 
all shared edges of path length 2 
(brown data points) and match-
ing link ratio of all shared edges 
of path length 3 (purple data 
points). Note that the values for 
relative risk have been plotted 
with respect to the Y-axis on 
the left. The matching node and 
link ratios have been plotted on 
the Y-axis on the right

Table 2  Overlaps of the disease protein sets with druggable targets. –
log10P values computed for each of the nine tested disease pairs using 
a hypergeometric test. The –log10P values indicate the statistical sig-
nificance of the overlaps shared by each of the disease protein sets 
(top column headings) with a group of 4463 druggable proteins. *, 

** and *** indicate low, medium and high levels of statistical sig-
nificance. †, †† and ††† indicate non-significant overrepresentation, 
non-significant underrepresentation and significant underrepresenta-
tion respectively

Disease pairs Common to both the 
networks

Unique to disease A 
network

Unique to dis-
ease B network

Multiple sclerosis (A)—peroxisomal disorders (B) 7.38** 19.52*** 2.09*
Schizophrenia (A)—Rheumatoid arthritis 13.26** 14.36*** 2.4*
Asthma (A)—schizophrenia (B) 19.18*** 9.41** 0.89†
Anxiety (A)—Depression (B) 5.57** 0.001††† 12.05***
Asthma (A)—Hypertension (B) 31.34*** 3.19* 9.59**
Chronic obstructive pulmonary disease (A)—heart failure (B) 34.73*** 1.06†† 9.16**
Type 2 diabetes (A)—Obesity (B) 18.65*** 1.47* 7.05**
Rheumatoid arthritis (A)—Osteoporosis (B) 21.96*** 7.17** 1.97*
Parkinson's disease (A)—Schizophrenia (B) 19.93*** 0.27† 0.3†
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show the highest enrichment for proteins/pathways/tissues 
unique to disease A (or B respectively).

3.3  Framework to characterize the drug target 
networks

The methodology of our study is illustrated in Fig. 1. 
To characterize the 4 DTNs associated with each of the 
comorbid pairs, we examined 3 types of data that may 
reflect their biological profiles, namely (i) disease PPI 
networks, (ii) biological pathways and (iii) tissue gene 
expression. Specifically, we conducted gene overrepre-
sentation analyses based on hypergeometric distribution 
to check the enrichment of the DTNs among proteins that 
are unique to/shared between networks of disease A and 
disease B, genes showing high/moderate expression in 
53 tissues across the human body, and proteins involved 
in ~ 1000 biological pathways. Overlaps computed in this 
manner were considered to be statistically significant at 
P < 0.05 after correction for multiple hypotheses using the 
Benjamini–Hochberg method.

We sought to identify the specific disease protein sets, 
pathways and tissues that were more closely related to each 
of the 4 DTNs for each comorbid pair in terms of Euclid-
ean distance. For this, we performed principal component 
analysis (PCA) with a data matrix containing DTNs (col-
umns) versus the specific disease protein sets, pathways 
or tissues (rows). For example, for the data modality ‘dis-
ease protein set’, the rows would be ‘common to both the 
networks’, ‘unique to disease A network’ and ‘unique to 
disease B network’ and for the data modality ‘tissue’, the 
members would be ‘amygdala’, ‘aorta’, ‘lungs’, etc. Each 
cell contained –log10 transformed P values, which have 
been used as inputs for PCA in previous studies (Chang 
and Keinan 2014; McGuirl et al. 2020). PCA has been 
applied to matrices containing gene-level association 
scores in several studies (McGuirl et al. 2020). All the 
PCs generated after this analysis were considered for our 
study, and the PC scores of the DTNs were used to identify 
their grouping patterns. Following this, we extracted the 
component loading values denoting the weights of each of 
the biological modalities on the PCs. Component loadings 
depict the correlation of the original variables (-log10P 
values) in our data matrix with each of the extracted PCs. 
Their magnitudes can be used to assess the influence of 
the different biological modalities on the 4 DTNs sepa-
rated along the PCs. Lastly, we calculated the Euclidean 
distance between the PC scores of each of the DTNs and 
the corresponding component loadings of the biological 
modalities. This yielded a list of the specific disease pro-
tein sets/pathways/tissues that may be closely related to 
each of the 4 DTNs of the comorbid pair.

3.4  Disease networks and drug target networks

For each disease pair, we systematically computed the 
overlaps of the 4 DTNs with proteins that are (a) common 
to disease A and disease B networks, (b) unique to dis-
ease A network and (c) unique to disease B network (Sup-
plementary Table 2). Previous studies have examined the 
overlaps between DTNs and disease networks (Cheng et al. 
2019; Han et al. 2021). A data matrix of DTNs (columns) 
versus disease protein sets (rows), which contains –log10P 
values indicating the statistical significance of their over-
laps was used as the input for PCA. We computed the 
Euclidean distance between the PC scores of each of the 
DTNs across all the extracted axes and the corresponding 
component loadings of all the disease protein sets across 
these axes.

In 10 out of the 12 cases, the DTNs of drugs used for 
a specific disease and not contraindicated in a comorbid 
condition were found to be closest/second closest to the 
proteins uniquely found in the network of the comorbid 
condition. Additionally, in 9 out of the 12 cases, they were 
closest/second closest to the proteins shared between the 
networks of both diseases. Hence, disease A drugs that 
are not contraindicated in disease B may target proteins 
unique to the disease B subnetwork. Based on this, we 
speculated that these proteins unique to disease B network 
may be involved in mechanisms that are not critical or 
beneficial for disease B, but whose modulation is certainly 
beneficial for the treatment of disease A. Note that the 
absence of contraindications in disease B cannot be solely 
attributed to the favourable modulation of disease B by 
the drug. It could also result from the drug not interfer-
ing with the mechanisms of disease B. However, in cases 
where a beneficial modulation by the drug is suspected, 
it can be the underlying reason for the absence of con-
traindications. Alternatively, this same category of drugs 
(disease A drugs that are not contraindicated in disease B) 
may target common mechanisms that are dysregulated in 
a similar manner in both diseases and pharmacologically 
modulate them in a similar direction.

In contrast, in 8 out of the 12 cases, the DTNs of drugs 
used for a specific disease and contraindicated in a comorbid 
condition were found to be closest/second closest to the pro-
teins uniquely found in the network of the disease for which 
these drugs were primarily used. Additionally, in 9 out of 
the 12 cases, they were closest/second closest to the proteins 
shared between the networks of both diseases. These results 
led us to speculate two scenarios for disease A drugs that 
are contraindicated in disease B. They may either target (a) 
common mechanisms that are pharmacologically oppositely 
modulated in a manner that benefits disease A but aggra-
vates disease B or (b) mechanisms unique to disease A that 
aggravate disease B.
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Altogether, this led us to suspect that biological processes 
functioning at a higher level than disease subnetworks could 
be regulating drug action under comorbid conditions.

3.5  Biological pathways and drug target networks

For each disease pair, we identified the pathway associations 
of the DTNs using the gene set analysis toolkit called Web-
Gestalt (Liao et al. 2019a). For each of the 6 disease pairs, a 
data matrix of DTNs (columns) versus Reactome pathways 
(rows) containing corresponding –log10P values of enrich-
ments was used as inputs for PCA. The Euclidean distance 
between the PC scores of each of the DTNs across all the 
extracted axes and the corresponding component loading 
values of all the pathways across these axes were computed. 
For each of the disease pairs, we retrieved the top-10 path-
ways closest to each of the DTNs out of all the pathways 
enriched in the DTNs (Supplementary Fig. 1–6). Confirming 
our earlier premise, we noted that disease A DTNs without 
contraindications in disease B were nearest to pathways pos-
sibly underlying both the diseases or uniquely associated 
with B, which are similarly regulated, i.e. upregulated or 
downregulated together, in the two comorbid diseases. On 
the other hand, disease A DTNs with contraindications in 
disease B were nearest to pathways underlying both the dis-
eases or unique to disease A that are differentially regulated, 
i.e. upregulated in one disease and downregulated in the 
other or vice versa.

The drug maprotiline was among our list of anxiety drugs 
without contraindications for depression. Corroborating this, 
clinical data suggested that the drug is effective in alleviat-
ing anxiety symptoms co-occurring with depression (Lacy 
2006). ‘G α(12/13) signalling events’ and ‘muscarinic ace-
tylcholine receptors’ were identified among the top-10 path-
ways that were close to anxiety drugs not contraindicated 
in depression (Supplementary Fig. 7). G α(12/13) regulates 
adrenergic receptor signaling (Maruyama et al. 2002), and 
acts as an antagonist on adrenergic and cholinergic recep-
tors (Supplementary Note 3). It targets a higher number of 
proteins associated uniquely with depression (ADRA2A, 
HTR2C, SLC6A2 and CHRM2) in the adrenergic, sero-
tonergic and cholinergic systems (Fig. 3). It targets only 
one receptor associated with both anxiety and depression 
(HTR2A), and no gene uniquely associated with anxiety 
(Fig. 3). These observations are in line with our findings in 
the previous section. DTNs of disease A drugs that are not 
contraindicated in disease B (e.g. maprotiline) are closely 
associated with proteins uniquely found in the disease B 
network (which is depression in this example). Maprotiline, 
however, is being cited here only as a demonstrative exam-
ple, since its usage has been discontinued since 2020 in U.S. 
(Data 2017).

‘Serotonin receptors’ was identified among the top 10 
pathways that were close to depression drugs not contraindi-
cated in anxiety (Supplementary Fig. 7). This is in line with 
the observed efficacy of drugs acting on serotonin recep-
tors both in short-term and long-term treatment of major 
depressive disorder and anxiety disorders (Goodwin 2015). 
Two such drugs in our study display antagonistic activity on 
the serotonin receptors HTR2A and HTR2C—flupentixol 
(Pöldinger and Sieberns 1983) and mirtazapine (Alam et al. 
2013)—and have been used to treat depression accompa-
nied by anxiety symptoms (Fig. 3). Note that flupentixol is 
sparingly used to treat depression and is cited here only as a 
demonstrative example.

The pathway ‘dopamine receptors’ was found to be close 
to Parkinson’s disease (PD) drugs contraindicated in schizo-
phrenia (SCZ) (Supplementary Fig. 8). This is in line with 
the observation that enhanced dopamine levels induced by 
PD drugs may in fact induce SCZ-like symptoms, which 
has been linked to a hyperdopaminergic state (Kuusimäki 
et al. 2020). These dopamine agonist PD drugs have been 
shown to induce psychosis, namely, levodopa (acting on 
DRD1, DRD2, DRD3, DRD4 and DRD5) and ropinirole 
(DRD2, DRD3 and DRD4) (Fig. 4) (Zahodne and Fernandez 
2008; Stoner et al. 2009). Similar symptoms were observed 
with the increased dopamine levels resulting from allografts 
containing dopaminergic stem cells from the ventral mes-
encephalon (Barker et al. 2013). It is notable that levodopa 
and ropinirole target a higher number of dopamine receptors 
associated with PD (DRD1 and DRD2) (Fig. 4). They target 
only one dopamine receptor (DRD3) associated with SCZ 
(Fig. 4). These observations are in line with our finding that 
the DTNs of drugs (used for disease A) that are contraindi-
cated in disease B (e.g. levodopa and ropinirole) are closely 
associated with proteins found in the disease A network (i.e. 
PD in this specific example).

3.6  Tissues and drug target networks

Using RNA-sequencing data of 53 postnatal human tis-
sues obtained from GTEx (Consortium 2015) (version 8), 
we attempted to identify whether the four DTNs (of each 
disease pair) showed enrichment for tissue-specific genes. 
We generated a data matrix of DTNs (columns) versus tis-
sues (rows) containing the –log10P values of enrichment and 
performed PCA with this matrix as the input. We calculated 
the Euclidean distance between the PC scores of each of 
the DTNs and the component loading values of all the tis-
sues. For each of the disease pairs, we retrieved the top 10 
tissues that were nearest to the four DTNs (Supplementary 
Fig. 9–15). For each of the diseases, we used TSEA-DB (Jia 
et al. 2020) to retrieve the top 3 tissues that showed signifi-
cant enrichment for disease-associated variants (see Meth-
ods). We then checked whether the top 3 tissues associated 
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with individual diseases appeared among the list of tissues 
identified to be closely related to the 4 DTNs (associated 
with each disease pair). Out of the 11 tissues identified to be 
closer to the DTNs of drugs used for a primary disease and 
not contraindicated in a comorbid condition, 6 were found 
to be associated with the comorbid condition (as per TSEA-
DB); 3 were associated with the primary disease for which 
the drugs were used and 2 were associated with both the 
primary disease and the comorbid condition. Conversely, out 
of the 9 tissues identified to be closer to the DTNs of drugs 
used for primary disease and contraindicated in a comorbid 
condition, 5 were found to be associated with the primary 
disease, whereas 3 were associated with the comorbid con-
dition in which the drugs were contraindicated and one was 
associated with both the disease and the comorbid condition.

These percentages should be cautiously interpreted as 
they were obtained with a small number of tissues. Never-
theless, the results seem to corroborate our previous findings 
with disease subnetworks and biological pathways. Specifi-
cally, the DTNs of disease A drugs that are not contraindi-
cated in disease B seemed to be nearest to tissues prefer-
entially affiliated with disease B. This indicated that these 
tissues could be important in the pathophysiology and thera-
peutic alleviation of both disease A and disease B, despite 
showing high enrichment of disease B-associated variants.

Adrenal gland was detected as a tissue highly specific 
to depression by TSEA-DB. In our analysis, this tissue 
appeared to be nearest to the DTN of anxiety drugs that 
were not contraindicated in depression (Supplementary 
Fig. 16). This suggested that this class of anti-anxiety drugs 

Fig. 3  Network diagram showing the relationship between the tar-
gets of maprotiline, flupentixol and mirtazapine, and genes associ-
ated with anxiety and depression. The different families of receptors 
and transporter proteins targeted by maprotiline, flupentixol and mir-
tazapine and their interactions with the proteins encoded by anxi-
ety (disease A) and/or depression (disease B) associated genes have 
been shown. Note that maprotiline (an anti-anxiety (disease A) drug 
not contraindicated in depression (disease B)) targets a higher num-
ber of proteins associated uniquely with depression in the adrenergic, 

serotonergic and cholinergic systems, which is in line with our obser-
vation that disease A drugs that are not contraindicated in disease B 
are closely associated with proteins uniquely found in the disease B 
network (i.e. depression in this specific example). Serotonin receptors 
were found to be associated in our analysis with depression drugs not 
contraindicated in anxiety; antagonistic activity on serotonin recep-
tors is exhibited by two such drugs shown in the diagram (flupentixol 
and mirtazapine)
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targeted the adrenal gland, perhaps because it produces cor-
tisol, which may be regulated in a similar manner in depres-
sion and anxiety (Supplementary Note 4). Upon compara-
tive transcriptome analysis, we found that the differential 
gene expression profile induced by maprotiline in PC3 cells 
was negatively correlated with the blood sample profiles of 
patients with major depressive disorder (MDD) and general-
ized anxiety disorder (GAD), and positively correlated with 
the expression profile of the adrenal cortex (Fig. 5a and Sup-
plementary Note 5). This could indicate that maprotiline-
mediated MDD/GAD alleviation may be dependent on the 
adrenal gland, i.e. the reversal of MDD/GAD-associated 
expression profile induced by maprotiline could occur in the 
adrenal cortex. We also found that the genes differentially 
expressed in the drug, disease and tissue profiles converged 
on protein folding and cell cycle processes (Fig. 5b, c and 
Supplementary Note 6). However, note that this is only anec-
dotal evidence of the role played by the adrenal gland in 
mediating stress and anxiety. A detailed discussion on the 
same would require strong results from multiple sources.

On the other hand, DTNs of disease A that are con-
traindicated for disease B were closely related to tissues 
preferentially affiliated with disease A. This indicated that 

these disease A-specific tissues mediate beneficial effects in 
disease A while mediating deleterious effects in disease B 
(e.g. spleen, see Supplementary Note 7 and Supplementary 
Fig. 17).

4  Discussion

Despite the increased prevalence of ADRs in comorbidi-
ties, knowledge of the mechanistic basis of drug contrain-
dications in such conditions is limited. In our study, we 
attempted to characterize the biological profiles of the DTNs 
of drugs used in specific diseases that are either contrain-
dicated or not contraindicated in comorbid diseases. We 
sought to provide an integrated interactome, pathway and 
tissue-level view of the DTNs.

The first key finding in our study was that the relative risk 
of comorbidity between diseases was proportional to their 
network similarity measures (Fig. 2), a trend that was seen 
with all the 3 negative control pairs and 3 out of the 5 comor-
bid pairs. The higher relative risk of rheumatoid arthritis—
osteoporosis and Parkinson's disease—schizophrenia (com-
pared with the other comorbid pairs) was not accompanied 

Fig. 4  Network diagram show-
ing the relationship between 
the targets of levodopa and 
ropinirole and genes associ-
ated with Parkinson’s disease 
and schizophrenia. The specific 
dopamine receptors targeted 
by levodopa, ropinirole and 
flupentixol and their interac-
tions with the proteins encoded 
by Parkinson’s disease and/
or schizophrenia associated 
genes have been shown. Note 
that levodopa and ropinirole are 
used in the treatment of Parkin-
son’s disease (disease A), but 
contraindicated in schizophrenia 
(disease B), and flupentixol is 
used in the treatment of schizo-
phrenia, but contraindicated in 
Parkinson’s disease. Note that 
levodopa and ropinirole target 
a higher number of dopamine 
receptors associated uniquely 
with Parkinson’s disease, which 
supports our finding that disease 
A drugs that are contraindicated 
in disease B are closely associ-
ated with proteins uniquely 
found in the disease A network 
(i.e. Parkinson’s disease in this 
specific example)
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by a corresponding increase in the network similarity meas-
ures. Several factors may explain this anomaly. First, ~ 85% 
of the human interactome awaits experimental discovery 
(Hakes et al. 2008). Hence, network overlaps may have been 
underestimated due to the inherent incompleteness of these 
disease networks, the tendency of incomplete networks to 
exhibit small overlaps and sampling biases introduced as a 
result of selective PPI discovery (Hakes et al. 2008). Sec-
ondly, rheumatoid arthritis may progress to osteoporosis; 
and schizophrenia to Parkinson’s disease over time due to 
biological and pharmacological mechanisms (Kuusimäki 
et al. 2021; Smeland et al. 2021). We expect to see higher 
concordance between relative risks and network overlaps for 
these disease pairs when the networks are partitioned based 
on developmental stages (e.g. upon integration with tempo-
ral transcriptomic data). Thirdly, it has been shown that rela-
tive risk overestimates the comorbid associations between 
rare diseases and underestimates the associations between 

highly prevalent diseases (Hidalgo et al. 2009). The number 
of cases in the HuDiNe database for rheumatoid arthritis—
osteoporosis and Parkinson’s disease—schizophrenia are 
24,629 and 5439, respectively, which can be classified as 
rare occurrences when compared with the other comorbid 
pairs. Supplementary Fig. 18 shows the relationship of the 
relative risks of 9 disease pairs with individual and comorbid 
disease prevalence.

Our second key finding was that druggable proteins were 
highly enriched among proteins shared between the net-
works of two comorbid diseases (Table 2). Based on this, 
we speculated that drug action on shared targets may give 
rise to contraindications in comorbidities. This was based on 
the assumption that adverse events stem from drugs induc-
ing opposing pharmacological effects in comorbid diseases, 
by targeting effectors shared between the diseases. How-
ever, our findings indicate that mechanisms underlying the 
pathology of disease A may contribute to contraindications 

Fig. 5  Relationship between MDD/GAD, maprotiline and adrenal 
cortex at transcriptomic and biological process levels. a Correlation 
of differential gene expression profiles associated with a comorbid 
condition (major depressive disorder and generalized anxiety disor-
der), a drug (maprotiline) and a tissue (adrenal cortex). –log10P indi-
cating the overlap of the expression profiles have been shown; red and 
green colors indicate negative and positive correlations between the 
profiles respectively. Significant overlap was found among the genes 
that are upregulated in patients with both major depressive disorder 
(MDD) and generalized anxiety disorder (GAD) and downregulated 
on treating PC3 cells with maprotiline (P = 7.4E-06), among the 

genes that are upregulated in MDD/GAD patients and downregulated 
in adrenal cortex (P = 8.4E-28), and among the genes that are down-
regulated on treating PC3 cells with maprotiline and downregulated 
in adrenal cortex (P = 0.034). b, c The functional networks of the 
Gene Ontology (GO) biological processes related to (b) protein fold-
ing and (c) cell cycle events that were enriched in the three expres-
sion profiles. The GO terms associated with each of the expression 
profiles have been shown using different node colors. The thickness 
of the edges corresponds to the Resnik semantic similarity score for 
GO terms (the greater the thickness of the edges, the greater is the 
similarity between the linked GO terms)
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in the comorbid disease B. Specifically, the DTNs of disease 
A drugs that are contraindicated in a comorbid disease B 
were preferentially affiliated with disease A-associated tis-
sues, and disease sub-networks and pathways that are either 
shared between the two diseases or uniquely associated with 
disease A (Table 3). Although further studies are required 
to examine the basis of this finding, it suggests that con-
traindications may arise when drugs used in disease A are 
highly specific to the said disease A, in terms of the targeted 
PPI network, pathway and tissue. Therefore, the causative 
and correlational influences of comorbid conditions (i.e. 
disease B) should be taken into account for rational drug 
development.

The DTNs of disease A drugs that are not contraindicated 
in a comorbid disease B were preferentially affiliated with 
disease B-associated tissues, and disease sub-networks and 
pathways that are either shared between the two diseases 
or uniquely associated with disease B (Table 3). This was 
contrary to our expectation that these DTNs would be pref-
erentially affiliated with biological modalities pertaining to 
disease A. This was based on the assumption that for a drug 
to be specifically active against disease A without aggravat-
ing a comorbid disease B, it had to reverse the phenotypes 
specifically associated with disease A. In this model, phe-
notypes of disease B were considered as ‘off-targets’ in line 
with the principles of conventional pharmacology, in which 
unintended effects of the drugs were attributed to interaction 
with pathways inconsequential to disease A pathology (i.e. 
pathways relevant to disease B) (Chan and Loscalzo 2012). 
Our findings on the contrary indicate that the mechanisms 
underlying the pathology of the comorbid disease B may 
contribute to the therapeutic alleviation of disease A. It is 
possible for the emergence and development of the two dis-
eases to be interdependent based on etiological associations. 
Future studies should concentrate on etiological models of 
comorbidity (Valderas et al. 2009). The risk factors of dis-
ease B will influence the development of disease A directly, 
or through correlation with the risk factors of disease A, 
according to the ‘heterogeneity’ and ‘associated risk fac-
tors’ models respectively. This could explain why our study 
connected disease B-associated PPI networks, pathways and 

tissues with disease A drugs not contraindicated in disease 
B. For example, the alterations in disease B-associated genes 
may lead to pathway perturbations in specific tissues, which 
if counteracted by disease A drugs, may lead to disease A 
alleviation.

Drug design is historically based on findings from stud-
ies that describe genetic and pharmacological modulation 
of specific targets and pathways, which elicit measurable 
changes in pathophenotypes (Chan and Loscalzo 2012). This 
framework suggests that side effects arise from unintended 
manipulation of ‘off-targets’ in other pathways. However, 
both beneficial and adverse outcomes of drug treatment in 
complex disorders (and their distinct pathophenotypes) may 
arise from shared effectors and pathways, albeit active in 
distinct combinations in specific cells and tissues (Chan and 
Loscalzo 2012). In line with this, we found that both catego-
ries of drugs used to treat primary conditions (whether con-
traindicated or not in a comorbid condition) were affiliated 
with proteins shared between the two diseases (Table 3) and 
that it may be difficult to delineate the separate mechanisms 
underlying the two outcomes. Future analysis should focus 
on biological variables that differentially affect the functions 
of such shared proteins, e.g. their cellular, pathway and tis-
sue landscapes.

Our current approach has some limitations. First, our 
study is based on 9 disease pairs that were selected based 
on a literature survey. Future studies should include all the 
known pairs of comorbid and non-comorbid disorders. Sec-
ond, our analysis did not take the overlaps among the DTNs 
into account. This would have allowed us to identify disease 
network and DTN configurations. Third, although we were 
able to support our findings by citing evidence based on the 
known clinical activity of specific drugs, further investiga-
tions with the six comorbid pairs are essential to confirm 
their validity. These should focus on large-scale analysis of 
patient treatment data collected from observational studies 
and functional assays in animal models of human comorbidi-
ties. Fourth, in our comparative analysis of drug-induced, 
disease-associated and tissue-associated transcriptomes, we 
utilized the differential gene expression profile induced by 
maprotiline in the PC3 prostate cancer cell line available 

Table 3  Disease network, pathway and tissue-level characterization 
of drugs that are contraindicated/not contraindicated in comorbid 
conditions. A ✓ has been used to indicate the close affiliation of a 
specific category of drug-target network with specific disease protein 

sets, disease-associated pathways and tissues. Disease PPI protein 
sets, pathways and tissues that are common to disease A and disease 
B have been marked in columns ‘a’, those unique to disease A in col-
umns ‘b’ and unique to disease B in columns ‘c’

Drug target networks Disease PPI protein sets Pathways Tissues

a b c a b c a b c

Disease A drugs not contrain-
dicated in Disease B

✓ ✓ ✓ ✓ ✓ ✓

Disease A drugs contraindi-
cated in Disease B

✓ ✓ ✓ ✓ ✓ ✓
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through the CMAP database. Maprotiline-induced profiles 
in neuronal cell lines, more aligned with the anxiety pheno-
type, or adrenocortical cell lines, which would have been 
relevant due to the comparison with adrenal cortex profiles, 
were unavailable in the CMAP database or in the L1000 
CMAP database hosted by the NIH LINCS Consortium. 
Therefore, to strengthen the biological significance of our 
findings, it is important to confirm the observed correlations 
of maprotiline with disease- and tissue-associated profiles 
in more appropriate cell lines, when they become available. 
Fifth, while we considered adverse effects associated with 
the drugs for each pair of diseases during data collection 
from the TWOSIDES database, our current analysis did not 
offer interpretations of specific adverse effects. Future stud-
ies will focus on deriving conclusions on specific ADRs 
associated with comorbid conditions. Nevertheless, we offer 
specific examples, such as those related to PD and SCZ. Our 
aim was to examine whether the effects of drugs within their 
target networks were related to the mechanisms of the pri-
mary disease that they were designed to treat or to possibly 
secondary, albeit potentially significant effects on comor-
bid diseases. We found that  contraindications stemmed 
from specificity to the primary condition and insufficient 
consideration of correlated conditions. Hence, our findings 
from a collective analysis of DTNs suggest that preventing 
contraindications necessitates a more rational drug selection 
process informed by etiological associations. Lastly, addi-
tional parameters including the effects of aging on PPIs and 
family history on comorbidities should be taken into account 
in future studies. Bayesian probabilistic models can be used 
to integrate the current set of evidence with other factors, 
e.g., pharmacological characteristics of the drugs, gene- and 
protein-level features of the drug targets, cell-type specificity 
of disease-associated genes and drug targets, etc.

In the current work, our aim was to provide a conceptual 
model for understanding drug contraindications in comor-
bid disease pairs. Therefore, we focused on specific pairs of 
comorbid diseases identified in the literature. We used rela-
tive risk ratios from the HuDiNe database to analyze their 
relationship with network similarity measures of comorbid 
disease interactomes. However, given that the likelihood of 
ADRs increases with disease comorbidity (Morales et al. 
2017; Mittmann et al. 2012; Bassi et al. 2017), our future 
works will incorporate all comorbid diseases with a rela-
tive risk greater than 1 in the HuDiNe database co-occur-
ring with a specific disorder. This approach will provide a 
clearer view of how disease networks, pathways, and tissues 
interact with multiple comorbidities and comedication.

In summary, our findings suggest that the pathway mem-
bership and the tissue-specificity of the DTNs and their 
overlap with disease PPI networks will influence contrain-
dications in comorbidities. These biological modalities need 

to be examined for rational drug development and minimi-
zation of adverse events. The results from our study have 
therapeutic applications, and may directly benefit future 
assessments of drug contraindications in individuals with 
comorbidities.

5  Conclusions

We observed that disease B-associated PPI networks, path-
ways and tissues were affiliated with the DTNs of disease 
A drugs that were not contraindicated in disease B. On the 
other hand, disease A-associated PPI networks, pathways 
and tissues were affiliated with the DTNs of disease A drugs 
that were contraindicated in disease B. This suggested that 
etiological associations between the two diseases play a 
role in their therapeutic alleviation. In summary, our find-
ings suggest that the enrichment patterns of DTNs in path-
ways, tissues and the PPI networks of comorbid diseases 
will help identify drugs with/without contraindications in 
comorbidities.
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