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Abstract
The clinicians usually desire to know the shape of the liver during treatment planning to minimize the damage to the sur-
rounding healthy tissues and hepatic vessels, thus, building the geometric model of the liver becomes paramount. There have 
been several liver image segmentation methods to build the model over the years. Considering the advantages of conventional 
image segmentation methods, this paper reviews them that spans over last 2 decades. The review examines about twenty-five 
automated and eleven semi-automatic approaches that include Probabilistic atlas, K-means, Model and knowledge-based 
(such as active appearance model, live wire), Graph cut, Region growing, Active contour-based, Expectation Maximization-
based, Level sets, Laplacian network optimization, etc. The main contribution of this paper is to highlight their clinical 
suitability by providing their advantages and possible limitations. It is nearly impossible to assess the methodologies on a 
single scale because a common patient database is usually not used, rather, diverse datasets such as MICCAI 2007 Grand 
Challenge (Sliver), 3DIRCADb, Zhu Jiang Hospital of Southern Medical University (China) and others have been used. As 
a result, this study depends on the popular metrics such as FPR, FNR, AER, JCS, ASSD, DSC, VOE, and RMSD. offering a 
sense of efficacy of each approach. It is found that while automatic segmentation methods perform better technically, they are 
usually less preferred by the clinicians. Since the objective of this paper is to provide a holistic view of all the conventional 
methods from clinicians’ stand point, we have suggested a conventional framework based on the findings in this paper. We 
have also included a few research challenges that the readers could find them interesting.

Keywords Medical image · Segmentation · Liver · Computed tomography · Active contour · Statistical shape models · 
Graph cut

1 Introduction

Although the term “segmentation” sounds simple, it 
is important in hepatic disease diagnosis and treatment 
planning; it can well be used in intra-operative naviga-
tion and registration of multimodal images/instruments 
(Mohanty and Dakua 2022) during the actual procedure. 
For instance, holding a physical organ phantom in hand 
for surgical planning is way better than just imagining the 
organ by looking at its imaging modality, say computed 
tomography (CT). Therefore, accurate organ segmentation 
is presently considered indispensable in typical surgical 
pipelines (Hsu and Chen 2008; Lee et al. 2005; Bezdek 
et al. 1993; Clarke et al. 1995; Morrison and Attikiou-
zel 1994; Lim and Pfefferbaum 1989; Harris et al. 1991; 
Amartur et al. 1992; Ozkan et al. 1993). To be further 
specific, appropriate resection of a complex liver lesion 
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depends on the degree of accurate visualization of liver 
anatomy. The experienced and expert clinicians can deal 
with such cases easily. However, when it comes to novice 
surgeons or residents, they need proactive supervision. In 
such cases, a physical 3D phantom is quite helpful. To 
have a reliable 3D model of the liver, the segmentation of 
the liver is needed and it needs to be highly accurate. Over 
the last couple of decades, researchers have been driven 
to achieve the most efficient segmentation technique that 
would allow the clinicians to have an easy access to organ 
measurements and visualize. For this reason, the computer 
vision research community has put a lot of effort in devel-
oping image segmentation methods over the years (Lin 
et al. 1992; Brandt et al. 1994; Hall et al. 1992; Ortendahl 
et al. 1985; Kohn et al. 1991; Liang et al. 1992; Liang 
1993; Liang et al. 1994; Choi et al. 1991; Taxt and Lun-
dervold 1994; Lundervold and Storvik 1995; Santago 
and Gage 1993). There have been some surveys as well: 
Heimann et al. present a review paper that compares and 
evaluates the liver segmentation papers from CT scans 
(Heimann et al. 2009). They find the semi-automatic meth-
ods better over automatic ones. Campadelli et al. present 
a detailed review on the automatic methods and propose 
a new method (Campadelli and Esposito 2009). Another 
review paper suggests that the segmentation performance 
varies with change in the input data (Dakua 2013a). Yusuf 
et al. assess the risks of using computer generated segmen-
tation software (Akhtar et al. 2021) in treatment planning 
of liver lesions; they find that the lesion relapses in future; 
that means the segmentation software has to be accurate. 
Pragati et al. assess the feasibility and efficiency of fusion 
for post ablation assessment of liver neoplasms (Rai et al. 
2021). Anchal et al. present a review on the present thera-
peutics targeting liver lesions and find that image fusion 
between two imaging modalities can provide better infor-
mation about the lesion than a single imaging modality 

(Dakua and Nayak 2022). Mohammad et al. survey various 
image segmentation methods and conclude that artificial 
intelligence-based methods could be effective from clinical 
standpoint (Ansari et al. 2022b; Singh et al. 2023). Thus, 
there have been some surveys on segmentation methods, 
however, in most of the surveys, only a limited number 
of studies are included, some with the number of meth-
ods, some with a section of methods, some with a certain 
objective: for instance in Heimann et al. (2009), the whole 
survey was limited to a conference. Campadelli and Espos-
ito (2009) emphasize mostly on the automatic methods 
that might not be fair from clinicians’ view point, because 
the clinicians sometimes want to adjust the delineation 
based on the clinical need and their clinical expertise. The 
survey (Dakua 2013a) does focus on both semi-automated 
and automated methods, but again, this has focussed on the 
performance of a method when the input data is varied. 
The authors in Akhtar et al. (2021) focus on the possible 
relapse of a lesion over the time if a computer aided diag-
nosis (CAD) software is considered during the treatment. 
Similarly, the other surveys (Dakua and Nayak 2022) and 
(Rai et al. 2021) focus on the fusion aspect. The present 
survey paper is bit different than the existing ones; to the 
best of our knowledge, there has been probably no study 
in public domain that depicts the clinical utilizations of 
the conventional methods covering such a wide spectrum 
of duration (from 2000 to 2022). Despite having several 
segmentation tools, there is no method that can be applied 
to all human organs effectively (Al-Kababji et al. 2022), 
there is not a generic image segmentation tool that can be 
applied to the multi-modal images of a human organ such 
as CT, MRI, and US. Thus, in this paper, we have pre-
sented the potential utilities of each method with respect 
to their clinical usability, which no other survey paper has 
probably reported. The abbreviations used in the paper are 
given in Table 1.

Table 1  Abbreviations Abbreviation Full form Abbreviation Full form

3D 3-dimensional 3D-IRCADb 3D Image reconstruction for compari-
son of algorithm database

ASM Active shape models ASSD Average symmetric surface distance
AUC Area under curve CE-CT Contrast-enhanced CT
CE-MRI Contrast-enhanced MRI CE-US Contrast-enhanced US
CHAOS Combined (CT-MR) 

Healthy Abdominal Organ 
Segmentation

CT Computerized tomography

DL Deep learning DSC Dice similarity coefficient
FPR False-positive rate FNR False negative rate
IoU Intersection-over-union LiTS Liver Tumor Segmentation Challenge
MICCAI Medical Image Computing 

and Computer Assisted 
Intervention

MSSD Maximum symmetric surface distance
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1.1  Clinical relevance of liver CT segmentation

The liver being an important organ of our body, the seg-
mentation techniques are essential for the measurement 
of liver volume (Nakayama et al. 2006), hepatic surgical 
planning for hepatocellular carcinoma (as shown in Fig. 1) 
(Fan et al. 2000), study of anatomical structure, localiza-
tion of pathology, diagnosis, and computer integrated sur-
gery (Halabi et al. 2020). Thus, accurate segmentation of 
liver, tumor(s), and arteries from the imaging volumes is 
among the primary goals of computerized image process-
ing (Al-Kababji et al. 2023).

The primary criteria for a segmentation method should 
be its simplicity, user friendliness, accuracy, and fast exe-
cution; furthermore, it should be compatible to the clini-
cal requirements. Citing the emergence of new diseases, 
varieties, and the complexities, the medical diagnoses are 
probably incomplete in the absence of substantial imaging 
modalities such as positron emission tomography (PET), 
computed tomography (CT), ultrasound imaging (US), or 
magnetic resonance imaging (MRI) (Dakua and Sahambi 
2009). Each imaging technology has its own merits and 
demerits, for example, despite its non-intrusive nature 
and lack of radiation emission, US is precisely operator 
dependent. MRI, with its noninvasive nature and high 
tissue contrast, can differentiate and detect tumors pre-
sent in the liver accurately, yet, the examination is highly 
expensive. PET successfully creates a three-dimensional 
image or representation of the body’s functioning opera-
tions. Concurrently, one of the biggest drawbacks of PET 
is that the majority of the probes need to be created using 
a cyclotron, making it more expensive. CT, on the other 
hand, with less time and expense provides the details of 
the organ, in addition to providing finer spatial resolution 
and advanced signal-to-noise ratio. Therefore, US, PET 
and MRI are not as popular as CT.

In this paper, the main contributions are as follows: 

1. we review the popular liver image segmentation algo-
rithms from CT scans over last 20 years,

2. we present the suitable clinical environments for each 
segmentation, where the segmentation method can be 
effective, and

3. finally, we critically discuss each method, the rationale 
for not being able to provide a robust solution, and a 
potential solution.

The article comprises of five sections. Section 2 enunciates 
the inclusion and exclusion criteria to choose the methods 
in this review. Section 3 describes the methods individually. 
The quantitative results by the methods and their suitabil-
ity are detailed in Sect. 4. In Sect. 5, an introspect of the 
precedence, drawbacks of segmentation techniques, and the 
outlook of the review are included, while Sect. 6 concludes 
the paper.

2  Inclusion and exclusion criteria

This section includes the quantitative measures to estimate 
the quality of segmentation and various existing segmenta-
tion methods from CT scans (Dakua 2013a, b, 2014; Zhai 
et al. 2018; Dakua et al. 2018).

2.1  Journals of interest

The research on liver segmentation has gained momentum 
after early 90 s (Pham et al. 2000) and Pham et al. report 
these methods extensively up to the year 2000. After the 
year 2000 until 2022, there have been several review papers 
in bits and pieces, but to the best of our knowledge, there 
is not any review paper that has dissected all the conven-
tional segmentation approaches. All the conventional meth-
ods, in a single paper, should probably be able to convey 
the advantages and disadvantages of these methods to the 
readers providing a holistic view about these methods. Tak-
ing these points into account, we decided to focus on liver 
segmentation methods from CT scans after the year 2000. 
Our current research objective is to find the difficulties in 
deciding a generic method for liver region extraction. In this 
review, we have included all the segmentation algorithms 

Fig. 1  Hepatocellular carcinoma
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from high impact factor journals and conferences ensur-
ing the credibility of the findings; the venues include IEEE 
Transactions on Biomedical Engineering, IEEE Transac-
tions on Medical Imaging, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, IEEE sensor journals, 
IEEE Transactions on Image Processing, Computer Vision 
and Image Understanding, Computerized Medical Imag-
ing and Graphics, Artificial Intelligence Review, Computer 
in Biology and Medicine, Artificial Intelligence in Medi-
cine, European Journal of Radiology, Academic Radiology, 
International Journal for Computer Assisted Radio Surgery, 
Medical Physics, and others because they are believed to 
have been proved very much influential to the scientific 
community. The outcomes of this survey are based on the 
findings from these high-impact venues ensuring its qual-
ity, which the researchers could leverage. We have included 

the studies/papers in this survey by following a process as 
shown in Fig. 2.

2.2  Standard segmentation evaluation metrics

There are several evaluation metrics in the literature to 
evaluate the segmentation efficacy (geometric model of 
a liver is shown in Fig. 3); in this section, we discuss the 
most preferred ones highlighting the notations, and the sig-
nificance (Dakua et al. 2018; Dakua and Abi-Nahed 2013; 
Dakua 2017).

2.2.1  Notations

The notations are:

Fig. 2  Selection of papers/stud-
ies in this survey

S
cr

ee
ni

ng
E

lig
ib

ili
ty

In
cl

ud
ed

through database 
searching (n = 73)

through other sources 
searching (n = 14) 

n = 87

Studies eligible for 
screening:

n = 69

Studies eligible for 
abstract evaluation:

n = 55

Studies eligible for full 
evaluation:

n = 43

Reviewed studies:
n = 36

Excluded:
-Review papers
-Animal studies
-Others

n = 18

Excluded:
-Duplicates

n = 14

Excluded:
-Not relevant
-Others

n = 12

Excluded:
-Unavailable full text 
or useful quantitative 
results for this survey

n = 07



Network Modeling Analysis in Health Informatics and Bioinformatics            (2024) 13:2  

1 3

Page 5 of 26     2 

• A refers to the ground-truth label voxels set
• B is the predicted voxels set by the created models
• | ⋅ | is the set cardinality
• || ⋅ || represents the Euclidean distance
• S(⋅) indicates the set of surface voxels
• True positive (TP) is the set of correctly classified tissue 

of interest (TOI) pixels/voxels
• True negative (TN) is the set of truly classified back-

ground pixels/voxels
• False positive (FP) is the set of incorrectly classified 

background pixels/voxels
• False negative (FN) is the set of incorrectly classified 

TOI pixels/voxels

2.2.2  Jaccard index (JI)

JI is a fundamental metric to understand how close is the 
generated prediction in overlapping with the ground-truth 
label. It is also known as intersection-over-union (IoU) 
metric:

Intuitively, perfect prediction is when JI is equal to 1, mean-
ing that |A ∩ B| is the same as |A ∪ B| . In other words, there 
are no wrong predictions (i.e., FP and FN = 0 ), and the 
volumes are perfectly similar. In contrast, JI equating to 0 
means that no intersection exists between the ground-truth 
and prediction, or TP is 0, meaning that the TOI (target of 
interest) was completely misclassified.

2.2.3  Dice similarity coefficient (DSC)

DSC (or Dice) is the F1 Score counterpart for images, which 
is a harmonic mean of both precision and recall. In a sense, 
it measures the similarity between ground-truth set A and 
generated prediction B. The DSC is defined as

(1)JI =
|A ∩ B|
|A ∪ B|

=
TP

TP + FP + FN
.

(2)DSC = 2
|A ∩ B|
|A| + |B|

=
2TP

2TP + FP + FN
.

Similar to the JI metric, the two extreme cases are 0 and 1, 
where the former emphasizes the absence of any similarity 
and the latter shows the perfect similarity between A and B.

2.2.4  Specificity/true‑negative rate (TNR)

As depicted in Eq. (3), specificity investigates the model’s 
capability in classifying background voxels correctly.

Ranging between 0 and 1, the former denotes a misclassifi-
cation of all background voxels, and the latter resembles a 
proper classification of all background voxels.

2.2.5  False‑positive rate (FPR)

As shown by Eq. (4), it highlights the amount of error the 
model is making when classifying background voxels.

Contrary to specificity, a value of 0 is a good indicator of 
the model’s ability in predicting background voxels. On the 
other hand, a value of 1 is an extreme scenario where the 
model wrongly classified all background voxels.

2.2.6  Volumetric overlap error (VOE)

VOE is the complementary metric of JI, which is known 
as Jaccard distance, knowing that VOE is a special case for 
volumetric sets. It measures the spatial error represented 
between the voxels of A and B and is described as

VOE ranges between 0 and 1, where the former means that 
the voxels of B are perfectly and correctly lying over A’s 

(3)Specificity/TNR =
TN

TN + FP
.

(4)FPR/Fallout = 1 − Specificity =
FP

FP + TN
.

(5)VOE = 1 −
|A ∩ B|
|A ∪ B|

=
FP + FN

TP + FP + FN

Fig. 3  3D liver showing the lobes and others
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voxels, and the latter indicates the absence of overlapping 
voxels between the voxels of A and B.

2.2.7  Average symmetric surface distance (ASSD)

ASSD measures the minimum distance that can be found 
between a surface voxel in A to another surface voxel in B. 
Since it is a symmetric metric, the same applies to B with 
respect to A. Then, the average is taken over all the calcu-
lated distances. To define ASSD, we first have to define the 
minimum distance between an arbitrary voxel v and S(A):

where s
A
 is a single surface voxel distance from the surface 

voxel set S(A).
We can define ASSD as follows:

The value converges to 0 when the highest spatial similar-
ity is achieved. However, the larger the value, the worse the 
overlap between volumes A and B is noticed, and dissimilar-
ity starts to be observed.

2.2.8  Maximum symmetric surface distance (MSSD)/
Hausdorff distance (HD)

MSSD, famously known as HD as well, searches for the 
maximum distance, defined by Eq. (6), that can be found 
between volumes A and B.

This metric gives the maximum distance error between A 
and B, and thus, is extremely sensitive to outliers.

2.3  Datasets

Throughout the last decade and a half, many datasets of dif-
ferent imaging modalities such as CT, contrast-enhanced 
CT (CE-CT), MRI, and contrast-enhanced MRI (CE-MRI) 
have been published. Moreover, with the recent develop-
ment of artificial intelligence (AI) technologies, medi-
cal faculty understood how important it is to incorporate 
such tools to enhance healthcare quality. Thus, datasetsizes 

(6)d(v, S(A)) = min
s
A
∈S(A)

||v − s
A
||,

(7)ASSD(A,B) =
1

|S(A)| + |S(B)|

(
∑

s
A
∈S(A)

d(s
A
, S(B)) +

∑

s
B
∈S(B)

d(s
B
, S(A))

)
.

(8)

MSSD(A,B) = max

{
max
s
A
∈S(A)

d(s
A
, S(B)), max

s
B
∈S(B)

d(s
B
, S(A))

}
.

have considerably increased. The Segmentation challenge, 
LIVER Competition 2007 (SLIVER07) happened in a work-
shop named “3D Segmentation in the Clinic: A Grand Chal-
lenge in conjunction with MICCAI 2007. It is considered the 
first-ever workshop in the liver segmentation field, where 
it paved the way for the rest of the open-source datasets/
challenges, and the results of it are summarized in Heimann 
et al. (2009). Three years later, 3D Image Reconstruction 
for Comparison of Algorithm Database (3D-IRCADb) is 
gathered by the IRCAD institute in France, which includes 
patients anonymized medical images. In total, the data-
set has 22 venous phase CE-CT scans divided into (1) 
3D-IRCADb01, which contains 10 males and 10 females 
with 75% having hepatic tumors; (2) 3D-IRCADb02, which 
contains 2 CT scans with other abdominal organs segmented. 
It is worth noting that the majority of literature focuses on 
the 3D-IRCADb01 group and is normally divided into train-

ing and testing records accordingly. In the same year, a very 
small dataset is also published, called the MIDAS Liver 
Tumor (MIDAS-LT) Segmentation Dataset. It is a part of 
a bigger initiative to provide a collection of archived, ana-
lyzed, and publicly accessed datasets called MIDAS (Al-
Kababji et al. 2023) There have been a few other datasets as 
well that have been considered by the studies.

3  Segmentation methods

Broadly, there are two types of image segmentation algo-
rithms: (1) discontinuity-based approach—this type of algo-
rithms relies on the abrupt changes (usually at the edge of 
the objects) in intensity in grey level images. Edge detec-
tion is a fundamental tool used in most image processing 
applications to obtain information from the frames as a pre-
cursor step to feature extraction and object segmentation, 
and (2) similarity-based approach—this type of algorithms 
group those pixels which are similar in some sense. The task 
of grouping is performed by the following operations: (a) 
Thresholding-based operations, (b) knowledge-based opera-
tions (including the model-based ones), and (c) region-based 
operations. All the methods come under these categories; 
some are either fully automatic or semi-automatic. In this 
section, we have discussed the automatic and semi-automatic 
methods to give the reader some sense of methodological 
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notion. The holistic view of the segmentation approaches is 
provided in Table 4.

3.1  Automatic methods

An automated process should be significantly quicker and 
require relatively less time to compute, saving both time 
and money. In the following subsections, we have tried to 
provide a detailed assessment of each method and the cor-
responding results.

3.1.1  A model‑based validation scheme for organ 
segmentation in CT scan volumes

Badakhshannoory and Saeedi (2011) present a technique, 
where pre-computed segmentations of the particular organ 
is matched with a statistical model. The particular that gives 
the highest fidelity is considered to be the desired object 
segmentation. First, a series of segmentations (from under-
segmentation to over-segmentation) of a particular data 
are performed by a general segmentation algorithm. Then 
determined by principal component analysis (PCA), a sta-
tistical model is adapted to produce an organ space. Each 
candidate’s distance from the organ’s region is measured to 
determine the candidate producing the best segmentation 
result. The method was tested on the dataset that contained 
30 CT scan volumes (from MICCAI’07). The in-plane reso-
lution for each dataset is 512 × 512 pixels, while the range 
for inter-slice spacing is from 0.5 to 5.0 mm. On a Computer 

having an Intel Core 2 Duo (2 GHz) CPU, the segmentation 
method typically takes around one minute to complete.

3.1.2  Fully automatic segmentations of liver and hepatic 
tumors from 3‑D computed tomography abdominal 
images: comparative evaluation of two automatic 
methods

Looking at the error introduced by the operator’s interven-
tion, Casciaro et al. (2011) propose a graph-cut and 3-D 
initialization method for gradient vector flow (GVF) active 
contour approach for segmentation. The average intensity 
of the liver’s statistical model distribution and its stand-
ard deviation serve as the foundation for this approach. 
The original volumetric image is first pre-processed with 
a mean shift filter to get rid off the noise from homogene-
ous regions while maintaining distinct and crisp edges. Each 
slice is partitioned into 64 squares sub-regions; the standard 
deviation and mean image intensity identify the regions with 
the most uniform pixel intensity. The liver is symbolized by 
the median that corresponds to the standard deviation. The 
dataset consists of 25 anonymised CT individuals, which had 
voxel sizes ranging from 0.55 to 0.88 mm2 and a thickness 
of 2–3 mm. The total time needed to perform the segmenta-
tion procedures via graph cut and GVF active contour on a 
PC with a 3.4 GHz CPU and 1 GB RAM is 10.9 s ± 1.1 and 
11.5 s ± 1.1 , respectively.

Fig. 4  Overview of the segmen-
tation methods included in this 
survey
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3.1.3  Automatic liver segmentation using a statistical 
shape model with optimal surface detection

Zhang et al. (2010) provide a 3-D generalized Hough trans-
form (GHT) to determine the liver shape model’s approxi-
mate position. The model is contorted to modify the liver 
contour by an ideal graph theory-based surface detection 
after statistical shape model (SSM) adaptation. Some pre-
processing operations such as edge detection, down-sam-
pling, and smoothing of the input image are performed 
before the actual procedure is adapted. It is a 4-step pro-
cess, viz. (1) Shape model construction, (2) 3-D GHT liver 
localization, (3) SSM subspace initialization, and (4) Graph 
theory based optimal surface detection approach. The data-
sets used in this study were from MICCAI 2007 Grand Chal-
lenge. For the building of shape-models, 40 additional CT 
volumes with normal liver architecture were employed. Each 
model has 5120 triangles and 2562 evenly distributed ver-
tices. The segmentation procedure is finished in 4.47 s on a 
32-bit computer (2.33 GHz Core 2 and 2 GB RAM).

3.1.4  Automatic segmentation of the liver from multi‑ 
and single‑phase

This article by Rusko et al. (2009) proposes a region grow-
ing technique that is independent of the acquisition process. 
The algorithm is aimed to segment single and multi-phase 
CT images. An initial segmentation is constructed in the 
first stage employing all phases. Each phase is subjected 
to the three processes that follow independently. The first 
segmentation results and the original input images serve as 
the input for these phases. The steps are: (a) selection of seed 
region in the liver, (b) method of region growing for seg-
mentation of liver, and (c) post processing. The seeds region 
is selected assuming an empirical value for liver region 
intensity. The results are registered once the segmentation 
is available for each step, allowing the computation of the 
ultimate result as a sum of all stages. An automated contrast-
enhanced CT scan takes 25.6 s ± 7.2 to process on average 
utilizing an Intel Core2 Duo processor at 2.2 GHz CPU and 
2 GB of Memory. The segmentation for single phase takes 
40.7 s ± 9.4 to complete the process; MICCAI 2007 training 
dataset is used in this study.

3.1.5  A new fully automatic and robust algorithm for fast 
segmentation of liver tissue and tumors from CT 
scans

Massoptier and Casciaro (2008) present a 3-D fully auto-
mated model-based method that relies on statistical infor-
mation of images. It is a 3-step procedure, viz. (1) pre-pro-
cessing—the noise from homogeneous regions is eliminated 
from the original volume image using a 3-D mean shift filter, 

(2) liver-specific statistical model discrimination—the aim is 
to identify the most liver representative area in the volume 
dataset. The volume that is pre-processed is split into 64 
squares portions, and for each slice, the standard deviation 
and mean image intensity are calculated. Then, for all vol-
ume slices, the internal regions that have the least standard 
deviations are separated out and arranged in descending 
order of mean values. Then, the liver is linked to the vast 
majority of those organs, and (3) liver surface segmentation 
refinement—finally, GVF active contour method is applied 
to obtain the liver surface. Twenty one distinct patient CT 
datasets are employed in this experiment. The slice thick-
ness, pixel size range, and imaging matrix are from 0.55 to 
0.88 mm2 , 2–3 mm and 512 × 512 , respectively. On a per-
sonal notebook with 3.4 GHz and 1 GB memory, on average 
the processing time for a single slice is 11.4 s ± 1.2.

3.1.6  Construction of a probabilistic atlas for automated 
liver segmentation in non‑contrast torso CT images

Zhou et al. (2005) suggest a technique based on diaphragm 
warping to normalize the liver’s proper anatomical posi-
tion. Subsequently, a probabilistic atlas is constructed for 
liver segmentation from CT images of non-contrast torso. 
It is a 3-step algorithm, viz. (1) likelihood of liver region 
is calculated, (2) the liver is normalized using warping of 
diaphragm and thin plate spline method (Bookstein 1989) 
and after that, a liver image is created by a great deal of 
pre-segmented liver areas projected into three dimensions. 
The liver’s density distribution is then approximated using 
a Gaussian model. Gaussian parameters are determined by 
measuring the region’s density histogram so that each voxel 
satisfies a probability criterion, and (3) liver segmentation 
performed using the atlas. This study uses a total of 80 CT 
scans having non-contrast torso patient cases. Each image 
has 12 bits of resolution and 0.6 mm of spatial resolution.

3.1.7  Automatic liver segmentation for volume 
measurement in CT images

Lim and Ho (2005) suggest a method using the prior knowl-
edge to find the consistent areas that belong to liver. This is 
a 3-step process, viz. (1) image simplification—the region 
of interest, ROI, is decided by dividing the abdomen CT 
image into 64 × 64 pixel blocks and then discarding the 
unnecessary blocks. To make the liver appear significant, 
a multilevel thresholding is used, (2) search range detec-
tion—the low order multiscale morphological operations 
are performed on the thresholded image to locate the first 
and the second search areas. Many scales of morphological 
filtering are recursively performed to get the primary and the 
subsidiary search areas. The terminal search area is obtained 
by eliminating the subsidiary area from the primary search 
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area. A modified K-means algorithm succeeded by a mor-
phological analysis operation are implemented to detect the 
fine liver areas. The dataset consists of 10 patients, and the 
samples are contrast-enhanced venous phase CT scans with 
a 5 mm spacing and 512 × 512 . On a Pentium 4 3.0 GHz 
processor, total processing time typically ranges between 1 
and 3 min per slice.

3.1.8  Construction of an abdominal probabilistic atlas 
and its application in segmentation

Park et al. (2003) propose an unsupervised segmentation 
with maximization a posteriori probability (MAP) and 
probabilistic atlas. It is 2-step method, viz. (1) atlas con-
struction—the individual dataset registration onto target 
reference is implemented with a similarity measure, mutual 
information (MI). The unnecessary compressible organs 
require warping transform like thin plate spline (TPS) for 
the same. A decent registration accuracy is attained by regis-
tering each organ separately, and (2) liver segmentation—if 
the observed data and probabilistic atlas are indicated by Y 
and A , respectively, the problem lies to find the true label 
field X . For this, a cost function MAP is defined and the 
probabilities of Y are Gaussian modeled. The standard con-
sequence for nearby dissimilar objects is included as Markov 
random field (MRF) priors. Iterated conditional mode (ICM) 
(Besag 1986) is used to optimize the posterior probability 
in the MRF set-up. The segmentation technique is tested on 
20 abdominal CT data with slice thicknesses ranging from 
7 to 10 mm.

3.1.9  Liver segmentation from computed tomography 
scans: a new algorithm

Campadelli and Esposito (2009) present a gray level meth-
odology to automatically extract the liver samples and seg-
ment using �-expansion algorithm (Boykov and Kolmogorov 
2004). It is a 3-step method, viz. (1) heart-liver separation—
the largest linked area that connects the bounding box in 
the image is thresholded, (2) gray levels estimation of the 
liver—on a liver sample set, a 3-D box below the heart 
typically defines the liver tissue. Again, the 3-D body box 
(patient’s body) is divided by the alpha-expansion algorithm 
with the aid of the graph-cut approach into five groups (liver, 
spleen, bones and kidneys, stomach, and organs with com-
parable gray levels background) (Kolmogorov and Zabih 
2004). This method cycles over the five labels in a random 
order to determine a binary evaluation for each label. The 
liver is the organ with the largest volume and lowest label, 
and (3) liver volume refinement—this action is necessary 
to eliminate the unwanted parts in the liver. Around 40 
abdominal contrast-enhanced CT data from the third phase 
are used to assess this strategy. Each slice has a resolution 

of 0.625mm × 0.625mm and a pixel size of 256 × 256 for a 
total of around 80 axial slices with a 3 mm spacing for each 
patient. When using a Pentium IV processor operating at 3.2 
GHz, the method completes the task in less than 50 s.

3.1.10  Patient‑oriented and robust automatic liver 
segmentation for pre‑evaluation of liver 
transplantation

Selver et al. (2008) propose a patient oriented 3-step seg-
mentation method, viz. (1) pre-processing to remove the 
irrelevant tissues and find ROI (liver) from the primary 
image. The volumetric histogram of the input image is sub-
jected to an adaptive thresholding to find and delete the lobes 
corresponding to the irrelevant tissues, (2) classification of 
liver—a modular classifier consisting of K-means and multi-
layer perceptron (MLP) network is used to segment liver 
starting from the first through end slice in an iterative man-
ner. The initial image is chosen around one third of the series 
and prepared using Ostu’s method (Otsu 1979) to separate 
the unwanted muscle tissues (dark organs) keeping the liver, 
spleen and heart (brighter organs), and (3) post processing—
this action is necessary to eliminate small pseudo segmented 
objects. A total of 20 data sets of 12-bit DICOM images with 
a slice thickness of 3–3.2 mm and a resolution of 512 × 512 
are utilized in this investigation. The K-means algorithm 
application’s Java variant runs approximately 12–17 min on 
a typical Computer with 2 GB of RAM and a 3 GHz CPU. 
K-means classifier is used in the Matlab version, which takes 
around 30 min. Both in Matlab and Java, the MLP classifica-
tion method is completed within 45 min.

3.1.11  Fully automatic anatomical, pathological, 
and functional segmentation from CT scans 
for hepatic surgery

Soler et al. (2001) propose an anatomical segmentation tech-
nique built on the conversion of topological, geometrical, 
and morphological constraints from anatomical knowledge. 
Just before characterizing the bones, the image tangential 
tissues are enhanced with proper thresholding, followed 
by morphological operation. The range of intensity of the 
kidneys, spleen, and liver parenchyma, which are equally 
located on both histograms, may be discovered by compar-
ing the gray-level histograms. By executing a thresholding 
followed by morphological operators, the kidneys and spleen 
are distinguished. The liver is then extracted using the Mon-
tagnat and Delingette approach (Montagnat and Delingette 
1996), which treats the global transformations calculated 
in the registration framework (Brown 1994) as a deforma-
tion field. The locality parameter and combined force of 
this approach are applied to each model vertex. As a way to 
define the liver, the framework adds a global restriction to 
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the deformation process. A total of 33 intravenous injection 
data and two portodata build the database for this study. A 
collection of 35 CT data with thickness ranging from 2 to 3 
mm are used for the experiment.

3.1.12  Automated segmentation of the liver from 3D CT 
images using probabilistic atlas and multilevel 
statistical shape model

Okada Yokota et al. (2008) discuss a method that uses two 
groups of atlases, i.e. the probabilistic atlas (PA) and the sta-
tistical shape model (SSM). Spatial standardization of input 
data (by radiologist) gives average liver shape in the set. 
Each patient dataset is converted into the systemized patient 
space through nonrigid registration. PA is constructed by 
the average of binary images specifying 1 for liver and 0 
for the rest in all patient datasets. To build multi level SSM 
(MLSSM), a multiple-level surface model is first constructed 
by dividing a liver shape into patches. The patches are then 
recursively divided to form MLSSM. The liver segmentation 
is performed in 3 steps: (1) the spatially standardized CT 
data is smoothed by anisotropic diffusion filtering. The vol-
ume of interest corresponds to the area, where PA surpasses 
a certain amount of threshold, (2) the initial shape parameter 
is determined from surface model produced from the initial 
area by the reduction of a cost function to accommodate 
the Euclidean distance between a point and a surface, and 
(3) segmentation—analysis of the CT volumes along the 
MLSSM surface normal yields the edge points of the liver 
borders. In this experiment, 28 abdominal CT datasets (159 
slices, pitch: 1.25 mm, slice thickness: 2.5 mm, 512 × 512 
matrix) are used.

3.1.13  Automated segmentation and quantification of liver 
and spleen from CT images using normalized 
probabilistic atlases and enhancement estimation

Linguraru et  al. (2010) [extension of Linguraru et  al. 
(2009)] suggest a method based on PA to segment liver. 
The algorithm works in 2 stages as (1) atlas construction—
the reference image (R) is chosen at random from the input 
database, while the other images are designated as I. The 
images I are re-scaled and registered to R organ-wise based 
on normalized MI (Studholme and Hawkes 1999). The reg-
istered livers are translated in the atlas based on the aver-
age normalized centroid, the probabilistic organ atlases are 
then computed. From this step, those models are extracted 
that are conservative (A), and (2) liver segmentation— the 
spatial normalization is then applied to both A and barA 
after performing a global affine registration between R 
(from the atlas creation) and I. A more flexible alignment is 

needed to offset the remaining deformation Ā
r
 with the use 

of B-splines (Rueckert 1999). The registration provides a 
preliminary estimate of the target organ. A geodesic active 
contour (GAC) (Caselles and Sapiro 1997) is implemented 
to accommodate for potentially missing liver sections. Ten 
abdomen non-contrast CT data without anomalies were uti-
lized to create the probabilistic atlas. With inter-slice spac-
ing of 1 mm, the image resolution ranges from 0.54 to 0.77 
mm. For segmentation of livers, 257 abdominal CT scans are 
used with image resolution and inter-slice distance as from 
0.62 to 0.93 mm and from 1 to 5 mm, respectively.

3.1.14  A deformable model for automatic CT liver 
extraction

Gao and Kak (2005) present a Spedge-and-Medge-based 
algorithm for liver delineation. This is a 2-step method, viz. 
(1) coarse segmentation—a 5 × 5 median filter on the origi-
nal image reduces the impulse noise present in it. The Canny 
edge operator produces the primitive object regions and the 
edge image is subjected to a modified split-merge method 
(Spedge-and-Medge) separating out the coherent areas. The 
liver areas are calculated using geometric and non-geometric 
properties. After then, the areas are combined to form a single 
and sizable region, (2) refinement of boundary—the rough 
border acquired in step 1 is smoothed using a modified active 
contour model. The method builds chords to each of the suc-
cessive boundary points under a certain threshold criterion, 
starting at a boundary point. Finally, the energy minimization 
of the contour at the boundary consisting of the control points 
is performed to get the desired contour. In this experiment, 15 
patient data were used with 5 mm collimation and 512 × 512 
image resolution.

3.1.15  Cognition network technology for a fully automated 
3D segmentation of liver tumors

The effective context-based methodology is proposed by 
Schmidt et al. (2007), where the liver is split mechanically 
based on its anatomical location. The following two compo-
nents are the key in the algorithm. The heuristic threshold 
values for the intensity are used to partition the liver in the 
3D data set. Depending on their intensity and volume, the 
image objects are further improved to approximate additional 
unneeded bodily organs. These body components serve as the 
foundation for the calculation of a new layer of 3D edge data, 
which ultimately serves as a guide for additionally perfecting 
the body parts. The liver, which lies below the right lung and 
is bounded by the skeleton and gall bladder, is presented as 
the image object with the greatest volume. Ten datasets were 
included in this study. Using a machine with a two core CPU 
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(2.4 GHz, 3.5 GB RAM), the procedure takes from 3 min (for 
a data set with 145 slices) to 10 min (for a data set with 304 
slices) to finish the operation.

3.1.16  Fully automatic segmentation of liver and hepatic 
tumors from 3‑D computed tomography abdominal 
images: comparative evaluation of two automatic 
methods

Casciaro et al. (2012) develop a method combining graph cut 
and active contour algorithms with gradient flow. The method 
is tested on 52 patient data and the segmentation accuracy 
is evaluated using False-Positive Rate (FPR), False-Negative 
Rate (FNR), Dice Similarity Coefficient (DSC); they are found 
to be 2.39%, 5.10%, and 95.49%, respectively.

3.1.17  Modeling n‑furcated liver vessels from a 3‑D 
segmented volume using hole‑making 
and subdivision methods

Yuan et al. (2011) propose a method for modelling n-fork 
subtrees, where cross-sectional contours and vessel are 
extracted from centre-line. A polygonal mesh with cross-
sectional contours is then constructed for each branch in 
descending order. The experimental results show that 
smooth mesh models could be generated automatically for 
n-branch vasculature with an absolute error of 0.92 (average) 
voxels and an average relative error of 0.17.

3.1.18  Medical image segmentation by combining graph 
cuts and oriented active appearance models

Chen et al. (2012) combine Graph Sections (GC) and Live 
Wire (LW) with the Active Appearance Model (AAM). 
Using the GC parameters and LW cost function, AAM is 
generated and trained during the model building stage. It 
incorporates AAM and LW to produce an oriented AAM 
(OAAM). The multi-object OAAM mechanism is used to 
slice the organs using an adapted pseudo-3D strategy. The 
iterative GC-OAAM is used to mark the objects. The method 
is tested on MICCAI 2007 liver data; the pseudo-3D OAAM 
method performs similar to the conventional 3-D AAM 
method while running 12 times faster.

3.1.19  ACM‑based automatic liver segmentation 
from 3‑D CT images by combining multiple atlases 
and improved mean‑shift techniques

Ji et al. (2013) present a liver segmentation algorithm based 
on automatic context model (ACM), which combines ACM, 
multi-atlas, and mean transfer techniques. It is a two-step 
learning-based method; in the initial training step, ACM-
based classifiers with multiple ranks are utilized, the test 

image is then segmented in each space of the atlas using 
each sequence of ACM-based classifiers. Using a multi-class 
fusion technique, the results of all atlas space segmentation 
are combined to produce the final result. The data from the 
MICCAI 2007 are used to evaluate the proposed method. 
The method has claimed to have significantly reduced 
the segmentation time from approximately 400 to 35 min 
by introducing region-based labelling and employing an 
improved mean-shift algorithm. The entire segmentation 
process is less than one hour.

3.1.20  Automated abdominal multi‑organ segmentation 
with subject‑specific atlas generation

Wolz et al. (2013) suggest a multi-organ abdominal seg-
mentation using atlas-based method. This is claimed to 
have applied to multiple organs without changing speciali-
zation and individual parameters. The atlas registration and 
a weighting system are used to subject-based priorities from 
an atlas database by combining a patch-based segmentation 
and multi-atlas registration. The final segmentation is then 
generated using the automatically learned intensity model in 
the graph cut optimization phase, which contains high-level 
spatial information. The segmentation method is evaluated 
on 150 CT data. The values of overlap of DSC for liver, 
kidney, pancreas, and spleen are found to be 94%, 93%, 70%, 
and 92%, respectively.

3.1.21  Joint probabilistic model of shape and intensity 
for multiple abdominal organ segmentation 
from volumetric CT images

Li et al. (2012) develop a joint probabilistic model deter-
mining a probability map, when a voxel belongs to speci-
fied object with an estimated shape. Probabilistic principal 
component analysis is used to explain the shape variation 
and reduce computational complexity using expectation 
maximization. 72 CT training datasets are used to create 
shape models of the liver, spleen, and kidney. To highlight 
3D visualization colour coding is used. The algorithm was 
evaluated on 40 test datasets that were divided into normal 
(34 normal cases) and pathologic (six datasets) classes.

3.1.22  Automatic liver segmentation based on shape 
constraints and deformable graph cut in CT images

Li et al. (2015) suggest a framework comprising three steps: 
(1) data processing; (2) initialization parameters; and (3) 
data segmentation. Initial principal component analysis-
based statistical shape models are created, and a filter is 
used to smooth the input image. Then, the mesh is locally 
and iteratively transformed into a boundary-constrained 
mesh to remain close to the shape subspace, and the average 
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shape model is altered through thresholding and Euclidean 
distance to obtain an approximate location on the image. 
Finally, graph cut integrates the features effectively and 
relationships of the input images and the initialized surface 
for accurate liver surface detection. In this method, 50 CT 
data are used from two databases, 3Dircadb and liver07. 
The proposed method took approximately 5 min and 3 min 
to compute the segmentation on the Sliver07 database and 
3Dircadb database, respectively.

3.1.23  An improved confidence connected liver 
segmentation method based on three views of CT 
images

Song et al. (2019) propose a fusion of segmentation of liver 
that combines liver segmentation results from three per-
spectives. An advanced curved anisotropic diffusion filter is 
first used to reduce noise, which records edge information 
simultaneously. Second, liver intensity statistics and analysis 
are automatically used to select liver seed points. With the 
method based on reliable association, the contours of the 
liver are extracted from three views of the CT image, and 
the cavity filling method is used to improve the contours. 
Finally, they combine coronal, sagittal, and cross-sectional 
views of the liver. Ten abdominal CT data are used for clini-
cal validation. The method achieves a Dice score of 97.

3.1.24  Towards liver segmentation in the wild 
via contrastive distillation

Fogarollo et al. (2023) propose a contrastive distillation 
scheme using a pre-trained large neural network to train 
their model that is reported to be small. They first extract 
the features by a self-supervised Vision Transformer (ViT) 
and then carry out contrastive distillation on the obtained 
features. They map the neighboring slices close together in 
the latent representation, while mapping distant slices far 
away. They use ground-truth labels to learn a U-Net style 
upsampling path and recover the segmentation map. The 
method is evaluated and compared on different medical data-
sets such as well-known BTCV, CHAOS, IRCADb, LiTS, 
ACT-1K, and AMOS221. They obtain an average Dice 
score, ASSD, and MSSD as 0.918 ± 0.066 , 1.3 mm, and 
5 cm, respectively.

3.1.25  Automatic 3D CT liver segmentation based on fast 
global minimization of probabilistic active contour

Jin et al. (2023) propose a liver segmentation method based 
on a probabilistic active contour (PAC) model and its fast 
global minimization scheme (3D-FGMPAC), which is 
reported as explainable as compared with deep learning 
methods. A slice-indexed-histogram is initially constructed 

to localize the volume of interest estimating the probabil-
ity that a voxel belongs to the liver according its intensity. 
The 3D PAC model is initialized using the probabilistic 
image. The combination of gradient-based edge detection 
and Hessian-matrix-based surface detection is used to pro-
duce a contour indicator function. The initial probabilistic 
image contour is then evolved into the global minimizer of 
the model by a fast numerical scheme showing a smoothed 
and highlighted probabilistic liver image. Finally, a region 
growing method is applied to extract the liver mask. After 
testing the method on two public datasets, the average Dice 
score, volume overlap error, volume difference, symmetric 
surface distance and volume processing time are found to 
be 0.96, 7.35%, 0.02%, 1.17 mm and 19.8 s for the Sliver07 
dataset, and 0.95, 8.89%, −0.02%, 1.45 mm and 23.08 s for 
the 3Dircadb dataset, respectively.

3.2  Semi‑automatic methods

Semi-automatic methods are usually considered less accu-
rate in comparison to the automatic ones, because the opera-
tor intervenes in the due course of getting the segmentation 
output and they are prone to error. However, these methods 
have also merits as discussed below.

3.2.1  Advanced fuzzy cellular neural network: application 
to CT liver images

A novel fuzzy cellular neural network (AFCNN) is proposed 
by Wang et al. (2007) that primarily addressees the problem, 
when the liver’s CT imaging borders overlap with those of 
other organs. AFCNN retains the feed-forward and feedback 
stimuli, but the cell status with regards to its neighbor cells is 
used in place of the fuzzy feed-forward and feedback stimuli. 
With the help of this technique, AFCNN uses both liver and 
the non-liver region, improving the segmentation accuracy. 
The boundary line in the segmented liver area tends to be 
smoother as the number of FCNN iterations increases, mak-
ing it less probable to reproduce the original liver boundary. 
In this experiment, five CT datasets are used on a computer 
with 128 MB of memory and Matlab 6.5.

3.2.2  A knowledge‑based technique for liver segmentation 
in CT data

Foruzana et al. (2009b) present a slice-based liver segmenta-
tion method that typically generates the liver mask by con-
necting the bones. It begins from the initial slice and runs 
past all slices sequentially. The first slice is chosen to match 
to the large cross section area. By thresholding in the range 
(400, 1700) HU, the bones are located. The bone mask in 
the current slice is estimated using the connection of the 
ribs in the previous slice. The liver areas are split into a 
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number of smaller regions by utilizing split thresholding. 
The boundary of liver is performed by dividing the whole 
range into two overlapping ranges and a decision is made 
with the help of morphological criteria, whether each range 
is part of the liver or not. There are 50 subjects and each data 
set contains 157–279 images with 12 bit DICOM images. 
Using a Windows Computer with a P4 (3 GHz) and 2 GB 
of memory, the technique needs roughly 8 min to segment a 
dataset with 160 slices.

3.2.3  Liver segmentation for CT images using GVF snake

Liu et al. develop a method for removing concavities from 
aberrant livers, particularly those with lesions at the liver 
edges (Liu et al. 2005). It is a three-step process, beginning 
with the estimation of a primary edge map. Two thresholds 
are set, one on either side of the peak of the liver in the 
histogram of the median filtered image as a guide. (2) GVF 
field and starting contours—the computation of GVF field 
is conducted on the edge map. The liver is identified as the 
greatest volume between these two thresholds. The potential 
initial and empty region contour (of the GVF field) are both 
taken into account when determining the initial liver con-
tour. Next, the initial contour is refined by the GVF snake 
to determine the liver boundary. 20 contrast-enhanced volu-
metric liver data with many big dispersed lesions are used 
in this study. Also, 551 two-dimensional liver images from 
20 patients are taken into account, each showing colorec-
tal metastases that have spread throughout the livers. The 
dimensions of all slices are 512 × 512 pixels, in-plane pixel 
size range is 0.56 × 0.56mm2–0.87 × 0.87mm2 , and the slice 
thickness is 3.75, 5.0, 7.0, and 7.5 mm, respectively.

3.2.4  Computer‑aided measurement of liver volumes in CT 
by means of geodesic active contour segmentation 
coupled with level‑set algorithms

The method given by Suzuki et  al. (2010) presents an 
approach based on GAC coupled with a level-set algorithm 
to segment liver in hepatic CT. (1) pre-processing—aniso-
tropic diffusion algorithm (Perona and Malik 1990) is used 
in the first part of this two-step process to minimize noise, 
maintain structures, and enhance anatomical structures in 
the input portal-venous-phase CT images. (2) Liver extrac-
tion: the fast marching (FM) level-set algorithm (Sethian 
1996) is utilized to calculate an irregular liver contour. The 
FM level-set algorithm describes the advancement of a 
closed contour (or curve) as a function of time and speed in 
the normal direction at a specific place on the contour. The 
seeding points within the hepatic region needed by the FM 

algorithm are provided by the radiologist. As a result, the 
anatomical boundaries of the liver can be expanded using 
the FM algorithm. To get a close approximation of the liver 
border, the GAC refines the initial contour provided by the 
FM method. The database comprises 15 patients with recon-
struction intervals of 2.5 mm or 3 mm and collimation of 3 
mm or 4 mm. Each of the reconstructed slices of CT features 
a 512 × 512 matrix with pixels ranging from 0.5 to 0.8 mm 
in size. The approach takes 2–5 min to perform on a Com-
puter (Intel, Xenon, 2.7 GHz).

3.2.5  Liver segmentation by intensity analysis 
and anatomical information in multi‑slice CT images

Foruzan et al. (2009a) present a 5-step method, viz. (1) 
manual liver segmentation—the largest middle slice of the 
liver is first found out manually and this slice is the start-
ing point in the segmentation process, (2) estimation of 
liver intensity range—to estimate the statistical properties 
of the liver, a Gaussian mixture model with two compo-
nents is used, since the histogram of a segmented liver in a 
single slice is composed of two Gaussian distributions, (3) 
ROI for liver is determined by segmenting out the ribs, (4) 
heart is separated from liver by simple thresholding, and 5) 
thresholding a slice—the liver’s histogram divides the entire 
intensity range into two categories: lower range and higher 
range. Next, local analysis chooses several threshold values 
for each location to categorize liver and non-liver tissues. A 
data with dimensions of 512 × 512× and 150 slices is seg-
mented in its whole on a PC (P4 CPU, 2 GB) within 6 min. 
This study has used the MICCAI 2007 Grand Challenge data 
for the experiment.

3.2.6  An entropy‑based multi‑thresholding method 
for semi‑automatic segmentation of liver tumors

The watershed technique (Choudhary et al. 2008) is used 
to extract the liver contours, and a minimal cross-entropy 
multi-thresholding approach is used to segment the tumors. 
The stages are (1) Simple thresholding and shape-preserving 
Cubic-Hermite interpolation are used to segment the ribs on 
all the slices. Moreover, these curves serve as restrictions for 
the segmentation of the liver. (2) Diaphragm segmentation: 
to limit the area to the liver alone, a diaphragm location 
method is used (Beichel et al. 2002). The program calculates 
the gradient magnitude of the selected slice, analyzes the 
data to highlight borders, and then chooses the slice, where 
the liver is prominent. The watershed transform (Vincent 
and Soille 1991) is then applied if the user-defined point is 
located inside the liver. The class that contains that point is 
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the liver, and (4) segmentation of tumors—slice after slice, 
a minimal cross-entropy multi-thresholding method (Li and 
Lee 1993) is used to segment the tumors. 10 CT datasets of 
cancer patients were used.

3.2.7  A 3‑D liver segmentation method with parallel 
computing for selective internal radiation therapy

Goryawala et al. (2011) describe a method for 3-D liver seg-
mentation that consists of a modified k-means segmentation 
method and a local contour algorithm. In this method, five 
distinct locations are identified in the CT scan frames during 
the segmentation process. This paper provides advantages of 
developing parallel computing-aware algorithms in medical 
imaging prior to investing in a very large-scale distributed 
system. The algorithm is independent of dataset character-
istics such as liver structure, size, location, and distribution 
of intensity. The results from single workstation show a 78% 
reduction in calculation time from 4.5 h to near about 1 h. 
The accuracy after calculating the volumes of the liver and 
tumor area is reported to have an average error of less than 
2%. Experiments with up to 2 slices are used to evaluate the 
effect of parallelism.

3.2.8  A likelihood and local constraint level‑set model 
for liver tumor segmentation from CT volumes

Li et al. (2013) describe a level-set based model that com-
bines the edge energy and probability. With the density 
distribution of multimodal in the background, which may 
contain multiple regions, probabilistic energy minimization 
estimates the distribution of density of the damaged part. 
The edge detector keeps the ramp associated with the bound-
aries in the edge energy composition for weak boundaries. 
The Chan-Vese and geodesic plane series models, in addi-
tion to clinician-manual segmentation, are compared to this 
approach. The suggested model outperforms the geodesic 
plane model in liver tumor segmentation, where the Chan-
Vese model was reported to be unsuccessful. The liver RVD 
(relative volume difference), JDE (Jaccard distance error), 
ASD (average surface distance), SD (surface distance—
RMS type), and the SD (surface distance-maximum) are 
8.1 ± 2.1 percent, 14.4 ± 5.3 percent, 2.4 ± 0.8 mm, 2.9 ± 0.7 
mm, and 7.2 ± 3.1 mm, respectively.

3.2.9  An efficient and clinical‑oriented 3D liver 
segmentation method

With this technique, the segment of liver is automatically 
divided by the portal vein branches (Zhang et al. 2017). The 
regulation of the branches of the portal vein is based on 
artificial segmentation taking into account the distribution 
of the vessels. 20 CT image datasets from the MICCAI 2007 

liver segmentation challenge and 60 datasets from Zhu Jiang 
Hospital of Southern Medical University were used in this 
experiment. The mean VOE, RVD, and RMSD are 7.76%, 
3.44%, and 2.81%, respectively.

3.2.10  Liver segmentation on CT and MRI using Laplacian 
mesh optimization

Using MRI and CT scan images, Gabriel Chartrand et al. 
(2016) develop a semi-automated liver segmentation 
method. A crude 3D model of the liver is first created using 
some user-generated contours to broadly outline the shape of 
the liver. A Laplacian network optimization method is then 
used to autonomously modify the model until the patient’s 
liver is well defined. A correction tool is introduced that 
allows the user to modify the segmentation. The method is 
tested on SLIVER07 dataset. The mean volume overlap error 
is 5.1% with a mean segmentation time of 6 min.

3.2.11  Semi‑automatic liver segmentation based 
on probabilistic models and anatomical constraints

Le et al. (2021) present a graph-cut based method for mul-
tivariable normal distribution of liver tissues. An internal 
patch is used to construct a subject-specific probability pro-
totype using a user-specified seed point. Then, an iterative 
assignment of pixel labels is used to gradually update the 
spatio-contextual data-based probabilistic map of the tissues. 
The graph-cut model is then optimized in order to extract the 
3-D liver. On the SLIVER07 dataset, the system was tested. 
In all, 25 asymptomatic and 2 symptomatic cases were 
examined. Because of trivial assertions about anatomical 
and geometrical structures, the entire procedure only lasted 
1.3 min to segment a complete 3D liver; furthermore, the 
values of VOE, RVD, ASD (or ASSD), RMSD, and MSD 
(or MSSD) were 8.0 ± 1.1 , 0.3 ± 2.7 , 1.3 ± 0.4 , 2.5 ± 1.0 , 
and 24.9 ± 10.0 , respectively.

3.2.12  Towards liver segmentation in the wild 
via contrastive distillation

Fogarollo et al. (2023) propose a contrastive distillation 
scheme using a pre-trained large neural network to train 
their model that is reported to be small. They first extract 
the features by a self-supervised Vision Transformer (ViT) 
and then carry out contrastive distillation on the obtained 
features. They map the neighboring slices close together in 
the latent representation, while mapping distant slices far 
away. They use ground-truth labels to learn a U-Net style 
upsampling path and recover the segmentation map. The 
method is evaluated and compared on different medical data-
sets such as well-known BTCV, CHAOS, IRCADb, LiTS, 
ACT-1K, and AMOS221. They obtain an average DICE 
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score, ASSD, and MSSD as 0.918 ± 0.066 , 1.3 mm, and 
5 cm, respectively.

3.2.13  Towards liver segmentation in the wild 
via contrastive distillation

Jin et al. (2023) propose a liver segmentation method based 
on a probabilistic active contour (PAC) model and its fast 
global minimization scheme (3D-FGMPAC), which is 
reported as explainable as compared with deep learning 
methods. A slice-indexed-histogram is initially constructed 
to localize the volume of interest estimating the probabil-
ity that a voxel belongs to the liver according its intensity. 
The 3D PAC model is initialized using the probabilistic 
image. The combination of gradient-based edge detection 
and Hessian-matrix-based surface detection is used to pro-
duce a contour indicator function. The initial probabilistic 
image contour is then evolved into the global minimizer of 
the model by a fast numerical scheme showing a smoothed 
and highlighted probabilistic liver image. Finally, a region 
growing method is applied to extract the liver mask. After 
testing the method on two public datasets, the average Dice 
score, volume overlap error, volume difference, symmetric 
surface distance and volume processing time are found to 
be 0.96, 7.35%, 0.02%, 1.17 mm and 19.8 s for the Sliver07 
dataset, and 0.95, 8.89%, −0.02%, 1.45 mm and 23.08 s for 
the 3Dircadb dataset, respectively.

4  Summary of results

The methods are summarized in Tables 2, 3, and 4. The 
papers that have provided the complete quantitative results 
are included in these tables; the name of the contributors, 
type of method, data used, its advantages, execution time, 
and the performance quality are included. The situation for 
which a method is suitable clinically has been highlighted in 
Table 5. It may also be noted that we find difficulty as some 
papers provide insufficient information in their evaluation 
process.

5  Discussion

We discuss the potential drawbacks of the methods, both 
technically and clinically.

5.1  Technical analysis of each method

Model-based methods (Badakhshannoory and Saeedi 2011; 
Massoptier and Casciaro 2008; Soler et  al. 2001) seem 
accurate, but the construction of a robust model seems to 
be a tough task with respect to the liver shape variation. 

Moreover, sufficient training datasets are needed to build the 
model. The technique reported in Soler et al. (2001) needs 
larger medical validation to evaluate the algorithm’s durabil-
ity. Although the algorithm (Massoptier and Casciaro 2008) 
is reported to have required less time as compared to the 
other model-based methods, the amount of learning data 
required seems to be still high. Campadelli and Esposito 
(2009) suggest a technique based on gray levels that com-
bines with �-expansion algorithm and graph-cut method for 
liver segmentation. Unfortunately, a major drawback associ-
ated with �-expansion is its linear time complexity. Moreo-
ver, it is well known that graph cut is sensitive to noisy data, 
therefore, its robustness is a genuine concern. Furthermore, 
it relies on the primary image for correct seed placement. 
Thus, if the user does not choose an appropriate initial slice, 
one may not get an accurate final output. Zhang et al. (2010) 
propose a statistical shape-based contour extraction method, 
however, the manual demarcation of the training set is time 
consuming and poses a practical restriction in the model’s 
construction. Again, GHT has some limitations, viz. (1) to 
detect the bin amid the high background noise (which is 
inherent in medical images), high number of votes must have 
to fall in the bin, (2) if the quantity of parameters (m) is 
larger, less number of votes would fall in a bin. So the bins 
corresponding to the real figure are sometimes not appeared, 
and the complexity increases with number of parameters.

Rusko et  al. (2009) present a region growing-based 
method, which is quick and easy. However, the approach 
has certain limitations, especially, when there is either high 
amount of noise or the segmentation region’s intensity is 
not consistent. further, it lacks in fixing the problem of spa-
tial correlation to get a coarse contour. Zhou et al. (2005), 
Okada Yokota et al. (2008) and Linguraru et al. (2010) 
propose methods based on probabilistic atlas, but they are 
computationally expensive and the subsequent problems due 
to this are well known (Zhai et al. 2019). Additionally, the 
exact alignment of the atlases with the target image is cru-
cial for the algorithms’ accuracy. The pairwise registration, 
which is frequently utilized, may provide erroneous align-
ment, particularly, across images with significant changes. 
Simultaneously, it is difficult to describe a proper joint 
probability function. It is reported by Whiteley et al. (1998) 
that the distribution of local standard deviation values in 
the input image determines the distribution after local mean 
removal. A concern in almost every method (Okada Yokota 
et al. 2008) is its validation; most of the methods are tested 
on a smaller dataset. Since TPS generates quantitative analy-
ses of spatial organizational shapes with varying sizes in 
terms of features and localizations, Park et al. (2003) present 
a method utilizing TPS to suppress unwanted tissues. How-
ever, TPS includes curvature discontinuity at the identical 
experimental surface data points, which further complicates 
in estimating the change.
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Foruzan et al. (2009a) suggest a method using expecta-
tion maximization (EM), but the initial parameters of EM 
should be properly chosen since it influences the perfor-
mance of the algorithm. EM is conceptually simple, easy 
to implement, and at each iteration, marginal log-likelihood 
is improved. However, after a few steps, the rate of con-
vergence becomes excruciatingly slow as one approaches 
a local optima. The proposed GVF snake-based method by 
Liu et al. (2005) is efficient in solving initialization issues 
and a lackluster convergence to border concavities present 
in liver images. However, it is little suitable for boundaries 
in noisy images, where the shape of edges are zig-zag in 
nature. Linguraru et al. (2009) suggest an autonomous, atlas-
based technique, however, care must be taken while design-
ing the atlas. The problem appears, when an atlas designed 
for one image having no tumor is used for another image 
having multiple tumors. Moreover, the utility of atlas-based 
segmentation has been restricted in the existence of signifi-
cant space-consuming lesions, where it tends to deform and 
shift liver structure during the registration. This type of CT 
images resemble to Budd–Chiari Syndrome (Arora et al. 
1991). Schmidt et al. (2008) suggest a cognitive network 
language-based technique, driven by knowledge, has signifi-
cant flaws. For instance, the region growing algorithm fails 
to expand into smaller liver lobes, and the big tumors that 
largely cover the liver.

The discontinuous input–output mapping in the FCNN 
(Wang et al. 2007) is a limitation in the learning phase. The 
method by Selver et al. (2008) contains a switching mecha-
nism that depends on the contrast level of the tissues. In 
this method, the gradient descent may reach a local minima 
instead of the global minima since the objective function 
of the network in an MLP-based mechanism and it is not 
necessarily convex. The conventional snake (Gao and Kak 
2005) is quite popular due to its simplicity; however, the 
contours usually become trapped onto false image features, 
and in terms of extracting non-convex features. It is well 
known that method proposed by Canny is a multi-step edge 
detection procedure, which detects the edges suppressing 
the noise. Therefore, noise removal in the preprocessing 
step is not necessary, because excessive smoothing (without 
edge preserving characteristics) of the original image also 
smooths the edges. Level set (Suzuki et al. 2010) has been 
used extensively, because of the method’s ability to extract 
curved objects with complicated topology, resistance to 
noisy, and clear numerical framework of multidimensional 
implementation. However, the calculation time needs to 
be significantly lowered for the approach to be viable in 
clinical application. Additionally, care must be taken while 
empirically assigning values to the parameters and deciding 
a suitable speed function. Knowledge-based image segmen-
tation methods (Foruzana et al. 2009b; Lim and Ho 2005) 
maximize the posterior probability across the space domain Ta
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and divide the image domain compromising between data 
attraction and shape fit with the prior model. Knowledge of 
the location, shape, and gray level of the liver is important 
and crucial to predict these information a priori (Lim and Ho 
2005). It is usually difficult to always probe the shape of the 
region properly due to filter’s bunt shape. The approaches 
might underperform on large, diverse and complicated 
datasets. Choudhary et al. (2008) provide an entropy-based 
multi-thresholding approach that employs watershed seg-
mentation and cross-entropy multi-thresholding to extract 
the organ boundaries. While the segmentation is accurate 
in higher for smaller and uniform tumors, it does not pro-
vide a good accuracy for larger ones, mostly because of the 
increased non-uniformity in their intensities.

5.2  Outlook

In Sects. 3, 4, and 5, we discussed all the popular automated 
and semi-automatic methods along with their advantages 
and disadvantages. Each technique accomplishes a defined 
goal. Automatic methods are generally preferred, however, 
suitable training dataset (with respect to size and quality) is 
required to develop them. Sometimes due to larger datasets, 
some automatic methods need more time than desired. The 
datasets used in all these methods for training and testing are 
very limited in number, therefore, there has been no “one for 
all” method. There is another problem: although the clini-
cians prefer to use automatic methods, sometimes they prefer 
to correct the output based on their requirements. In this 
scenario, the automatic methods pose challenges, because 
they usually do not allow. On the other hand, the semi-auto-
matic methods are simple and relatively easy to implement. 
However, these approaches are usually operator dependent, 
thus, has greater chance to introduce larger divergence in 
the algorithm performance. The semi-automatic methods 
are probably more suitable for clinical practices than the 
automatic ones, if they can cover the issues owing to the 
large levels of inter-personal and intra-personal variability. 
If all the methods are examined sequentially, we can see that 
most of the methods use 2D segmentation on slice-by-slice, 
then they are interpolated to get the 3D volume. The inter-
polation plays a major role to avoid any loss of liver volume 
information. Sometimes, the concave shape of the contour 
being present on one slice is absent on the other and that 
could lead to a pseudo segmentation.

A segmentation approach usually considers the below 
three factors: (1) it should be user-friendly, (2) it should be 
accurate, and (3) it should be fast. Considering the pros and 
cons of the methods, region growing methods fulfill the seg-
mentation criteria to a larger extent. This can be made more 
effective if it is combined with methods such as knowledge-
based. Several published articles report such possible com-
binations. Then, the natural question arises: “why there has Ta
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been not a single segmentation algorithm that could be fit for 
all?” Deep learning (DL) has garnered immense popularity 
since some years owing to its salient advantages, such as 
high accuracy and automatic nature of the network resulting 
the less involvement of the user (Ansari et al. 2022a, 2023). 
Specifically, the DL are getting attention, because the medi-
cal data is abundantly available these days. However, the 
DL methods have still not found that space to replace the 
conventional methods. This is because of a few key reasons: 
(1) labelled data are necessary for a robust DL method and a 
substantial amount of effort is needed to label the huge med-
ical data, (2) high-power computational machine is needed 
to build and run the DL model; unfortunately, such high-
performance work stations are rarely available in hospital 
set-up, (3) a DL model trained on the data available from 
a machine (say, Siemens) might not work as expected on a 
dataset obtained from a different machine (say, Phillips), this 
problem is known as domain generalization.

5.3  Implications and research challenges

Although there are many image segmentation algorithms, it 
is not clear which one is the best. We have already described 
the several advantages of conventional methods. Hope-
fully, this survey could help the readers to get the holis-
tic view of all the methods and the suitability to be used. 
The accuracy of these methods has remained a concern for 
sure; however, if this could well be taken care of, then these 
conventional methods could truly be effective considering 
their low computational requirements. An inaccurate seg-
mentation method could be the cause of lesion relapse in 
hepatic patients (Akhtar et al. 2021), thus, it is certainly 
not desirable. Further, we suggest for a personalized image 
segmentation framework, where the conventional segmenta-
tion method blocks could be dragged and dropped into the 
framework or pipeline. If this can possibly be accomplished, 
these conventional methods could truly be popular since the 
clinicians usually consider the AI methods as black box as 
compared to conventional methods. However, the input data, 
knowledge of existing algorithms, and their performances 
remain as crucial for developing new robust algorithms. 
Most of the authors test their algorithms on private data, 
thus, a fair comparison with the earlier published methods 
is certainly difficult. Unfortunately, the researchers do give 
little attention to this problem and keep focusing on devel-
oping new methods. Sometimes, the researchers struggle to 
compare their algorithms because of the lack of information 
about the workstation used. For instance, two similar algo-
rithms performed on two different workstations (one high- 
and one low-power) would provide different performances, 
especially with respect to time. Considering the above chal-
lenges, if the research community is encouraged to follow 
some standard guidelines to post their databases used in Ta
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their research paper online, then the whole community could 
access and get the benefits, especially, a new research meth-
odology can easily be compared helping the researchers to 
continually improving the quality. The last but not the least, 
we have observed that a few methods forget to publish all the 
information, thus, these papers are hard to follow although 
the idea seems to be interesting. Thus, a researcher has to 
recode it again and obtain the results. Therefore, it may be 
recommended to encourage the researchers to make their 
data and codes public. This is necessary to save the time 
and effort of the researchers to not reinvent the wheel and 
the researchers could probably think onwards.

5.4  Limitations of the study

There have been some limitations in this study, especially 
with respect to the number of studies. Since we have targeted 
a wide spectrum of research papers, from the year 2000 to 
2022, we must have missed several papers. It was quite dif-
ficult for us to include every journal that publishes on liver 
segmentation; we had to follow a plain protocol and include 
those articles that come under this protocol. The page con-
straint was another reason to discard these papers. We could 
have probably included a few more clinicians in the study to 
add more values to the survey by providing diverse clinical 
inputs. There are some other pressing issues as well from 
clinical standpoint, for instance, the explainability aspect, 
that we could not consider in this review. This issue has 
received significant attention recently after the AI models 
drew significant attentions, but we believe that the issue has 
always been present, in conventional methods too. This ter-
minology was rarely highlighted earlier, thus, this is usually 
not found in conventional segmentation articles.

6  Conclusion

This study has presented a survey on an important computer 
aided diagnosis tool, segmentation. First, we have discussed 
the clinical relevance of image segmentation method. Then 
we have discussed the conventional automatic and semi-
automatic approaches used over the past 20 years to segment 
liver images from CT scans. The methods have been criti-
cally evaluated from the view of their practical utility. We 
have summarized the segmentation evaluation metrics and 
it is found that an automatic method are better and but not 
desirable by the clinicians because they can rarely modify an 
automatic method, because they are end-to-end automatic. 
From that sense, a semi-automatic technique appears pref-
erable since it allows the user (a clinician in this case) to 
direct the resultant shape to produce the desired outcome, 
but they are less accurate. Despite years of experimentation 

with various segmentation methods, various other issues still 
remain that we have listed in this paper. We have suggested 
a framework, where an effort could be made to build a per-
sonalized segmentation framework or customize a segmen-
tation framework utilizing the conventional segmentation 
methods in an immanently free environment, which could 
probably reduce these tradeoffs between automatic and semi-
automatic methods. Finally, we have included some sugges-
tion: the researchers should probably be encouraged to make 
their data and code public.This could potentially help the 
computer vision community to be more focused addressing 
the genuine research problems rather than putting efforts 
on something that is probably unnecessary if the previous 
codes are accessible. If this happens, the researchers would 
probably be able to only look onwards.
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