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Abstract

The clinicians usually desire to know the shape of the liver during treatment planning to minimize the damage to the sur-
rounding healthy tissues and hepatic vessels, thus, building the geometric model of the liver becomes paramount. There have
been several liver image segmentation methods to build the model over the years. Considering the advantages of conventional
image segmentation methods, this paper reviews them that spans over last 2 decades. The review examines about twenty-five
automated and eleven semi-automatic approaches that include Probabilistic atlas, K-means, Model and knowledge-based
(such as active appearance model, live wire), Graph cut, Region growing, Active contour-based, Expectation Maximization-
based, Level sets, Laplacian network optimization, etc. The main contribution of this paper is to highlight their clinical
suitability by providing their advantages and possible limitations. It is nearly impossible to assess the methodologies on a
single scale because a common patient database is usually not used, rather, diverse datasets such as MICCAI 2007 Grand
Challenge (Sliver), 3DIRCADb, Zhu Jiang Hospital of Southern Medical University (China) and others have been used. As
a result, this study depends on the popular metrics such as FPR, FNR, AER, JCS, ASSD, DSC, VOE, and RMSD. offering a
sense of efficacy of each approach. It is found that while automatic segmentation methods perform better technically, they are
usually less preferred by the clinicians. Since the objective of this paper is to provide a holistic view of all the conventional
methods from clinicians’ stand point, we have suggested a conventional framework based on the findings in this paper. We
have also included a few research challenges that the readers could find them interesting.

Keywords Medical image - Segmentation - Liver - Computed tomography - Active contour - Statistical shape models -
Graph cut

1 Introduction

Although the term “segmentation” sounds simple, it
is important in hepatic disease diagnosis and treatment
planning; it can well be used in intra-operative naviga-
tion and registration of multimodal images/instruments
(Mohanty and Dakua 2022) during the actual procedure.
For instance, holding a physical organ phantom in hand
for surgical planning is way better than just imagining the
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depends on the degree of accurate visualization of liver
anatomy. The experienced and expert clinicians can deal
with such cases easily. However, when it comes to novice
surgeons or residents, they need proactive supervision. In
such cases, a physical 3D phantom is quite helpful. To
have a reliable 3D model of the liver, the segmentation of
the liver is needed and it needs to be highly accurate. Over
the last couple of decades, researchers have been driven
to achieve the most efficient segmentation technique that
would allow the clinicians to have an easy access to organ
measurements and visualize. For this reason, the computer
vision research community has put a lot of effort in devel-
oping image segmentation methods over the years (Lin
et al. 1992; Brandt et al. 1994; Hall et al. 1992; Ortendahl
et al. 1985; Kohn et al. 1991; Liang et al. 1992; Liang
1993; Liang et al. 1994; Choi et al. 1991; Taxt and Lun-
dervold 1994; Lundervold and Storvik 1995; Santago
and Gage 1993). There have been some surveys as well:
Heimann et al. present a review paper that compares and
evaluates the liver segmentation papers from CT scans
(Heimann et al. 2009). They find the semi-automatic meth-
ods better over automatic ones. Campadelli et al. present
a detailed review on the automatic methods and propose
a new method (Campadelli and Esposito 2009). Another
review paper suggests that the segmentation performance
varies with change in the input data (Dakua 2013a). Yusuf
et al. assess the risks of using computer generated segmen-
tation software (Akhtar et al. 2021) in treatment planning
of liver lesions; they find that the lesion relapses in future;
that means the segmentation software has to be accurate.
Pragati et al. assess the feasibility and efficiency of fusion
for post ablation assessment of liver neoplasms (Rai et al.
2021). Anchal et al. present a review on the present thera-
peutics targeting liver lesions and find that image fusion
between two imaging modalities can provide better infor-
mation about the lesion than a single imaging modality

(Dakua and Nayak 2022). Mohammad et al. survey various
image segmentation methods and conclude that artificial
intelligence-based methods could be effective from clinical
standpoint (Ansari et al. 2022b; Singh et al. 2023). Thus,
there have been some surveys on segmentation methods,
however, in most of the surveys, only a limited number
of studies are included, some with the number of meth-
ods, some with a section of methods, some with a certain
objective: for instance in Heimann et al. (2009), the whole
survey was limited to a conference. Campadelli and Espos-
ito (2009) emphasize mostly on the automatic methods
that might not be fair from clinicians’ view point, because
the clinicians sometimes want to adjust the delineation
based on the clinical need and their clinical expertise. The
survey (Dakua 2013a) does focus on both semi-automated
and automated methods, but again, this has focussed on the
performance of a method when the input data is varied.
The authors in Akhtar et al. (2021) focus on the possible
relapse of a lesion over the time if a computer aided diag-
nosis (CAD) software is considered during the treatment.
Similarly, the other surveys (Dakua and Nayak 2022) and
(Rai et al. 2021) focus on the fusion aspect. The present
survey paper is bit different than the existing ones; to the
best of our knowledge, there has been probably no study
in public domain that depicts the clinical utilizations of
the conventional methods covering such a wide spectrum
of duration (from 2000 to 2022). Despite having several
segmentation tools, there is no method that can be applied
to all human organs effectively (Al-Kababji et al. 2022),
there is not a generic image segmentation tool that can be
applied to the multi-modal images of a human organ such
as CT, MRI, and US. Thus, in this paper, we have pre-
sented the potential utilities of each method with respect
to their clinical usability, which no other survey paper has
probably reported. The abbreviations used in the paper are
given in Table 1.

Table 1 Abbreviations

Abbreviation Full form Abbreviation Full form
3D 3-dimensional 3D-IRCADb 3D Image reconstruction for compari-
son of algorithm database
ASM Active shape models ASSD Average symmetric surface distance
AUC Area under curve CE-CT Contrast-enhanced CT
CE-MRI Contrast-enhanced MRI CE-US Contrast-enhanced US
CHAOS Combined (CT-MR) CT Computerized tomography
Healthy Abdominal Organ
Segmentation
DL Deep learning DSC Dice similarity coefficient
FPR False-positive rate FNR False negative rate
IoU Intersection-over-union LiTS Liver Tumor Segmentation Challenge
MICCAI Medical Image Computing  MSSD Maximum symmetric surface distance

and Computer Assisted

Intervention

@ Springer



Network Modeling Analysis in Health Informatics and Bioinformatics

(2024) 13:2

Page3of26 2

1.1 Clinical relevance of liver CT segmentation

The liver being an important organ of our body, the seg-
mentation techniques are essential for the measurement
of liver volume (Nakayama et al. 2006), hepatic surgical
planning for hepatocellular carcinoma (as shown in Fig. 1)
(Fan et al. 2000), study of anatomical structure, localiza-
tion of pathology, diagnosis, and computer integrated sur-
gery (Halabi et al. 2020). Thus, accurate segmentation of
liver, tumor(s), and arteries from the imaging volumes is
among the primary goals of computerized image process-
ing (Al-Kababji et al. 2023).

The primary criteria for a segmentation method should
be its simplicity, user friendliness, accuracy, and fast exe-
cution; furthermore, it should be compatible to the clini-
cal requirements. Citing the emergence of new diseases,
varieties, and the complexities, the medical diagnoses are
probably incomplete in the absence of substantial imaging
modalities such as positron emission tomography (PET),
computed tomography (CT), ultrasound imaging (US), or
magnetic resonance imaging (MRI) (Dakua and Sahambi
2009). Each imaging technology has its own merits and
demerits, for example, despite its non-intrusive nature
and lack of radiation emission, US is precisely operator
dependent. MRI, with its noninvasive nature and high
tissue contrast, can differentiate and detect tumors pre-
sent in the liver accurately, yet, the examination is highly
expensive. PET successfully creates a three-dimensional
image or representation of the body’s functioning opera-
tions. Concurrently, one of the biggest drawbacks of PET
is that the majority of the probes need to be created using
a cyclotron, making it more expensive. CT, on the other
hand, with less time and expense provides the details of
the organ, in addition to providing finer spatial resolution
and advanced signal-to-noise ratio. Therefore, US, PET
and MRI are not as popular as CT.

In this paper, the main contributions are as follows:

1. we review the popular liver image segmentation algo-
rithms from CT scans over last 20 years,

Fig. 1 Hepatocellular carcinoma

2. we present the suitable clinical environments for each
segmentation, where the segmentation method can be
effective, and

3. finally, we critically discuss each method, the rationale
for not being able to provide a robust solution, and a
potential solution.

The article comprises of five sections. Section 2 enunciates
the inclusion and exclusion criteria to choose the methods
in this review. Section 3 describes the methods individually.
The quantitative results by the methods and their suitabil-
ity are detailed in Sect. 4. In Sect. 5, an introspect of the
precedence, drawbacks of segmentation techniques, and the
outlook of the review are included, while Sect. 6 concludes
the paper.

2 Inclusion and exclusion criteria

This section includes the quantitative measures to estimate
the quality of segmentation and various existing segmenta-
tion methods from CT scans (Dakua 2013a, b, 2014; Zhai
et al. 2018; Dakua et al. 2018).

2.1 Journals of interest

The research on liver segmentation has gained momentum
after early 90 s (Pham et al. 2000) and Pham et al. report
these methods extensively up to the year 2000. After the
year 2000 until 2022, there have been several review papers
in bits and pieces, but to the best of our knowledge, there
is not any review paper that has dissected all the conven-
tional segmentation approaches. All the conventional meth-
ods, in a single paper, should probably be able to convey
the advantages and disadvantages of these methods to the
readers providing a holistic view about these methods. Tak-
ing these points into account, we decided to focus on liver
segmentation methods from CT scans after the year 2000.
Our current research objective is to find the difficulties in
deciding a generic method for liver region extraction. In this
review, we have included all the segmentation algorithms
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from high impact factor journals and conferences ensur-
ing the credibility of the findings; the venues include IEEE
Transactions on Biomedical Engineering, IEEE Transac-
tions on Medical Imaging, IEEE Transactions on Pattern
Analysis and Machine Intelligence, IEEE sensor journals,
IEEE Transactions on Image Processing, Computer Vision
and Image Understanding, Computerized Medical Imag-
ing and Graphics, Artificial Intelligence Review, Computer
in Biology and Medicine, Artificial Intelligence in Medi-
cine, European Journal of Radiology, Academic Radiology,
International Journal for Computer Assisted Radio Surgery,
Medical Physics, and others because they are believed to
have been proved very much influential to the scientific
community. The outcomes of this survey are based on the
findings from these high-impact venues ensuring its qual-
ity, which the researchers could leverage. We have included

the studies/papers in this survey by following a process as
shown in Fig. 2.

2.2 Standard segmentation evaluation metrics

There are several evaluation metrics in the literature to
evaluate the segmentation efficacy (geometric model of
a liver is shown in Fig. 3); in this section, we discuss the
most preferred ones highlighting the notations, and the sig-
nificance (Dakua et al. 2018; Dakua and Abi-Nahed 2013;
Dakua 2017).

2.2.1 Notations

The notations are:

Fig.2 Selection of papers/stud-
ies in this survey

Studies identified
through database
searching (n = 73)

Studies identified
through other sources
searching (n = 14)

Identification

Screening

Eligibility

Included
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Fig.3 3D liver showing the lobes and others

A refers to the ground-truth label voxels set

B is the predicted voxels set by the created models

| - |is the set cardinality

[| - || represents the Euclidean distance

S(-) indicates the set of surface voxels

True positive (TP) is the set of correctly classified tissue

of interest (TOI) pixels/voxels

e True negative (TN) is the set of truly classified back-
ground pixels/voxels

e False positive (FP) is the set of incorrectly classified
background pixels/voxels

e False negative (FN) is the set of incorrectly classified

TOI pixels/voxels

2.2.2 Jaccard index (JI)

JI is a fundamental metric to understand how close is the
generated prediction in overlapping with the ground-truth
label. It is also known as intersection-over-union (IoU)
metric:

_|AnB| _ TP )
JAUB| ~ TP+ FP+FN’ M

Intuitively, perfect prediction is when JI is equal to 1, mean-
ing that |A N B|is the same as |A U B|. In other words, there
are no wrong predictions (i.e., FP and FN = 0), and the
volumes are perfectly similar. In contrast, JI equating to 0
means that no intersection exists between the ground-truth
and prediction, or TP is 0, meaning that the TOI (target of
interest) was completely misclassified.

2.2.3 Dice similarity coefficient (DSC)

DSC (or Dice) is the F1 Score counterpart for images, which
is a harmonic mean of both precision and recall. In a sense,
it measures the similarity between ground-truth set A and
generated prediction B. The DSC is defined as

AnB| _ oTp )
Al +|B] _ 2TP+ FP+ FN’ 2

DSC =2

Similar to the JI metric, the two extreme cases are 0 and 1,
where the former emphasizes the absence of any similarity
and the latter shows the perfect similarity between A and B.

2.2.4 Specificity/true-negative rate (TNR)

As depicted in Eq. (3), specificity investigates the model’s
capability in classifying background voxels correctly.

TN

Specificity/ TNR = —————.
pecificity TN £ FP 3

Ranging between 0 and 1, the former denotes a misclassifi-
cation of all background voxels, and the latter resembles a
proper classification of all background voxels.

2.2.5 False-positive rate (FPR)

As shown by Eq. (4), it highlights the amount of error the
model is making when classifying background voxels.

FP

FPR/Fallout = 1 — Specificity = FPLIN' 4)

Contrary to specificity, a value of 0 is a good indicator of
the model’s ability in predicting background voxels. On the
other hand, a value of 1 is an extreme scenario where the
model wrongly classified all background voxels.

2.2.6 Volumetric overlap error (VOE)

VOE is the complementary metric of JI, which is known
as Jaccard distance, knowing that VOE is a special case for
volumetric sets. It measures the spatial error represented
between the voxels of A and B and is described as

_lAnB| _ FP+FN S
AUB| _ TP+ FP+FN )

VOE =1

VOE ranges between 0 and 1, where the former means that
the voxels of B are perfectly and correctly lying over A’s

@ Springer
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voxels, and the latter indicates the absence of overlapping
voxels between the voxels of A and B.

2.2.7 Average symmetric surface distance (ASSD)

ASSD measures the minimum distance that can be found
between a surface voxel in A to another surface voxel in B.
Since it is a symmetric metric, the same applies to B with
respect to A. Then, the average is taken over all the calcu-
lated distances. To define ASSD, we first have to define the
minimum distance between an arbitrary voxel v and S(A):

d(v,S(A)) = SArgg,&) [lv—=sull, (6)

where s, is a single surface voxel distance from the surface
voxel set S(A).
We can define ASSD as follows:

ASSD(A,B) =

5, ES(A) spES(B)

have considerably increased. The Segmentation challenge,
LIVER Competition 2007 (SLIVERO07) happened in a work-
shop named “3D Segmentation in the Clinic: A Grand Chal-
lenge in conjunction with MICCAI 2007. It is considered the
first-ever workshop in the liver segmentation field, where
it paved the way for the rest of the open-source datasets/
challenges, and the results of it are summarized in Heimann
et al. (2009). Three years later, 3D Image Reconstruction
for Comparison of Algorithm Database (3D-IRCADD) is
gathered by the IRCAD institute in France, which includes
patients anonymized medical images. In total, the data-
set has 22 venous phase CE-CT scans divided into (1)
3D-IRCADbBO1, which contains 10 males and 10 females
with 75% having hepatic tumors; (2) 3D-IRCADb02, which
contains 2 CT scans with other abdominal organs segmented.
It is worth noting that the majority of literature focuses on
the 3D-IRCADbDO1 group and is normally divided into train-

1
IS1 + ISB)] @)
IS(A)|+|S(B)|< Y, A SBY+ Y d(sB»S(A))>.

The value converges to 0 when the highest spatial similar-
ity is achieved. However, the larger the value, the worse the
overlap between volumes A and B is noticed, and dissimilar-
ity starts to be observed.

2.2.8 Maximum symmetric surface distance (MSSD)/
Hausdorff distance (HD)

MSSD, famously known as HD as well, searches for the
maximum distance, defined by Eq. (6), that can be found
between volumes A and B.

MSSD(A, B) = max {sigesl()/i) d(s,, S(B)), S;Ielg()é) d(sg, S(A)) }
(3)

This metric gives the maximum distance error between A
and B, and thus, is extremely sensitive to outliers.

2.3 Datasets

Throughout the last decade and a half, many datasets of dif-
ferent imaging modalities such as CT, contrast-enhanced
CT (CE-CT), MRI, and contrast-enhanced MRI (CE-MRI)
have been published. Moreover, with the recent develop-
ment of artificial intelligence (AI) technologies, medi-
cal faculty understood how important it is to incorporate
such tools to enhance healthcare quality. Thus, datasetsizes

@ Springer

ing and testing records accordingly. In the same year, a very
small dataset is also published, called the MIDAS Liver
Tumor (MIDAS-LT) Segmentation Dataset. It is a part of
a bigger initiative to provide a collection of archived, ana-
lyzed, and publicly accessed datasets called MIDAS (Al-
Kababji et al. 2023) There have been a few other datasets as
well that have been considered by the studies.

3 Segmentation methods

Broadly, there are two types of image segmentation algo-
rithms: (1) discontinuity-based approach—this type of algo-
rithms relies on the abrupt changes (usually at the edge of
the objects) in intensity in grey level images. Edge detec-
tion is a fundamental tool used in most image processing
applications to obtain information from the frames as a pre-
cursor step to feature extraction and object segmentation,
and (2) similarity-based approach—this type of algorithms
group those pixels which are similar in some sense. The task
of grouping is performed by the following operations: (a)
Thresholding-based operations, (b) knowledge-based opera-
tions (including the model-based ones), and (c¢) region-based
operations. All the methods come under these categories;
some are either fully automatic or semi-automatic. In this
section, we have discussed the automatic and semi-automatic
methods to give the reader some sense of methodological



Network Modeling Analysis in Health Informatics and Bioinformatics

(2024) 13:2

Page 7 of 26 2

Fig.4 Overview of the segmen-

N
tation methods included in this Image Segmentation
survey Methods
. N ( N ( . N
Thresholding | Cluster method Compression-based
method method
J - J
(" N ( N ( N
Histogram-based | | Edge detection | | Model-based
method method method
- - J -
(" N ( . N ( . . N
Interactive method — Data clustering | | Region growing
method method
- J - J -
. . . \ f \ f g
Partla! differential | | Variational method — Graph partition
equation method L N method )

notion. The holistic view of the segmentation approaches is
provided in Table 4.

3.1 Automatic methods

An automated process should be significantly quicker and
require relatively less time to compute, saving both time
and money. In the following subsections, we have tried to
provide a detailed assessment of each method and the cor-
responding results.

3.1.1 A model-based validation scheme for organ
segmentation in CT scan volumes

Badakhshannoory and Saeedi (2011) present a technique,
where pre-computed segmentations of the particular organ
is matched with a statistical model. The particular that gives
the highest fidelity is considered to be the desired object
segmentation. First, a series of segmentations (from under-
segmentation to over-segmentation) of a particular data
are performed by a general segmentation algorithm. Then
determined by principal component analysis (PCA), a sta-
tistical model is adapted to produce an organ space. Each
candidate’s distance from the organ’s region is measured to
determine the candidate producing the best segmentation
result. The method was tested on the dataset that contained
30 CT scan volumes (from MICCAI’07). The in-plane reso-
lution for each dataset is 512 x 512 pixels, while the range
for inter-slice spacing is from 0.5 to 5.0 mm. On a Computer

having an Intel Core 2 Duo (2 GHz) CPU, the segmentation
method typically takes around one minute to complete.

3.1.2 Fully automatic segmentations of liver and hepatic
tumors from 3-D computed tomography abdominal
images: comparative evaluation of two automatic
methods

Looking at the error introduced by the operator’s interven-
tion, Casciaro et al. (2011) propose a graph-cut and 3-D
initialization method for gradient vector flow (GVF) active
contour approach for segmentation. The average intensity
of the liver’s statistical model distribution and its stand-
ard deviation serve as the foundation for this approach.
The original volumetric image is first pre-processed with
a mean shift filter to get rid off the noise from homogene-
ous regions while maintaining distinct and crisp edges. Each
slice is partitioned into 64 squares sub-regions; the standard
deviation and mean image intensity identify the regions with
the most uniform pixel intensity. The liver is symbolized by
the median that corresponds to the standard deviation. The
dataset consists of 25 anonymised CT individuals, which had
voxel sizes ranging from 0.55 to 0.88 mm? and a thickness
of 2-3 mm. The total time needed to perform the segmenta-
tion procedures via graph cut and GVF active contour on a
PC with a 3.4 GHz CPU and 1 GB RAM is10.9s + 1.1 and
11.5s + 1.1, respectively.
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3.1.3 Automatic liver segmentation using a statistical
shape model with optimal surface detection

Zhang et al. (2010) provide a 3-D generalized Hough trans-
form (GHT) to determine the liver shape model’s approxi-
mate position. The model is contorted to modify the liver
contour by an ideal graph theory-based surface detection
after statistical shape model (SSM) adaptation. Some pre-
processing operations such as edge detection, down-sam-
pling, and smoothing of the input image are performed
before the actual procedure is adapted. It is a 4-step pro-
cess, viz. (1) Shape model construction, (2) 3-D GHT liver
localization, (3) SSM subspace initialization, and (4) Graph
theory based optimal surface detection approach. The data-
sets used in this study were from MICCAI 2007 Grand Chal-
lenge. For the building of shape-models, 40 additional CT
volumes with normal liver architecture were employed. Each
model has 5120 triangles and 2562 evenly distributed ver-
tices. The segmentation procedure is finished in 4.47 s on a
32-bit computer (2.33 GHz Core 2 and 2 GB RAM).

3.1.4 Automatic segmentation of the liver from multi-
and single-phase

This article by Rusko et al. (2009) proposes a region grow-
ing technique that is independent of the acquisition process.
The algorithm is aimed to segment single and multi-phase
CT images. An initial segmentation is constructed in the
first stage employing all phases. Each phase is subjected
to the three processes that follow independently. The first
segmentation results and the original input images serve as
the input for these phases. The steps are: (a) selection of seed
region in the liver, (b) method of region growing for seg-
mentation of liver, and (c) post processing. The seeds region
is selected assuming an empirical value for liver region
intensity. The results are registered once the segmentation
is available for each step, allowing the computation of the
ultimate result as a sum of all stages. An automated contrast-
enhanced CT scan takes 25.6s + 7.2 to process on average
utilizing an Intel Core2 Duo processor at 2.2 GHz CPU and
2 GB of Memory. The segmentation for single phase takes
40.7 s + 9.4 to complete the process; MICCAI 2007 training
dataset is used in this study.

3.1.5 A new fully automatic and robust algorithm for fast
segmentation of liver tissue and tumors from CT
scans

Massoptier and Casciaro (2008) present a 3-D fully auto-
mated model-based method that relies on statistical infor-
mation of images. It is a 3-step procedure, viz. (1) pre-pro-
cessing—the noise from homogeneous regions is eliminated
from the original volume image using a 3-D mean shift filter,

@ Springer

(2) liver-specific statistical model discrimination—the aim is
to identify the most liver representative area in the volume
dataset. The volume that is pre-processed is split into 64
squares portions, and for each slice, the standard deviation
and mean image intensity are calculated. Then, for all vol-
ume slices, the internal regions that have the least standard
deviations are separated out and arranged in descending
order of mean values. Then, the liver is linked to the vast
majority of those organs, and (3) liver surface segmentation
refinement—finally, GVF active contour method is applied
to obtain the liver surface. Twenty one distinct patient CT
datasets are employed in this experiment. The slice thick-
ness, pixel size range, and imaging matrix are from 0.55 to
0.88 mm?, 2-3 mm and 512 x 512, respectively. On a per-
sonal notebook with 3.4 GHz and 1 GB memory, on average
the processing time for a single slice is11.4s + 1.2.

3.1.6 Construction of a probabilistic atlas for automated
liver segmentation in non-contrast torso CT images

Zhou et al. (2005) suggest a technique based on diaphragm
warping to normalize the liver’s proper anatomical posi-
tion. Subsequently, a probabilistic atlas is constructed for
liver segmentation from CT images of non-contrast torso.
It is a 3-step algorithm, viz. (1) likelihood of liver region
is calculated, (2) the liver is normalized using warping of
diaphragm and thin plate spline method (Bookstein 1989)
and after that, a liver image is created by a great deal of
pre-segmented liver areas projected into three dimensions.
The liver’s density distribution is then approximated using
a Gaussian model. Gaussian parameters are determined by
measuring the region’s density histogram so that each voxel
satisfies a probability criterion, and (3) liver segmentation
performed using the atlas. This study uses a total of 80 CT
scans having non-contrast torso patient cases. Each image
has 12 bits of resolution and 0.6 mm of spatial resolution.

3.1.7 Automatic liver segmentation for volume
measurement in CT images

Lim and Ho (2005) suggest a method using the prior knowl-
edge to find the consistent areas that belong to liver. This is
a 3-step process, viz. (1) image simplification—the region
of interest, ROI, is decided by dividing the abdomen CT
image into 64 X 64 pixel blocks and then discarding the
unnecessary blocks. To make the liver appear significant,
a multilevel thresholding is used, (2) search range detec-
tion—the low order multiscale morphological operations
are performed on the thresholded image to locate the first
and the second search areas. Many scales of morphological
filtering are recursively performed to get the primary and the
subsidiary search areas. The terminal search area is obtained
by eliminating the subsidiary area from the primary search
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area. A modified K-means algorithm succeeded by a mor-
phological analysis operation are implemented to detect the
fine liver areas. The dataset consists of 10 patients, and the
samples are contrast-enhanced venous phase CT scans with
a 5 mm spacing and 512 X 512. On a Pentium 4 3.0 GHz
processor, total processing time typically ranges between 1
and 3 min per slice.

3.1.8 Construction of an abdominal probabilistic atlas
and its application in segmentation

Park et al. (2003) propose an unsupervised segmentation
with maximization a posteriori probability (MAP) and
probabilistic atlas. It is 2-step method, viz. (1) atlas con-
struction—the individual dataset registration onto target
reference is implemented with a similarity measure, mutual
information (MI). The unnecessary compressible organs
require warping transform like thin plate spline (TPS) for
the same. A decent registration accuracy is attained by regis-
tering each organ separately, and (2) liver segmentation—if
the observed data and probabilistic atlas are indicated by Y
and A, respectively, the problem lies to find the true label
field X. For this, a cost function MAP is defined and the
probabilities of Y are Gaussian modeled. The standard con-
sequence for nearby dissimilar objects is included as Markov
random field (MRF) priors. Iterated conditional mode (ICM)
(Besag 1986) is used to optimize the posterior probability
in the MRF set-up. The segmentation technique is tested on
20 abdominal CT data with slice thicknesses ranging from
7 to 10 mm.

3.1.9 Liver segmentation from computed tomography
scans: a new algorithm

Campadelli and Esposito (2009) present a gray level meth-
odology to automatically extract the liver samples and seg-
ment using a-expansion algorithm (Boykov and Kolmogorov
2004). It is a 3-step method, viz. (1) heart-liver separation—
the largest linked area that connects the bounding box in
the image is thresholded, (2) gray levels estimation of the
liver—on a liver sample set, a 3-D box below the heart
typically defines the liver tissue. Again, the 3-D body box
(patient’s body) is divided by the alpha-expansion algorithm
with the aid of the graph-cut approach into five groups (liver,
spleen, bones and kidneys, stomach, and organs with com-
parable gray levels background) (Kolmogorov and Zabih
2004). This method cycles over the five labels in a random
order to determine a binary evaluation for each label. The
liver is the organ with the largest volume and lowest label,
and (3) liver volume refinement—this action is necessary
to eliminate the unwanted parts in the liver. Around 40
abdominal contrast-enhanced CT data from the third phase
are used to assess this strategy. Each slice has a resolution

of 0.625 mm X 0.625 mm and a pixel size of 256 X 256 for a
total of around 80 axial slices with a 3 mm spacing for each
patient. When using a Pentium IV processor operating at 3.2
GHz, the method completes the task in less than 50 s.

3.1.10 Patient-oriented and robust automatic liver
segmentation for pre-evaluation of liver
transplantation

Selver et al. (2008) propose a patient oriented 3-step seg-
mentation method, viz. (1) pre-processing to remove the
irrelevant tissues and find ROI (liver) from the primary
image. The volumetric histogram of the input image is sub-
jected to an adaptive thresholding to find and delete the lobes
corresponding to the irrelevant tissues, (2) classification of
liver—a modular classifier consisting of K-means and multi-
layer perceptron (MLP) network is used to segment liver
starting from the first through end slice in an iterative man-
ner. The initial image is chosen around one third of the series
and prepared using Ostu’s method (Otsu 1979) to separate
the unwanted muscle tissues (dark organs) keeping the liver,
spleen and heart (brighter organs), and (3) post processing—
this action is necessary to eliminate small pseudo segmented
objects. A total of 20 data sets of 12-bit DICOM images with
a slice thickness of 3-3.2 mm and a resolution of 512 X 512
are utilized in this investigation. The K-means algorithm
application’s Java variant runs approximately 12—17 min on
a typical Computer with 2 GB of RAM and a 3 GHz CPU.
K-means classifier is used in the Matlab version, which takes
around 30 min. Both in Matlab and Java, the MLP classifica-
tion method is completed within 45 min.

3.1.11 Fully automatic anatomical, pathological,
and functional segmentation from CT scans
for hepatic surgery

Soler et al. (2001) propose an anatomical segmentation tech-
nique built on the conversion of topological, geometrical,
and morphological constraints from anatomical knowledge.
Just before characterizing the bones, the image tangential
tissues are enhanced with proper thresholding, followed
by morphological operation. The range of intensity of the
kidneys, spleen, and liver parenchyma, which are equally
located on both histograms, may be discovered by compar-
ing the gray-level histograms. By executing a thresholding
followed by morphological operators, the kidneys and spleen
are distinguished. The liver is then extracted using the Mon-
tagnat and Delingette approach (Montagnat and Delingette
1996), which treats the global transformations calculated
in the registration framework (Brown 1994) as a deforma-
tion field. The locality parameter and combined force of
this approach are applied to each model vertex. As a way to
define the liver, the framework adds a global restriction to
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the deformation process. A total of 33 intravenous injection
data and two portodata build the database for this study. A
collection of 35 CT data with thickness ranging from 2 to 3
mm are used for the experiment.

3.1.12 Automated segmentation of the liver from 3D CT
images using probabilistic atlas and multilevel
statistical shape model

Okada Yokota et al. (2008) discuss a method that uses two
groups of atlases, i.e. the probabilistic atlas (PA) and the sta-
tistical shape model (SSM). Spatial standardization of input
data (by radiologist) gives average liver shape in the set.
Each patient dataset is converted into the systemized patient
space through nonrigid registration. PA is constructed by
the average of binary images specifying 1 for liver and 0
for the rest in all patient datasets. To build multi level SSM
(MLSSM), a multiple-level surface model is first constructed
by dividing a liver shape into patches. The patches are then
recursively divided to form MLSSM. The liver segmentation
is performed in 3 steps: (1) the spatially standardized CT
data is smoothed by anisotropic diffusion filtering. The vol-
ume of interest corresponds to the area, where PA surpasses
a certain amount of threshold, (2) the initial shape parameter
is determined from surface model produced from the initial
area by the reduction of a cost function to accommodate
the Euclidean distance between a point and a surface, and
(3) segmentation—analysis of the CT volumes along the
MLSSM surface normal yields the edge points of the liver
borders. In this experiment, 28 abdominal CT datasets (159
slices, pitch: 1.25 mm, slice thickness: 2.5 mm, 512 X 512
matrix) are used.

3.1.13 Automated segmentation and quantification of liver
and spleen from CT images using normalized
probabilistic atlases and enhancement estimation

Linguraru et al. (2010) [extension of Linguraru et al.
(2009)] suggest a method based on PA to segment liver.
The algorithm works in 2 stages as (1) atlas construction—
the reference image (R) is chosen at random from the input
database, while the other images are designated as /. The
images [ are re-scaled and registered to R organ-wise based
on normalized MI (Studholme and Hawkes 1999). The reg-
istered livers are translated in the atlas based on the aver-
age normalized centroid, the probabilistic organ atlases are
then computed. From this step, those models are extracted
that are conservative (A), and (2) liver segmentation— the
spatial normalization is then applied to both A and barA
after performing a global affine registration between R
(from the atlas creation) and /. A more flexible alignment is
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needed to offset the remaining deformation A, with the use
of B-splines (Rueckert 1999). The registration provides a
preliminary estimate of the target organ. A geodesic active
contour (GAC) (Caselles and Sapiro 1997) is implemented
to accommodate for potentially missing liver sections. Ten
abdomen non-contrast CT data without anomalies were uti-
lized to create the probabilistic atlas. With inter-slice spac-
ing of 1 mm, the image resolution ranges from 0.54 to 0.77
mm. For segmentation of livers, 257 abdominal CT scans are
used with image resolution and inter-slice distance as from
0.62 to 0.93 mm and from 1 to 5 mm, respectively.

3.1.14 A deformable model for automatic CT liver
extraction

Gao and Kak (2005) present a Spedge-and-Medge-based
algorithm for liver delineation. This is a 2-step method, viz.
(1) coarse segmentation—a 5 X 5 median filter on the origi-
nal image reduces the impulse noise present in it. The Canny
edge operator produces the primitive object regions and the
edge image is subjected to a modified split-merge method
(Spedge-and-Medge) separating out the coherent areas. The
liver areas are calculated using geometric and non-geometric
properties. After then, the areas are combined to form a single
and sizable region, (2) refinement of boundary—the rough
border acquired in step 1 is smoothed using a modified active
contour model. The method builds chords to each of the suc-
cessive boundary points under a certain threshold criterion,
starting at a boundary point. Finally, the energy minimization
of the contour at the boundary consisting of the control points
is performed to get the desired contour. In this experiment, 15
patient data were used with 5 mm collimation and 512 x 512
image resolution.

3.1.15 Cognition network technology for a fully automated
3D segmentation of liver tumors

The effective context-based methodology is proposed by
Schmidt et al. (2007), where the liver is split mechanically
based on its anatomical location. The following two compo-
nents are the key in the algorithm. The heuristic threshold
values for the intensity are used to partition the liver in the
3D data set. Depending on their intensity and volume, the
image objects are further improved to approximate additional
unneeded bodily organs. These body components serve as the
foundation for the calculation of a new layer of 3D edge data,
which ultimately serves as a guide for additionally perfecting
the body parts. The liver, which lies below the right lung and
is bounded by the skeleton and gall bladder, is presented as
the image object with the greatest volume. Ten datasets were
included in this study. Using a machine with a two core CPU
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(2.4 GHz, 3.5 GB RAM)), the procedure takes from 3 min (for
a data set with 145 slices) to 10 min (for a data set with 304
slices) to finish the operation.

3.1.16 Fully automatic segmentation of liver and hepatic
tumors from 3-D computed tomography abdominal
images: comparative evaluation of two automatic
methods

Casciaro et al. (2012) develop a method combining graph cut
and active contour algorithms with gradient flow. The method
is tested on 52 patient data and the segmentation accuracy
is evaluated using False-Positive Rate (FPR), False-Negative
Rate (FNR), Dice Similarity Coefficient (DSC); they are found
to be 2.39%, 5.10%, and 95.49%, respectively.

3.1.17 Modeling n-furcated liver vessels from a 3-D
segmented volume using hole-making
and subdivision methods

Yuan et al. (2011) propose a method for modelling n-fork
subtrees, where cross-sectional contours and vessel are
extracted from centre-line. A polygonal mesh with cross-
sectional contours is then constructed for each branch in
descending order. The experimental results show that
smooth mesh models could be generated automatically for
n-branch vasculature with an absolute error of 0.92 (average)
voxels and an average relative error of 0.17.

3.1.18 Medical image segmentation by combining graph
cuts and oriented active appearance models

Chen et al. (2012) combine Graph Sections (GC) and Live
Wire (LW) with the Active Appearance Model (AAM).
Using the GC parameters and LW cost function, AAM is
generated and trained during the model building stage. It
incorporates AAM and LW to produce an oriented AAM
(OAAM). The multi-object OAAM mechanism is used to
slice the organs using an adapted pseudo-3D strategy. The
iterative GC-OAAM is used to mark the objects. The method
is tested on MICCAI 2007 liver data; the pseudo-3D OAAM
method performs similar to the conventional 3-D AAM
method while running 12 times faster.

3.1.19 ACM-based automatic liver segmentation
from 3-D CT images by combining multiple atlases
and improved mean-shift techniques

Jietal. (2013) present a liver segmentation algorithm based
on automatic context model (ACM), which combines ACM,
multi-atlas, and mean transfer techniques. It is a two-step
learning-based method; in the initial training step, ACM-
based classifiers with multiple ranks are utilized, the test

image is then segmented in each space of the atlas using
each sequence of ACM-based classifiers. Using a multi-class
fusion technique, the results of all atlas space segmentation
are combined to produce the final result. The data from the
MICCALI 2007 are used to evaluate the proposed method.
The method has claimed to have significantly reduced
the segmentation time from approximately 400 to 35 min
by introducing region-based labelling and employing an
improved mean-shift algorithm. The entire segmentation
process is less than one hour.

3.1.20 Automated abdominal multi-organ segmentation
with subject-specific atlas generation

Wolz et al. (2013) suggest a multi-organ abdominal seg-
mentation using atlas-based method. This is claimed to
have applied to multiple organs without changing speciali-
zation and individual parameters. The atlas registration and
a weighting system are used to subject-based priorities from
an atlas database by combining a patch-based segmentation
and multi-atlas registration. The final segmentation is then
generated using the automatically learned intensity model in
the graph cut optimization phase, which contains high-level
spatial information. The segmentation method is evaluated
on 150 CT data. The values of overlap of DSC for liver,
kidney, pancreas, and spleen are found to be 94%, 93%, 70%,
and 92%, respectively.

3.1.21 Joint probabilistic model of shape and intensity
for multiple abdominal organ segmentation
from volumetric CT images

Li et al. (2012) develop a joint probabilistic model deter-
mining a probability map, when a voxel belongs to speci-
fied object with an estimated shape. Probabilistic principal
component analysis is used to explain the shape variation
and reduce computational complexity using expectation
maximization. 72 CT training datasets are used to create
shape models of the liver, spleen, and kidney. To highlight
3D visualization colour coding is used. The algorithm was
evaluated on 40 test datasets that were divided into normal
(34 normal cases) and pathologic (six datasets) classes.

3.1.22 Automatic liver segmentation based on shape
constraints and deformable graph cut in CT images

Lietal. (2015) suggest a framework comprising three steps:
(1) data processing; (2) initialization parameters; and (3)
data segmentation. Initial principal component analysis-
based statistical shape models are created, and a filter is
used to smooth the input image. Then, the mesh is locally
and iteratively transformed into a boundary-constrained
mesh to remain close to the shape subspace, and the average
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shape model is altered through thresholding and Euclidean
distance to obtain an approximate location on the image.
Finally, graph cut integrates the features effectively and
relationships of the input images and the initialized surface
for accurate liver surface detection. In this method, 50 CT
data are used from two databases, 3Dircadb and liver(Q7.
The proposed method took approximately 5 min and 3 min
to compute the segmentation on the Sliver07 database and
3Dircadb database, respectively.

3.1.23 Animproved confidence connected liver
segmentation method based on three views of CT
images

Song et al. (2019) propose a fusion of segmentation of liver
that combines liver segmentation results from three per-
spectives. An advanced curved anisotropic diffusion filter is
first used to reduce noise, which records edge information
simultaneously. Second, liver intensity statistics and analysis
are automatically used to select liver seed points. With the
method based on reliable association, the contours of the
liver are extracted from three views of the CT image, and
the cavity filling method is used to improve the contours.
Finally, they combine coronal, sagittal, and cross-sectional
views of the liver. Ten abdominal CT data are used for clini-
cal validation. The method achieves a Dice score of 97.

3.1.24 Towards liver segmentation in the wild
via contrastive distillation

Fogarollo et al. (2023) propose a contrastive distillation
scheme using a pre-trained large neural network to train
their model that is reported to be small. They first extract
the features by a self-supervised Vision Transformer (ViT)
and then carry out contrastive distillation on the obtained
features. They map the neighboring slices close together in
the latent representation, while mapping distant slices far
away. They use ground-truth labels to learn a U-Net style
upsampling path and recover the segmentation map. The
method is evaluated and compared on different medical data-
sets such as well-known BTCV, CHAOS, IRCADb, LiT§,
ACT-1K, and AMOS221. They obtain an average Dice
score, ASSD, and MSSD as 0.918 + 0.066, 1.3 mm, and
5 cm, respectively.

3.1.25 Automatic 3D CT liver segmentation based on fast
global minimization of probabilistic active contour

Jin et al. (2023) propose a liver segmentation method based
on a probabilistic active contour (PAC) model and its fast
global minimization scheme (3D-FGMPAC), which is
reported as explainable as compared with deep learning
methods. A slice-indexed-histogram is initially constructed
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to localize the volume of interest estimating the probabil-
ity that a voxel belongs to the liver according its intensity.
The 3D PAC model is initialized using the probabilistic
image. The combination of gradient-based edge detection
and Hessian-matrix-based surface detection is used to pro-
duce a contour indicator function. The initial probabilistic
image contour is then evolved into the global minimizer of
the model by a fast numerical scheme showing a smoothed
and highlighted probabilistic liver image. Finally, a region
growing method is applied to extract the liver mask. After
testing the method on two public datasets, the average Dice
score, volume overlap error, volume difference, symmetric
surface distance and volume processing time are found to
be 0.96, 7.35%, 0.02%, 1.17 mm and 19.8 s for the SliverQ7
dataset, and 0.95, 8.89%, —0.02%, 1.45 mm and 23.08 s for
the 3Dircadb dataset, respectively.

3.2 Semi-automatic methods

Semi-automatic methods are usually considered less accu-
rate in comparison to the automatic ones, because the opera-
tor intervenes in the due course of getting the segmentation
output and they are prone to error. However, these methods
have also merits as discussed below.

3.2.1 Advanced fuzzy cellular neural network: application
to CT liver images

A novel fuzzy cellular neural network (AFCNN) is proposed
by Wang et al. (2007) that primarily addressees the problem,
when the liver’s CT imaging borders overlap with those of
other organs. AFCNN retains the feed-forward and feedback
stimuli, but the cell status with regards to its neighbor cells is
used in place of the fuzzy feed-forward and feedback stimuli.
With the help of this technique, AFCNN uses both liver and
the non-liver region, improving the segmentation accuracy.
The boundary line in the segmented liver area tends to be
smoother as the number of FCNN iterations increases, mak-
ing it less probable to reproduce the original liver boundary.
In this experiment, five CT datasets are used on a computer
with 128 MB of memory and Matlab 6.5.

3.2.2 A knowledge-based technique for liver segmentation
in CT data

Foruzana et al. (2009b) present a slice-based liver segmenta-
tion method that typically generates the liver mask by con-
necting the bones. It begins from the initial slice and runs
past all slices sequentially. The first slice is chosen to match
to the large cross section area. By thresholding in the range
(400, 1700) HU, the bones are located. The bone mask in
the current slice is estimated using the connection of the
ribs in the previous slice. The liver areas are split into a
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number of smaller regions by utilizing split thresholding.
The boundary of liver is performed by dividing the whole
range into two overlapping ranges and a decision is made
with the help of morphological criteria, whether each range
is part of the liver or not. There are 50 subjects and each data
set contains 157-279 images with 12 bit DICOM images.
Using a Windows Computer with a P4 (3 GHz) and 2 GB
of memory, the technique needs roughly 8 min to segment a
dataset with 160 slices.

3.2.3 Liver segmentation for CT images using GVF snake

Liu et al. develop a method for removing concavities from
aberrant livers, particularly those with lesions at the liver
edges (Liu et al. 2005). It is a three-step process, beginning
with the estimation of a primary edge map. Two thresholds
are set, one on either side of the peak of the liver in the
histogram of the median filtered image as a guide. (2) GVF
field and starting contours—the computation of GVF field
is conducted on the edge map. The liver is identified as the
greatest volume between these two thresholds. The potential
initial and empty region contour (of the GVF field) are both
taken into account when determining the initial liver con-
tour. Next, the initial contour is refined by the GVF snake
to determine the liver boundary. 20 contrast-enhanced volu-
metric liver data with many big dispersed lesions are used
in this study. Also, 551 two-dimensional liver images from
20 patients are taken into account, each showing colorec-
tal metastases that have spread throughout the livers. The
dimensions of all slices are 512 X 512 pixels, in-plane pixel
size range is 0.56 x 0.56 mm?-0.87 x 0.87 mm?2, and the slice
thickness is 3.75, 5.0, 7.0, and 7.5 mm, respectively.

3.2.4 Computer-aided measurement of liver volumes in CT
by means of geodesic active contour segmentation
coupled with level-set algorithms

The method given by Suzuki et al. (2010) presents an
approach based on GAC coupled with a level-set algorithm
to segment liver in hepatic CT. (1) pre-processing—aniso-
tropic diffusion algorithm (Perona and Malik 1990) is used
in the first part of this two-step process to minimize noise,
maintain structures, and enhance anatomical structures in
the input portal-venous-phase CT images. (2) Liver extrac-
tion: the fast marching (FM) level-set algorithm (Sethian
1996) is utilized to calculate an irregular liver contour. The
FM level-set algorithm describes the advancement of a
closed contour (or curve) as a function of time and speed in
the normal direction at a specific place on the contour. The
seeding points within the hepatic region needed by the FM

algorithm are provided by the radiologist. As a result, the
anatomical boundaries of the liver can be expanded using
the FM algorithm. To get a close approximation of the liver
border, the GAC refines the initial contour provided by the
FM method. The database comprises 15 patients with recon-
struction intervals of 2.5 mm or 3 mm and collimation of 3
mm or 4 mm. Each of the reconstructed slices of CT features
a 512 x 512 matrix with pixels ranging from 0.5 to 0.8 mm
in size. The approach takes 2—5 min to perform on a Com-
puter (Intel, Xenon, 2.7 GHz).

3.2.5 Liver segmentation by intensity analysis
and anatomical information in multi-slice CT images

Foruzan et al. (2009a) present a 5-step method, viz. (1)
manual liver segmentation—the largest middle slice of the
liver is first found out manually and this slice is the start-
ing point in the segmentation process, (2) estimation of
liver intensity range—to estimate the statistical properties
of the liver, a Gaussian mixture model with two compo-
nents is used, since the histogram of a segmented liver in a
single slice is composed of two Gaussian distributions, (3)
ROI for liver is determined by segmenting out the ribs, (4)
heart is separated from liver by simple thresholding, and 5)
thresholding a slice—the liver’s histogram divides the entire
intensity range into two categories: lower range and higher
range. Next, local analysis chooses several threshold values
for each location to categorize liver and non-liver tissues. A
data with dimensions of 512 X 512X and 150 slices is seg-
mented in its whole on a PC (P4 CPU, 2 GB) within 6 min.
This study has used the MICCAI 2007 Grand Challenge data
for the experiment.

3.2.6 An entropy-based multi-thresholding method
for semi-automatic segmentation of liver tumors

The watershed technique (Choudhary et al. 2008) is used
to extract the liver contours, and a minimal cross-entropy
multi-thresholding approach is used to segment the tumors.
The stages are (1) Simple thresholding and shape-preserving
Cubic-Hermite interpolation are used to segment the ribs on
all the slices. Moreover, these curves serve as restrictions for
the segmentation of the liver. (2) Diaphragm segmentation:
to limit the area to the liver alone, a diaphragm location
method is used (Beichel et al. 2002). The program calculates
the gradient magnitude of the selected slice, analyzes the
data to highlight borders, and then chooses the slice, where
the liver is prominent. The watershed transform (Vincent
and Soille 1991) is then applied if the user-defined point is
located inside the liver. The class that contains that point is
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the liver, and (4) segmentation of tumors—slice after slice,
a minimal cross-entropy multi-thresholding method (Li and
Lee 1993) is used to segment the tumors. 10 CT datasets of
cancer patients were used.

3.2.7 A 3-D liver segmentation method with parallel
computing for selective internal radiation therapy

Goryawala et al. (2011) describe a method for 3-D liver seg-
mentation that consists of a modified k-means segmentation
method and a local contour algorithm. In this method, five
distinct locations are identified in the CT scan frames during
the segmentation process. This paper provides advantages of
developing parallel computing-aware algorithms in medical
imaging prior to investing in a very large-scale distributed
system. The algorithm is independent of dataset character-
istics such as liver structure, size, location, and distribution
of intensity. The results from single workstation show a 78%
reduction in calculation time from 4.5 h to near about 1 h.
The accuracy after calculating the volumes of the liver and
tumor area is reported to have an average error of less than
2%. Experiments with up to 2 slices are used to evaluate the
effect of parallelism.

3.2.8 Alikelihood and local constraint level-set model
for liver tumor segmentation from CT volumes

Li et al. (2013) describe a level-set based model that com-
bines the edge energy and probability. With the density
distribution of multimodal in the background, which may
contain multiple regions, probabilistic energy minimization
estimates the distribution of density of the damaged part.
The edge detector keeps the ramp associated with the bound-
aries in the edge energy composition for weak boundaries.
The Chan-Vese and geodesic plane series models, in addi-
tion to clinician-manual segmentation, are compared to this
approach. The suggested model outperforms the geodesic
plane model in liver tumor segmentation, where the Chan-
Vese model was reported to be unsuccessful. The liver RVD
(relative volume difference), JDE (Jaccard distance error),
ASD (average surface distance), SD (surface distance—
RMS type), and the SD (surface distance-maximum) are
8.1 + 2.1percent, 14.4 + 5.3 percent, 2.4 + 0.8 mm, 2.9 + 0.7
mm, and 7.2 + 3.1 mm, respectively.

3.2.9 An efficient and clinical-oriented 3D liver
segmentation method

With this technique, the segment of liver is automatically
divided by the portal vein branches (Zhang et al. 2017). The
regulation of the branches of the portal vein is based on
artificial segmentation taking into account the distribution
of the vessels. 20 CT image datasets from the MICCAI 2007
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liver segmentation challenge and 60 datasets from Zhu Jiang
Hospital of Southern Medical University were used in this
experiment. The mean VOE, RVD, and RMSD are 7.76%,
3.44%, and 2.81%, respectively.

3.2.10 Liver segmentation on CT and MRI using Laplacian
mesh optimization

Using MRI and CT scan images, Gabriel Chartrand et al.
(2016) develop a semi-automated liver segmentation
method. A crude 3D model of the liver is first created using
some user-generated contours to broadly outline the shape of
the liver. A Laplacian network optimization method is then
used to autonomously modify the model until the patient’s
liver is well defined. A correction tool is introduced that
allows the user to modify the segmentation. The method is
tested on SLIVEROQ7 dataset. The mean volume overlap error
is 5.1% with a mean segmentation time of 6 min.

3.2.11 Semi-automatic liver segmentation based
on probabilistic models and anatomical constraints

Le et al. (2021) present a graph-cut based method for mul-
tivariable normal distribution of liver tissues. An internal
patch is used to construct a subject-specific probability pro-
totype using a user-specified seed point. Then, an iterative
assignment of pixel labels is used to gradually update the
spatio-contextual data-based probabilistic map of the tissues.
The graph-cut model is then optimized in order to extract the
3-D liver. On the SLIVERO07 dataset, the system was tested.
In all, 25 asymptomatic and 2 symptomatic cases were
examined. Because of trivial assertions about anatomical
and geometrical structures, the entire procedure only lasted
1.3 min to segment a complete 3D liver; furthermore, the
values of VOE, RVD, ASD (or ASSD), RMSD, and MSD
(or MSSD) were 8.0+ 1.1,03+2.7,1.3+04, 2.5+ 1.0,
and 24.9 + 10.0, respectively.

3.2.12 Towards liver segmentation in the wild
via contrastive distillation

Fogarollo et al. (2023) propose a contrastive distillation
scheme using a pre-trained large neural network to train
their model that is reported to be small. They first extract
the features by a self-supervised Vision Transformer (ViT)
and then carry out contrastive distillation on the obtained
features. They map the neighboring slices close together in
the latent representation, while mapping distant slices far
away. They use ground-truth labels to learn a U-Net style
upsampling path and recover the segmentation map. The
method is evaluated and compared on different medical data-
sets such as well-known BTCV, CHAOS, IRCADb, LiT§,
ACT-1K, and AMOS221. They obtain an average DICE
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score, ASSD, and MSSD as 0.918 + 0.066, 1.3 mm, and
5 cm, respectively.

3.2.13 Towards liver segmentation in the wild
via contrastive distillation

Jin et al. (2023) propose a liver segmentation method based
on a probabilistic active contour (PAC) model and its fast
global minimization scheme (3D-FGMPAC), which is
reported as explainable as compared with deep learning
methods. A slice-indexed-histogram is initially constructed
to localize the volume of interest estimating the probabil-
ity that a voxel belongs to the liver according its intensity.
The 3D PAC model is initialized using the probabilistic
image. The combination of gradient-based edge detection
and Hessian-matrix-based surface detection is used to pro-
duce a contour indicator function. The initial probabilistic
image contour is then evolved into the global minimizer of
the model by a fast numerical scheme showing a smoothed
and highlighted probabilistic liver image. Finally, a region
growing method is applied to extract the liver mask. After
testing the method on two public datasets, the average Dice
score, volume overlap error, volume difference, symmetric
surface distance and volume processing time are found to
be 0.96, 7.35%, 0.02%, 1.17 mm and 19.8 s for the SliverQ7
dataset, and 0.95, 8.89%, —0.02%, 1.45 mm and 23.08 s for
the 3Dircadb dataset, respectively.

4 Summary of results

The methods are summarized in Tables 2, 3, and 4. The
papers that have provided the complete quantitative results
are included in these tables; the name of the contributors,
type of method, data used, its advantages, execution time,
and the performance quality are included. The situation for
which a method is suitable clinically has been highlighted in
Table 5. It may also be noted that we find difficulty as some
papers provide insufficient information in their evaluation
process.

5 Discussion

We discuss the potential drawbacks of the methods, both
technically and clinically.

5.1 Technical analysis of each method

Model-based methods (Badakhshannoory and Saeedi 2011;
Massoptier and Casciaro 2008; Soler et al. 2001) seem
accurate, but the construction of a robust model seems to
be a tough task with respect to the liver shape variation.

Moreover, sufficient training datasets are needed to build the
model. The technique reported in Soler et al. (2001) needs
larger medical validation to evaluate the algorithm’s durabil-
ity. Although the algorithm (Massoptier and Casciaro 2008)
is reported to have required less time as compared to the
other model-based methods, the amount of learning data
required seems to be still high. Campadelli and Esposito
(2009) suggest a technique based on gray levels that com-
bines with a-expansion algorithm and graph-cut method for
liver segmentation. Unfortunately, a major drawback associ-
ated with a-expansion is its linear time complexity. Moreo-
ver, it is well known that graph cut is sensitive to noisy data,
therefore, its robustness is a genuine concern. Furthermore,
it relies on the primary image for correct seed placement.
Thus, if the user does not choose an appropriate initial slice,
one may not get an accurate final output. Zhang et al. (2010)
propose a statistical shape-based contour extraction method,
however, the manual demarcation of the training set is time
consuming and poses a practical restriction in the model’s
construction. Again, GHT has some limitations, viz. (1) to
detect the bin amid the high background noise (which is
inherent in medical images), high number of votes must have
to fall in the bin, (2) if the quantity of parameters (m) is
larger, less number of votes would fall in a bin. So the bins
corresponding to the real figure are sometimes not appeared,
and the complexity increases with number of parameters.

Rusko et al. (2009) present a region growing-based
method, which is quick and easy. However, the approach
has certain limitations, especially, when there is either high
amount of noise or the segmentation region’s intensity is
not consistent. further, it lacks in fixing the problem of spa-
tial correlation to get a coarse contour. Zhou et al. (2005),
Okada Yokota et al. (2008) and Linguraru et al. (2010)
propose methods based on probabilistic atlas, but they are
computationally expensive and the subsequent problems due
to this are well known (Zhai et al. 2019). Additionally, the
exact alignment of the atlases with the target image is cru-
cial for the algorithms’ accuracy. The pairwise registration,
which is frequently utilized, may provide erroneous align-
ment, particularly, across images with significant changes.
Simultaneously, it is difficult to describe a proper joint
probability function. It is reported by Whiteley et al. (1998)
that the distribution of local standard deviation values in
the input image determines the distribution after local mean
removal. A concern in almost every method (Okada Yokota
et al. 2008) is its validation; most of the methods are tested
on a smaller dataset. Since TPS generates quantitative analy-
ses of spatial organizational shapes with varying sizes in
terms of features and localizations, Park et al. (2003) present
a method utilizing TPS to suppress unwanted tissues. How-
ever, TPS includes curvature discontinuity at the identical
experimental surface data points, which further complicates
in estimating the change.
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Foruzan et al. (2009a) suggest a method using expecta-
tion maximization (EM), but the initial parameters of EM
should be properly chosen since it influences the perfor-
mance of the algorithm. EM is conceptually simple, easy
to implement, and at each iteration, marginal log-likelihood
is improved. However, after a few steps, the rate of con-
vergence becomes excruciatingly slow as one approaches
a local optima. The proposed GVF snake-based method by
Liu et al. (2005) is efficient in solving initialization issues
and a lackluster convergence to border concavities present
in liver images. However, it is little suitable for boundaries
in noisy images, where the shape of edges are zig-zag in
nature. Linguraru et al. (2009) suggest an autonomous, atlas-
based technique, however, care must be taken while design-
ing the atlas. The problem appears, when an atlas designed
for one image having no tumor is used for another image
! having multiple tumors. Moreover, the utility of atlas-based
segmentation has been restricted in the existence of signifi-
cant space-consuming lesions, where it tends to deform and
shift liver structure during the registration. This type of CT
images resemble to Budd—Chiari Syndrome (Arora et al.
1991). Schmidt et al. (2008) suggest a cognitive network
language-based technique, driven by knowledge, has signifi-
cant flaws. For instance, the region growing algorithm fails
to expand into smaller liver lobes, and the big tumors that
largely cover the liver.

The discontinuous input—output mapping in the FCNN
(Wang et al. 2007) is a limitation in the learning phase. The
method by Selver et al. (2008) contains a switching mecha-
nism that depends on the contrast level of the tissues. In
this method, the gradient descent may reach a local minima
instead of the global minima since the objective function
of the network in an MLP-based mechanism and it is not
necessarily convex. The conventional snake (Gao and Kak
2005) is quite popular due to its simplicity; however, the
contours usually become trapped onto false image features,
and in terms of extracting non-convex features. It is well
known that method proposed by Canny is a multi-step edge
detection procedure, which detects the edges suppressing
the noise. Therefore, noise removal in the preprocessing
step is not necessary, because excessive smoothing (without
edge preserving characteristics) of the original image also
smooths the edges. Level set (Suzuki et al. 2010) has been
used extensively, because of the method’s ability to extract
curved objects with complicated topology, resistance to
noisy, and clear numerical framework of multidimensional
implementation. However, the calculation time needs to
be significantly lowered for the approach to be viable in
clinical application. Additionally, care must be taken while
empirically assigning values to the parameters and deciding
a suitable speed function. Knowledge-based image segmen-
tation methods (Foruzana et al. 2009b; Lim and Ho 2005)
maximize the posterior probability across the space domain

DSC—96.50 + 0.69%,
FPR—2.02% + 0.90,
FNR—5.07% + 1.44

Performance

Execution time

Low computational cost

Advantages

tion—0.6 mm, densityres-

images, spatial resolu-
olution—12 bits

Data
Automatic 80non-contrast torso CT

Nature

Probabilistic atlas

Method

Table 3 (continued)
Zhou et al. (2005)
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Table 4 (continued)

(5

and divide the image domain compromising between data
attraction and shape fit with the prior model. Knowledge of
the location, shape, and gray level of the liver is important
and crucial to predict these information a priori (Lim and Ho
2005). It is usually difficult to always probe the shape of the
region properly due to filter’s bunt shape. The approaches
might underperform on large, diverse and complicated
datasets. Choudhary et al. (2008) provide an entropy-based
multi-thresholding approach that employs watershed seg-
mentation and cross-entropy multi-thresholding to extract
the organ boundaries. While the segmentation is accurate
in higher for smaller and uniform tumors, it does not pro-
vide a good accuracy for larger ones, mostly because of the
increased non-uniformity in their intensities.

3.44%,

and the mean RMSD

2.81 mm

7.76 %,
5.1% for

, respectively

14.4% +5.3,2.4mm + 0.8,

2.9mm + 0.7, and

RVD, JDE, ASD, SD, RMS,
7.2mm + 3.1

Performance
and SD are — 8.1% + 2.1,
the mean RVD

The mean VOE
CT and 7.6% for MRI

liver extraction is within

three minutes

of 6 min

5.2 Outlook

Average processing time for The mean VOE

Mean segmentation time

Execution time
0.56-0.87 mm

In Sects. 3, 4, and 5, we discussed all the popular automated
and semi-automatic methods along with their advantages
and disadvantages. Each technique accomplishes a defined
goal. Automatic methods are generally preferred, however,
suitable training dataset (with respect to size and quality) is
required to develop them. Sometimes due to larger datasets,
some automatic methods need more time than desired. The
datasets used in all these methods for training and testing are
very limited in number, therefore, there has been no “one for
all” method. There is another problem: although the clini-
cians prefer to use automatic methods, sometimes they prefer
to correct the output based on their requirements. In this
scenario, the automatic methods pose challenges, because
they usually do not allow. On the other hand, the semi-auto-
matic methods are simple and relatively easy to implement.
However, these approaches are usually operator dependent,
thus, has greater chance to introduce larger divergence in
the algorithm performance. The semi-automatic methods
are probably more suitable for clinical practices than the
automatic ones, if they can cover the issues owing to the
large levels of inter-personal and intra-personal variability.
If all the methods are examined sequentially, we can see that
most of the methods use 2D segmentation on slice-by-slice,
then they are interpolated to get the 3D volume. The inter-
polation plays a major role to avoid any loss of liver volume
information. Sometimes, the concave shape of the contour
being present on one slice is absent on the other and that
could lead to a pseudo segmentation.

A segmentation approach usually considers the below
three factors: (1) it should be user-friendly, (2) it should be
accurate, and (3) it should be fast. Considering the pros and
cons of the methods, region growing methods fulfill the seg-
mentation criteria to a larger extent. This can be made more
effective if it is combined with methods such as knowledge-
based. Several published articles report such possible com-
binations. Then, the natural question arises: “why there has

nection among sores and
liver fragments is recog-
nizable and quantifiable

Effective on complex cases
with multiple liver tumors
vein pathway can be
shown plainly in virtual
space; the physical con-

A correction tool is intro-
duced allowing user to
modify the segmentation

Advantages

CT image matrix size,

the MICCAI 2007 and 60
datasets provided by Zhu
Jiang Hospital of Southern
Medical University
SLIVERO7 challenge

and 20 MRI data from

the Montreal University
Hospital Center

512 x 512

Data

Semi-auto-matic 3DIRCADD dataset with
Semi-auto-matic 20 CT image datasets from  The entry vein and hepatic

Semi-auto-matic 30 CT scans from the

Nature

Region growing
zation

Method
Level set

Chartrand et al. (2016) Laplacian network optimi-

Liet al. (2013)
Zhang et al. (2017)
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Table 5 (continued)

&

Useful for normal livers (not satisfactory on images where major vessels are

Situational utility

Liver Segmentation by Intensity Analysis and Anatomical Information in

Multi-slice CT Images

Name of method

Foruzan et al. (2009a)

References

Springer

much brighter than liver)

Useful for uniform (intensity) and smaller tumors

An Entropy Based Multi-thresholding Method for Semi-Automatic Seg-

mentation of Liver Tumors

Choudhary et al. (2008)

been not a single segmentation algorithm that could be fit for
all?” Deep learning (DL) has garnered immense popularity
since some years owing to its salient advantages, such as
high accuracy and automatic nature of the network resulting
the less involvement of the user (Ansari et al. 2022a, 2023).
Specifically, the DL are getting attention, because the medi-
cal data is abundantly available these days. However, the
DL methods have still not found that space to replace the
conventional methods. This is because of a few key reasons:
(1) labelled data are necessary for a robust DL. method and a
substantial amount of effort is needed to label the huge med-
ical data, (2) high-power computational machine is needed
to build and run the DL model; unfortunately, such high-
performance work stations are rarely available in hospital
set-up, (3) a DL model trained on the data available from
a machine (say, Siemens) might not work as expected on a
dataset obtained from a different machine (say, Phillips), this
problem is known as domain generalization.

5.3 Implications and research challenges

Although there are many image segmentation algorithms, it
is not clear which one is the best. We have already described
the several advantages of conventional methods. Hope-
fully, this survey could help the readers to get the holis-
tic view of all the methods and the suitability to be used.
The accuracy of these methods has remained a concern for
sure; however, if this could well be taken care of, then these
conventional methods could truly be effective considering
their low computational requirements. An inaccurate seg-
mentation method could be the cause of lesion relapse in
hepatic patients (Akhtar et al. 2021), thus, it is certainly
not desirable. Further, we suggest for a personalized image
segmentation framework, where the conventional segmenta-
tion method blocks could be dragged and dropped into the
framework or pipeline. If this can possibly be accomplished,
these conventional methods could truly be popular since the
clinicians usually consider the AI methods as black box as
compared to conventional methods. However, the input data,
knowledge of existing algorithms, and their performances
remain as crucial for developing new robust algorithms.
Most of the authors test their algorithms on private data,
thus, a fair comparison with the earlier published methods
is certainly difficult. Unfortunately, the researchers do give
little attention to this problem and keep focusing on devel-
oping new methods. Sometimes, the researchers struggle to
compare their algorithms because of the lack of information
about the workstation used. For instance, two similar algo-
rithms performed on two different workstations (one high-
and one low-power) would provide different performances,
especially with respect to time. Considering the above chal-
lenges, if the research community is encouraged to follow
some standard guidelines to post their databases used in
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their research paper online, then the whole community could
access and get the benefits, especially, a new research meth-
odology can easily be compared helping the researchers to
continually improving the quality. The last but not the least,
we have observed that a few methods forget to publish all the
information, thus, these papers are hard to follow although
the idea seems to be interesting. Thus, a researcher has to
recode it again and obtain the results. Therefore, it may be
recommended to encourage the researchers to make their
data and codes public. This is necessary to save the time
and effort of the researchers to not reinvent the wheel and
the researchers could probably think onwards.

5.4 Limitations of the study

There have been some limitations in this study, especially
with respect to the number of studies. Since we have targeted
a wide spectrum of research papers, from the year 2000 to
2022, we must have missed several papers. It was quite dif-
ficult for us to include every journal that publishes on liver
segmentation; we had to follow a plain protocol and include
those articles that come under this protocol. The page con-
straint was another reason to discard these papers. We could
have probably included a few more clinicians in the study to
add more values to the survey by providing diverse clinical
inputs. There are some other pressing issues as well from
clinical standpoint, for instance, the explainability aspect,
that we could not consider in this review. This issue has
received significant attention recently after the AI models
drew significant attentions, but we believe that the issue has
always been present, in conventional methods too. This ter-
minology was rarely highlighted earlier, thus, this is usually
not found in conventional segmentation articles.

6 Conclusion

This study has presented a survey on an important computer
aided diagnosis tool, segmentation. First, we have discussed
the clinical relevance of image segmentation method. Then
we have discussed the conventional automatic and semi-
automatic approaches used over the past 20 years to segment
liver images from CT scans. The methods have been criti-
cally evaluated from the view of their practical utility. We
have summarized the segmentation evaluation metrics and
it is found that an automatic method are better and but not
desirable by the clinicians because they can rarely modify an
automatic method, because they are end-to-end automatic.
From that sense, a semi-automatic technique appears pref-
erable since it allows the user (a clinician in this case) to
direct the resultant shape to produce the desired outcome,
but they are less accurate. Despite years of experimentation

with various segmentation methods, various other issues still
remain that we have listed in this paper. We have suggested
a framework, where an effort could be made to build a per-
sonalized segmentation framework or customize a segmen-
tation framework utilizing the conventional segmentation
methods in an immanently free environment, which could
probably reduce these tradeoffs between automatic and semi-
automatic methods. Finally, we have included some sugges-
tion: the researchers should probably be encouraged to make
their data and code public.This could potentially help the
computer vision community to be more focused addressing
the genuine research problems rather than putting efforts
on something that is probably unnecessary if the previous
codes are accessible. If this happens, the researchers would
probably be able to only look onwards.
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