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Abstract
Responding to the pandemic caused by SARS-CoV-2, the scientific community intensified efforts to provide drugs effec-
tive against the virus. To strengthen these efforts, the “COVID Moonshot” project has been accepting public suggestions 
for computationally triaged, synthesized, and tested molecules. The project aimed to identify molecules of low molecular 
weight with activity against the virus, for oral treatment. The ability of a drug to cross the intestinal cell membranes and 
enter circulation decisively influences its bioavailability, and hence the need to optimize permeability in the early stages of 
drug discovery. In our present work, as a contribution to the ongoing scientific efforts, we employed artificial neural network 
algorithms to develop QSAR tools for modelling the PAMPA effective permeability (passive diffusion) of orally adminis-
tered drugs. We identified a set of 61 features most relevant in explaining drug cell permeability and used them to develop 
a stacked regression ensemble model, subsequently used to predict the permeability of molecules included in datasets made 
available through the COVID Moonshot project. Our model was shown to be robust and may provide a promising framework 
for predicting the potential permeability of molecules not yet synthesized, thus guiding the process of drug design.

Keywords COVID-19 · PAMPA · Permeability · Artificial neural network · Ensemble modelling · Descriptors

1 Introduction

From the onset of the pandemic caused by the virus SARS-
CoV-2, the scientific community intensified efforts to pro-
vide drugs effective against the disease COVID-19 (Ferreira 
and Andricopulo 2020). In this context, the COVID Moon-
shot project (Delft et al. 2021) was launched as a world-
wide collaboration between scientists aiming to identify 
pre-clinical candidate molecules potent against the virus, 
for oral use. To date, almost 21,000 structurally diverse mol-
ecules have been submitted to the project’s website (PostEra 
2022). Whilst the bioactivity of the molecules designed 
and submitted to the project is currently under investiga-
tion and while sub-micromolar  IC50 has been reported for a 
number of them (PostEra 2022), important factors such as 

permeability, selectivity, pharmacokinetics, pharmacody-
namics and toxicity remain to be optimized to improve their 
drug-like profile (Erlanson 2020). Permeability across the 
biological membranes decisively influences the degree of a 
drug’s absorption and bioavailability (Homayun et al. 2019) 
and is therefore routinely evaluated through high-throughput 
screening (HTS) in the early stages of drug design using 
either cell-based or cell-free permeation systems (Masungi 
et al. 2008; Balani et al. 2005; Berben et al. 2018).

A cell-free, low-cost and easy to handle in vitro method 
for rapid in vivo permeability predictions—the PAMPA 
assay (Parallel Artificial Membrane Permeability Assay)—
was introduced in 1998 by Kansy et al. (1998). PAMPA 
predicts in vivo permeability only via passive diffusion and 
is currently a preferred HTS method in the pharmaceutical 
industry (Schmidt and Lynch 2022). PAMPA is success-
ful in establishing structure–activity/structure–property 
relationships (SARs/SPRs) and hit-to-lead optimization 
due to the lack of active transport systems or metabolizing 
enzymes (Fortuna et al. 2007). An analytical description of 
the method is provided in Sect. 2 section of the manuscript.
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Apart from the costly, time and effort-consuming experi-
mental studies, in silico approaches like quantitative struc-
ture–activity relationship (QSAR) models are reliably used 
as HTS methods for hit-to-lead optimization (Chi et al. 
2019; Sun et al. 2017; Oja and Maran 2015a, b, c, 2016a, 
b, 2018; Roy et al. 2021; Diukendjieva et al. 2019) due to 
the short computational time required to screen large-sized 
datasets and the high accuracy of the models in making cor-
rect predictions. Nevertheless, despite its advantages, the 
QSAR approach has a limited role in the drug design pro-
cess, being mainly used in the early stages for the exclusion 
of molecules with a low permeability profile (Dahlgren and 
Lennernäs 2019). Further contribution to the drug develop-
ment process is rather restricted, primarily due to the choice 
of the descriptors involved in the analyses that fail to provide 
clear insight into which structural features influence perme-
ability. Indeed, alternate models have been reported that link 
different molecular descriptors to the permeation process. 
For the most part, the Lipinski-like physicochemical proper-
ties of molecules (e.g. lipophilicity, hydrogen bond donors 
and acceptors, and molecular mass) (Lipinski 2000; Lipinski 
et al. 2001) and charge-related surface area descriptors were 
successfully related to permeability (Chi et al. 2019; Sun 
et al. 2017; Oja and Maran 2015a, b, c, 2016a, b, 2018; Roy 
et al. 2021; Diukendjieva et al. 2019), but no sufficient physi-
cal explanation could be derived from the models’ predic-
tions. A list of QSAR models recently reported in literature 
for predicting PAMPA permeability, along with information 
on the statistical methods, the descriptors and data used is 
presented in Table 1.

To bring new insight into the above-mentioned problem, 
we used the dataset of 190 molecules curated by Chi et al. 
(2019) to model the PAMPA permeability of molecules. 
We developed a QSAR approach using a set of 61 selected 
descriptors that, apart from effectively mapping chemical 
space, allow for structural interpretation of the molecules. 
As will be analytically discussed in Sect. 4, the set con-
tains Lipinski-like physicochemical features (Lipinski 2000; 
Lipinski et al. 2001) as well as BCUT structural descrip-
tors (Stanton 1999) from which chemical structures can be 
uniquely deduced (Masek et al. 2008) and visualized (Guha 
and Willighagen 2012), giving clear insight into the influ-
ence of different groups on the permeation ability of mol-
ecules and vice versa, i.e. how permeability will be affected 
by structural changes. Drug discovery decisions can be 
made, as for example a targeted modification of a chemical 
structure or the selection of a chemical series with promising 
permeation profile for further refinement.

Using the selected descriptors, we subsequently employed 
artificial neural network (ANN) algorithms (Günther et al. 
2010) to create a highly accurate “stacked regression” 
ensemble QSAR model (Wolpert 1992; Breiman 1996) to 
predict the permeation ability of molecules. Well-trained 

ANN models show increased accuracy and precision and 
are routinely used to solve complex problems (Irshad et al. 
2020; Kaur et al. 2020; Sarker et al. 2020; Alloqmani et al. 
2021; Jaber Alsolami et al. 2021). Our ensemble combined 
two neural network base models generated using a model 
development dataset split explicitly into a training and a 
test set. The models were fitted on the training set—using 
20-fold cross-validation with three repeats—and validated 
on the test set to have an early estimation of their predic-
tive performance on new data. The optimization of hidden 
layers (number of layers and neurons) of the models was 
based on the values of R-square and root mean-square error 
(RMSE) (Alexander et al. 2015; Kvålseth 1985) metrics 
indicating the predictive ability of the models on both data-
sets. The predictions of the models on the training set were 
subsequently combined using an ANN algorithm to create 
a stacked ensemble. The ability of the model to general-
ize well, i.e. to make accurate predictions on unseen data 
was further evaluated using independent external valida-
tion datasets (Irshad et al. 2020; Ho et al. 2020). Details on 
model generation, characteristics and performance metrics 
are provided in Sect. 3 of the manuscript. Our AΝΝ ensem-
ble outperformed the HSVR model reported by Chi et al. 
(2019), with the Pearson correlation between observed and 
predicted logPe values for the 190 molecules being 0.97 and 
0.93, respectively.

On the whole, the contribution of our approach can be 
summarized as follows:

• we identified a set of 61 theoretically calculated descrip-
tors with high relevance in explaining the permeability 
of molecules, from which chemical structures can be 
uniquely deduced;

• we created an ensemble ANN regression model that can 
predict with high accuracy the PAMPA permeability of 
compounds of interest in a very short time (5 min to train 
the models using a system with CPU @ 2.69 GHz and 
RAM 12 GB).

The ANN ensemble was further used to predict the 
PAMPA permeability of molecules contributed by medicinal 
chemists to the COVID Moonshot project and downloaded 
from the PostEra site (PostEra 2022) (Supporting Informa-
tion1, sheets S1.6 & S1.7 respectively). Our goal in doing 
so was to join and strengthen the ongoing efforts towards 
the development from scratch of new, orally administered, 
target-specific drugs with optimized absorption profile for 
COVID-19 treatment.

Briefly, this manuscript has been structured as follows: 
in Sect. 2, the experimental details of the study are analyti-
cally described and a diagram summarizing the workflow 
is provided; in Sect. 3, the results of the analysis and the 
creation of the QSAR models are presented; in Sect. 4, the 
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contribution of the present study in predicting permeation 
ability of molecules is extensively discussed; and Sect. 6 
contains information on the working environment and the 
availability of data and code.

2  Experimental

Special consideration was given to the consistency, quality 
and completeness of the data; hence, a homogenous, pub-
licly available dataset (Chi et al. 2019) (Supporting Informa-
tion1, sheet S1.1) with recorded PAMPA permeability for 
190 molecules measured under the same experimental pro-
tocol was used to build the models. This is important, since 
permeability measurements heavily depend on the applied 
experimental protocol (Chi et al. 2019; Dahlgren and Len-
nernäs 2019; Avdeef et al. 2004). Also, as different types of 
measurements result in different permeability coefficients 
(Chi et al. 2019; Dahlgren and Lennernäs 2019), we note 
that in the present work we have modelled the effective per-
meability coefficient (logPe), analytically described below.

2.1  Description of the PAMPA method

The PAMPA method measures the permeability via pas-
sive diffusion, based on an artificial non-cell lipid mem-
brane without pores, active transport systems or metabo-
lizing enzymes (Fortuna et al. 2007). Used therefore as a 
HTS method, PAMPA is very successful in establishing 
the structure–activity relationships (SARs) and hit-to-lead 
optimization (Fortuna et al. 2007). The PAMPA system is 
a ‘sandwich’ consisting of two 96-well plates and includes 
three compartments. Substances move from a donor com-
partment, through a lipid-infused artificial membrane into an 
acceptor compartment (Kansy et al. 1998; Chi et al. 2019). 
The donor, membrane and acceptor compartments emulate 
the gastrointestinal tract, the intestinal epithelium and the 
blood circulation, respectively. To date, PAMPA models 
have been developed that exhibit a high degree of correla-
tion with permeation across a variety of barriers, including 
the gastrointestinal tract (Avdeef et al. 2004), Caco-2 cul-
tures (Bermejo et al. 2004; Avdeef et al. 2005), blood–brain 
barrier (Dagenais et al. 2009) and skin (Sinkó et al. 2012). 
The simplicity and stability of the PAMPA system allow for 
variability in the experimental settings, e.g. changing the 
pH values in the donor compartment offers the possibility to 
measure permeability under different physiological condi-
tions in the intestinal pathway (Berben et al. 2018; Kansy 
et al. 1998). PAMPA measurements are shown to compare 

well with human intestinal absorption, except for some prob-
lematic cases concerning compounds with limited solubility 
or specific drug classes and compounds absorbed by active 
transport (Fortuna et al. 2007).

2.2  Permeability measurements and experimental 
setup

The influence of pH on the absorption through the intes-
tine of drug-like molecules has been previously reported 
(Oja and Maran 2015a, b, c, 2016a, b, 2018). Indeed, the 
intestinal environment may present a variation in terms 
of pH values that possibly affects the absorption proper-
ties of substances (Oja and Maran 2018; Avdeef 2001). 
In keeping with this, the PAMPA assay has been used 
to measure the pH-dependent permeability profiles of 
various compounds (Oja and Maran 2015a, b, c, 2016a, 
b, 2018).

The present QSAR study is based on the effective mem-
brane permeability (Chi et al. 2019; Dahlgren and Len-
nernäs 2019) measurements initially performed on a series 
of acidic, basic, neutral and amphoteric compounds at pH 
7.4 by Oja and Maran (2015a, b, c, 2016a, b, 2018) and 
subsequently curated by Chi et al. (2019) in a dataset of 
190 selected molecules (Supporting Information S1.1).

The effective membrane permeability coefficient (logPe) 
was calculated according to the equation (Oja and Maran 
2016a):

where VD is the volume of the solution in the donor side, A 
is the membrane area, t is the time point of the experiment, 
tss is the lag time, eα is the apparent membrane porosity, rv is 
the ratio of volumes of the donor and acceptor sides (rv = VD/
VA), CD(0) is the initial compound concentration in the donor 
side, CA(t) is the concentration in the acceptor side at time 
tand RM is the membrane retention ratio:

As the cutoff value for the membrane permeability 
depends on the experimental system, we note here that, 
for the specific experimental setup and for pH 7.4, a rough 
approximation may be employed (Chi et al. 2019) accord-
ing to which logPe values ≥ -6.2 correspond to compounds 
with higher permeability, whereas logPe values < -6.2 
would indicate lower permeability in general.

log
(

Pe
(

cm

s

))

= log

(

−
2.303.VD

A.(t − �ss).�a

.

(
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1 + rv

)
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[
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CD(0)
−

VACA(t)

VDCD(0)
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2.3  Partitioning of the data for model development 
and validation: calculation of molecular 
descriptors and model performance statistics

2.3.1  Train, test and external validation datasets 
(supporting information 1, sheet S1.1)

A visualization of the data split for the logPe modelling is 
presented in Fig. 1. The individual subsets were saved as 
CSV files for reading into the R modelling workflows and 
these CSV files are provided in the code archive available 
on Zenodo (Gousiadou 2021), along with a README file 

explaining their contents and guidance on how to reproduce 
results via running the available code files.

2.3.1.1 Model development data: train and test subsets For 
model development and initial evaluation, a dataset of 174 
molecules randomly selected out of the set of 190 com-
pounds was further randomly split into explicit train (80%, 
141) and test (20%, 33) subsets. The train set was used to 
fine-tune the algorithm parameters and fit the models, while 
the test set provided an early estimate of their predictive per-
formance (Table 2).

Fig. 1  Partition of the data: distribution of the output variable (logPe) in the whole dataset as well as in the train, test and external validation 
subsets
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2.3.1.2 External validation set For the external validation 
of the final models, we used the following sets of data (Sup-
porting Information 1, S1.1): a. 16 molecules initially par-
titioned from the dataset of 190 compounds, which were set 
aside to create an independent external validation set; b. a set 
containing the chemical structures of two anti-COVID-19 
drugs, namely Paxlovid (Owen et al. 2021) and Remdesivir 
(Jang et al. 2021) with reported permeability (not PAMPA). 
The SMILES strings of the drugs were downloaded from 
the PubChem database (Sayers et al. 2022).

2.3.2  Calculation of molecular descriptors

A single 3D conformation was created from SMILES for 
each structure using the publicly available Bioclipse soft-
ware (Spjuth et al. 2007, 2009). An SDF file containing the 
3D coordinates of the molecules was imported in R, and 
the rcdk package (Guha 2007) was used to automatically 

calculate a number of descriptor variables. The CDK 
descriptors (Java Library for Chemoinformatics) are divided 
broadly into three main groups, that is, atomic, bond and 
molecular and belong to the specific categories “topologi-
cal”, “geometrical”, “hybrid”, “constitutional”, and “elec-
tronic”. The calculation resulted in 286 descriptors for each 
molecule. Non-informative descriptors were removed, that 
is, all variables with zero variance (zero values for all mol-
ecules). This process reduced the number of descriptors to 
232.

2.3.3  Model performance statistics

For the comparison and evaluation of the predictive per-
formance of models, we primarily employed the Pearson’s 
correlation coefficient, the coefficient of determination (R2, 
Eqs. 1 and 2) and the "root mean-square error" (RMSE, 
Eq. 3) metrics (Alexander et al. 2015; Kvålseth 1985). The 

Table 2  Modelling the effective membrane permeability (logPe) of compounds (190)

A. Creation of models and evaluation of models’ performance on the train set (141), ( 20-fold cross-validation with three repeats)

Models ‡R2 CV R2 CV RMSECV Resubstitution Model layers and nodes

NN1 0.58 0.35 0.19 Pearson correlation = 0.99
rmse = 0.012
Rsquare = 0.99
R2 = 0.99

Hidden (layer1 = 20, layer2 = 15, layer3 = 5)

NN2 0.56 0.17 0.20 Pearson correlation = 0.99
rmse = 0.008
Rsquare = 0.99
R2 = 0.99

Hidden (layer1 = 30, layer2 = 20, 
layer3 = 10)

B. Creation of stacked model

Creation of the stacked model RFEnsembleX by combining the predictions of the models on the train set (141) with the neuralnet algorithm  
(20-fold cross-validation with three repeats)

Stacked model (neu-
ralnet)

‡Rcv2 Rcv2 RMSECV Resubstitution Model layers and nodes

EnsembleNN 
(NN1 + NN2)

0.99 0.99 0.012 Pearson correla-
tion = 0.99

rmse = 0.013
Rsquare = 0.99
R2 = 0.99

Hidden (layer1 = 2, 
layer2 = 1, layer3 = 0)

C. Evaluation of models’ performance on the test set (33)

Models ‡R2 R2 RMSE Pearson correlation

NN1 0.82 0.80 0.11 0.90
NN2 0.65 0.61 0.16 0.80
EnsembleNN 0.79 0.78 0.12 0.89

D. Evaluation of models’ performance on the external validation set (16)

Models ‡R2 R2 RMSE Pearson correlation

NN1 0.75 0.69 0.14 0.86
NN2 0.74 0.71 0.14 0.86
EnsembleNN 0.79 0.76 0.12 0.89
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best models were those with the smaller RMSE and greater 
R2 values. Whilst different R2 (“Rsquared”) and related sta-
tistics may be reported in the literature (Alexander et al. 
2015; Kvålseth 1985; Roy et al. 2009), here we employed 
Eqs. (1), (2) and (3) recommended as generally suited for 
QSAR studies (Alexander et  al. 2015; Kvålseth 1985). 
Assuming that the difference between the mean experimen-
tal and predicted values is zero, “R-squared” can be inter-
preted as the proportion of the variability in the response 
captured by each model (Alexander et al. 2015; Kvålseth 
1985). However, under certain circumstances, e.g. due to 
the average prediction being significantly shifted from the 
average experimental value or due to outliers, R2 (Eq. 1) can 
be negative.

We note that, where statistics are reported with the 
subscript “cv” (R2

CV, ‡R2
CV,  RMSECV), this means that 

the model built on a cross-validation training subset was 
applied to the corresponding validation fold, with the perfor-
mance statistic being averaged across all folds and repeats of 
cross-validation. (Supporting Information1, sheet S1.4). The 
coefficients of determination reported as R2 and R2

CV were 
calculated using Eq. (1), whilst the coefficients of determi-
nation ‡R2 and ‡R2

CV were calculated using Eq. (2). For the 
coefficients of determination depicted as R2 and ‡R2 (without 
the “cv” indication), the corresponding calculations were 
made by applying the models to data other than those used 
to train them, i.e. the test and external validation sets. Where 
correlation statistics are referred to as “resubstitution” esti-
mates, this means that the model trained on the training set 
was applied to that training set (Hawkins 2004). These are 
not estimates of predictive performance, but may provide 
insight into the degree of overfitting when compared to the 
corresponding statistics on truly independent data.

(1)R2 = 1 −

∑

(y − ŷ)2

∑

(y − ȳ)2
,

where y and ŷ are the observed and predicted values, respec-
tively, and ȳ is the mean of the observed values.

2.3.4  Workflow for model development and validation

The workflow followed in this study is summarized in Fig. 2. 
The different stages of the analysis are clearly shown, i.e. 
data separation, data pre-processing and feature selection 
as well as the development and validation of the models.

3  Results

3.1  Data pre‑processing and feature selection

An initial exploratory analysis of the dataset (190 mol-
ecules, 232 descriptors) revealed a high correlation 
(> 0.80) between the 127 descriptors. As it is always 
desirable to have a reduced set of uncorrelated, nonredun-
dant, and informative descriptors that allow for interpret-
able prediction models, we reduced data dimensionality 
using feature elimination methods. Feature selection was 
performed using the training set of 141 molecules with 
232 descriptors and the corresponding logPe values. The 
method selected for the feature elimination was based on 
a wrapper approach (John et al. 1994). Wrapper methods 
are search algorithms that treat the predictors as inputs and 
utilize model performance as the criterion to be optimized 
(Ambroise and McLachlan 2002). Using the caret package 
(version 6.0–84) in R, we performed a simple backwards 

(2)‡R2 =

�

cov(y, ŷ)
√

var(y).var(ŷ)

�2

,

(3)RMSE =

�

∑N

i=1

�

yi − ŷi
�2

N
,

Fig. 2  Diagram depicting the 
various steps included in the 
present computational analysis, 
i.e. data separation, pre-pro-
cessing and feature selection, 
development and validation of 
the models
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selection of descriptors (Recursive Feature Elimination, 
RFE) with random forest (randomForest package—version 
4.6–14) (Svetnik et al. 2003). Random forest has a built-in 
feature selection (Svetnik et al. 2004) as well as variable 
importance estimation utilized for the RFE approach (Kuhn 
2019; Kotu and Deshpande 2019). We used the version 
of the algorithm that incorporates resampling (rfe) (Kuhn 
2019) and applied an outer resampling method of 20-fold 
cross-validation with three repeats to reduce the risk of 
overfitting of the model to the descriptors and to get per-
formance estimates that incorporate the variation due to 
feature selection. By employing the resampling method, 
we improved the generalization performance of the model 
and obtained a more probabilistic assessment of descriptor 
importance than a ranking based on a single fixed data set. 
The best performance was based on the Root Mean-Square 
Error  (RMSECV) (Alexander et al. 2015) and corresponded 
to a subset of 61 descriptor variables—ranked according to 
their significance in predicting the logPe values (Fig. 3), 
(Supporting Information1, sheet S1.5)—which we further 
used to build our models.

3.2  QSAR models created using the selected 61 
descriptors

The data in the train set were subsequently pre-processed, 
i.e. normalized in the range 0–1. The same pre-process 
parameters were applied for normalization of the test 
(33 molecules) and external validation (16 molecules) 
datasets. Next, we used the training data and employed 

a sophisticated ensemble modelling approach known 
as “stacked regression” (Breiman 1996). Ensemble 
approaches combine the predictions of multiple learn-
ing algorithms for obtaining improved predictive perfor-
mance, which could not otherwise be obtained from any 
of the constituent learners alone. Although an ensemble 
may have multiple base models within the model, it acts 
and performs as a single model (Kotu and Deshpande 
2019). The advantage of such a “metalearner” is that the 
generalization error of the prediction is minimized by 
deducing the biases of the base models with respect to a 
provided learning set. This deduction proceeds by gener-
alizing in a second space—whose inputs are the predic-
tions of the base learners on a given dataset and whose 
output is the actual outcome—and trying to make predic-
tions on new, unseen data (Wolpert 1992).

For the present regression analysis, we used the resil-
ient backpropagation method (Günther et al. 2010; Ried-
miller and Braun 1993) to generate feedforward neural 
network models (Hornik et al. 1989) to be combined in an 
ensemble. This method is considered one of the fastest for 
regression analyses and does not require predefining of 
the overall learning rate. We employed the resilient back-
propagation algorithm with weight backtracking (rpart +) 
(Svetnik et al. 2003), available in the neuralnet package 
(version 1.44.2) (Günther et al. 2010), and trained multi-
layer perceptrons (MLPs) that predicted permeability by 
calculating the following function:

where  w0 denotes the intercept of the output neuron, 
 woj the intercept of the jth hidden neuron, wj the syn-
aptic weight that corresponds to the synapse starting at 
the jth, hidden neuron and leading to the output neuron, 
w = (w1j,…, wnj) the vector of all synaptic weights cor-
responding to the synapses leading to the jth hidden neu-
ron, and x the vector of all covariates (x1,…, xn). More 
specifically, a number of neurons are organized in con-
sequent layers connected by synapses, and the output of 
every neuron in one layer is the input to a neuron in the 
next layer. All the covariates (descriptors) are arranged in 
separate neurons to form the input layer, while the output 
layer consists of the response variable. The intermediate 
layers are referred to as hidden layers. A weight indicat-
ing the effect of the corresponding neuron is attached to 
each one of the synapses (Günther et al. 2010). These 
weights are the parameters of the backpropagation ANN 
models and during the training process are modified by 

o(x) = f

(

w0 +

j
∑

j=1

wj.f

(

woj +

n
∑

i=1

wijxi

))

= f

(

wo +

j
∑

j=1

wj.f (woj + w
T
j
x)

)

,

Fig. 3  Selection of descriptors. Feature selection with random forest 
(recursive feature elimination) for the effective permeability (logPe) 
modelling, using the 141 molecules included in the train set. The 
best performance based on the root mean-square error (RMSEcv) 
(Kaur et al. 2020) corresponded to a subset of 61 descriptor variables 
selected as most significant in predicting the logPe values
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the algorithm to minimize the error function that meas-
ures the difference between the observed (o) and pre-
dicted (y) output values:

where l = 1,…,L is the index for the observations and 
h = 1,…,H is the index for the output nodes.

The algorithm rpart + uses only the sign instead of the 
magnitude of the partial derivatives to update the weights. 
Based on this method and using the previously selected 61 
descriptors, we trained a series of neural network learners on 
the train set of 141 molecules to compare their performance. 
As the selection of the number of hidden units in an ANN is 
not an exact science, trial and error played a significant role 
in this process. The algorithm was applied on the training 
data using different number of hidden layers and neurons 
and employing a resampling method of 20-fold cross-vali-
dation with three repeats. The final choice of hidden units 
(Table 2) was based on a compromise between the quality 
of the model (learning well from the data, avoiding overfit-
ting, etc.) and complexity/computational speed. However, 
it was observed that the use of a relatively small number of 
covariates (61 descriptors) significantly reduced the com-
plexity of the models, despite increasing the hidden layers 
and neurons in a number of them. Further fine-tuning regard-
ing the hidden layers was performed based on the resulting 
root mean-square error and R-squared values  (RMSECV and 
‡R2

CV)—calculated according to Eqs. (3) and (2), respec-
tively (described in “Model Performance Statistics” section) 
and presented as the average across all folds and repeats 
of cross-validation. The models were subsequently used 
to predict the logPe values of the 33 molecules in the test 
set, which provided a less biased evaluation of the models’ 
effectiveness in predicting unseen data. Based on the results 
from both datasets, two ANN based learners with optimized 
parameters were finally selected to be combined in a stacked 
ensemble (Table 2B).

The architecture and complexity of the Ensemble NN 
model is analytically presented in Table 3 and Fig. 4.

An overall evaluation of the variable importance per-
formed by the models NN1 and NN2 while being generated, 
along with a description of the 20 variables selected as most 
informative by this process, is provided in Supporting Infor-
mation1, sheet S1.5. In addition, Fig. 5 presents a correlation 
chart of the top 6 out of the 20 most important descriptors, 
along with the modelled end point Observed Log Pe. The 
distributions of the variables, their correlation to each other 
and to the output as well as their individual contribution in 
explaining the variability of the output are depicted.

A visual comparison of the modelling results—based on 
the evaluation metrics ‡R2CV, RMSECV and MAEcv (Willmott 

E =
1

2

L
∑

l=1

H
∑

h=1

(oith − yith)
2
,

and Matsuura 2005)—for the predictive performance of the 
models NN1 and NN2 obtained via cross-validation on the 
training set (141 molecules) with optimized hyperparameters 
is depicted in Fig. 5. In addition, in Table 4 and Fig. 6, a 
pairwise comparison of the cross-validated results for the 
selected models NN1 and NN2 is shown. As can be seen, 
the correlation between the two models is very low (0.40), 
which means that each model has captured different aspects 
of the data and the information they provide has limited 
redundancy. They are therefore well suited to be combined 
in an ensemble.

We subsequently trained an ANN stacked ensemble 
(Table 2B)—employing again the resilient backpropaga-
tion algorithm and applying 20-fold cross-validation with 
three repeats—using as input variables the predictions of 
the base models on the train set and as output (target) vari-
able the corresponding experimental values of logPe. The 
whole process resulted in the creation of the ensemble model 
EnsembleNN with boosted predictive performance (Fig. 7). 
In Fig. 8, an illustration of the performance of the base mod-
els NN1 and NN2 as well as the EnsembleNN—obtained 
via cross-validation on the training set (141 molecules)—is 
provided by evaluation curves that assess the performance 
of the models and compare the results with the random pick 
(baseline) (Mount and Zumel 2020).

3.3  Domain of applicability (DOA) of the ensemble 
NN model

For estimating the applicability domain (AD) of the 
ensemble, we employed the standard deviation (SD) 
method, extensively used in ensemble modelling (Cao 
et al. 2017; Tetko et al. 2008; Sushko et al. 2010). SD 
measures model reliability by incorporating information 
about the model itself and is based on the assumption that 

Table 3  Result matrix for the EnsembleNN

Error 1.19E-02
reached.threshold 9.76E-03
steps 1.43E + 03
Intercept.to.1layhid1 – 5.09E-01
NN1.to.1layhid1 2.10E + 00
NN2.to.1layhid1 1.86E + 00
Intercept.to.1layhid2 1.58E + 00
NN1.to.1layhid2 – 1.24E + 00
NN2.to.1layhid2 – 1.29E + 00
Intercept.to.2layhid1 – 4.29E-01
1layhid1.to.2layhid1 1.41E + 00
1layhid2.to.2layhid1 – 2.38E + 00
Intercept.to..outcome – 2.09E-01
2layhid1.to..outcome 2.08E + 00
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if for a given compound the predictions of the models in 
the ensemble differ significantly, then the ensemble predic-
tion for this compound is likely to be unreliable. For a set 
of predictions concerning a compound j given by a set of 
k trained models in the ensemble, SD is calculated using 
the following equation:

where  yi is the prediction of the ith model for compound j 
and ȳ is the mean prediction  yj(i) (i = 1..k).

(4)SD(j) =

�

∑k

i=1
(yi − ȳ)2

k − 1
,

Fig. 4  Architecture and complexity of the EnsembleNN. As input 
variables for the ensemble, NN1 and NN2 are used, i.e. the logPe 
values predicted by the neural network base models NN1 and NN2, 
respectively, for the molecules in the training dataset. The observed 
logPe values of the molecules is the output of the model. The ensem-

ble further consists of two hidden layers and three hidden neurons. 
The weights are depicted by black (weights with positive sign) and 
grey (weights with negative sign) lines. The result matrix is presented 
in Table 3

Fig. 5  Correlation chart of the top 6 out of 61 most important descrip-
tors, along with the modelled end point Observed Log Pe, for the model-
ling of membrane permeability (by passive diffusion) of 190 molecules. 
The distributions of the variables, their correlation to each other and to 
the output as well as their individual contribution in explaining the varia-

bility of the output Observed Log Pe is depicted. The Pearson correlation 
coefficient is reported for each pairwise comparison, with the number of 
stars assigned increasing with the magnitude of the correlation
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The EnsembleNN has an AD threshold of approximately 
three times the maximum SD value of the train data (3*0.23) 
(Cao et al. 2017), within which the bulk of the ensemble pre-
dictions are shown to be reliable (Fig. 9). For new samples 
with sd values larger than the threshold, the logPe predic-
tions are likely to be inaccurate.

Subsequently, we evaluated the ability of the Ensem-
bleNN to make accurate predictions on the hitherto unseen 
data of the two external validation sets (normalized with 
the same parameters used for data pre-processing in the 
train set). These predictions were completely unbiased, 
since the external validation sets had not in any way par-
ticipated previously in the development or selection of 
the base models (Supporting Information 1, S1.1). On 
the first external validation set of the 16 molecules the 
EnsembleNN showed enhanced performance, making 
predictions with 89% correlation to the observed logPe 
values (Table 2D, Fig. 10). The second external valida-
tion set consisted of two anti-COVID-19 drugs, namely 
Paxlovid and Remdesivir for which the permeation abil-
ity (not measured with PAMPA) is known (Hung et al. 
2022; Schäfer et al. 2022). The two drugs have chemical 
structures very different from those included in the data-
set of 190 molecules: Paxlovid is a new, orally adminis-
tered, target-specific antiviral drug that has excellent per-
meation ability and is currently state-of-the-art treatment 
against COVID-19. Remdesivir, a nucleoside analogue, 
has been used in the early stages of the pandemic after 

Table 4  Pairwise comparison 
of the cross-validation 
results for the selected and 
optimized models NN1 and 
NN2 (Table 1A). The metric 
used is root mean-squared 
error (RMSE). The models 
were not strongly correlated 
(0.40), indicating that they were 
informative in different ways 
and suitable to be combined in 
an ensemble

Models NN1 NN2

NN1 1.0000000 0.3963362
NN2 0.3963362 1.0000000

Fig. 6  Visual comparison of the modelling results: evaluation met-
rics (‡R2CV, RMSECV and MAEcv) for the prediction performance of 
the models NN1 and NN2 obtained via cross-validation on the train-
ing set (141 molecules) with optimized parameters (Table 2A). The 
arithmetic mean (circles) and confidence intervals (95%) are plotted 
for each distribution. Here, “R-squared” refers to ‡R2CV, calculated 
according to Eq. (2) as described in the “Model Performance Statis-
tics” section. The mean absolute error (MAE) (Willmott and Matsu-
ura 2005) evaluation metric, also presented here, is less sensitive to 
outliers than  RMSECV

Fig. 7  Pairwise comparison of the cross-validation results for the 
models NN1 and NN2 (Table  4). The scatterplot matrix shows 
whether the predictions from the models are correlated. The plotted 
results, for which correlations are examined, are based on the root 
mean-squared error  (RMSECV). If any two models are 100% corre-
lated, they are perfectly aligned around the diagonal. Between NN1 
and NN2, the correlation is very low (0.40), meaning that there is 
limited redundancy in the information given by these models. This 
proved valuable for the creation of the ensemble model EnsembleNN 
(Table 2B)
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Fig. 8  Gain curve plots of the log Pe values predicted by the base 
models NN1 and NN2 and the ensemble model EnsembleNN against 
the experimental logPe values. The gain curves show whether the 
models’ predictions are sorted in the same order as the actual log 
Pe values. As sorting is the process of placing elements from a col-
lection in some kind of order, the gain curve plot depicts how well 
the models sort their predictions compared to the true outcome val-
ues. For the evaluation of a model’s performance, the relative Gini 

score metric is used as follows: relative Gini score equals 1 when a 
model sorts exactly in the same order as the actual outcome, whereas 
the score is close to zero, or even negative when a model sorts poorly 
compared to the actual values. The metric therefore can be considered 
as a measure of how far from “perfect” a model is. The models NN1, 
NN2 and EnsembleNN show relative Gini scores 0.72, 0.69 and 1, 
respectively (Mount and Zumel 2020)

drug repurposing and due to its low permeability was 
administered only intravenously. The model made correct 
predictions within the applicability domain for both mol-
ecules: high permeability was predicted for Paxlovid and 
poor permeability for Remdesivir (predicted logPe – 5.29, 
sd = 0.44 and – 6.72, sd = 0.18, respectively).

Backpropagation depends heavily on the training data 
(Schäfer et al. 2022). To assert the robustness of the Ensem-
bleNN, we have tested model generalization performance as 
noise rises in the training data. Since in our analysis the chemical 
structures are represented by theoretically calculated descriptors, 
noise would only be expected in the output variable, i.e. the 
experimentally measured logPe. We therefore added noise to 
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the LogPe values in the training data and repeated the analysis. 
The results are presented in Supporting Information 1, S1.8.

Whilst the ANN models can make highly accurate pre-
dictions, they provide little explanatory insight into the 
relative influence of the independent variables in the pre-
diction process (Olden et al. 2004). On these grounds, a 
more straightforward means of obtaining general insights 
into the influence of individual descriptors on the modelled 
logPe variable has been employed here. We used the rpart 
(Therneau and Atkinson 2018) algorithm to create a single 
decision tree on the entire dataset of 190 molecules, using 
the selected set of 61 descriptors. The decision path (Fig. 11) 
shows the features—along with their threshold values—
associated with every decision. A description of the features 
is provided in Supporting Information1, S1.5.

3.4  Linear model created using only structural 
descriptors

To explore the percentage of the LogPe variation that a 
model built on descriptors other than  the Lipinski-like 
properties could explain, we used a subset of 6 descriptors 
(out of the 61) carrying structural information to build a 
linear model (Faraway 2005). The set included four struc-
tural descriptors from the BCUT chemical space as well 
as the geometrical FNSA.3 and the MDEO.11 descriptors 
(Supporting Information 1, sheet S1.5) (Guha 2007). Fol-
lowing the same protocol as previously described (same data 
partitioning to train, test and external validation datasets, 

normalization, etc.) we created a linear regression model, 
and the results are presented in Table 5.

As can be seen, approximately 41% of the LogPe varia-
tion is captured by the six descriptors, with the Pearson cor-
relation between the experimental and the predicted LogPe 
values being 64% for the train and external validation sets 
and 73% for the test set.

3.5  Implementation of the EnsembleNN model

Following development and validation, we used the ensemble 
model EnsembleNN to predict the logPe at pH 7.4 of 4520 
molecules contributed by medicinal chemists to the COVID 
Moonshot Project and downloaded from the PostEra site 
(Kansy et al. 1998) on May 1st, 2020. Our engagement with 
this data emerged as an activity within the European Union’s 
Horizon 2020 project NanoCommons Translational Access 
(TA) (NanoCommons Translational Access (TA) xxxx) and 
was initiated by Tim Dudgeon from the software company 
Informatics Matters Ltd. (Informatics Matters Ltd xxxx), who 
created a repository project board on GitHub (Dudgeon xxxx) 
dealing with the ADME (Absorption, Distribution, Metabo-
lism and Excretion) analysis of the molecules included in the 
above-mentioned dataset, for which activity data were not 
available. As a follow-up, on February 2nd, 2021, we also 
downloaded from the PostEra site 1561 molecules for which 
biological activity is available and made predictions on their 
logPe values.

The data were provided as SMILES strings of the mol-
ecules, from which a single 3D conformation was created 
for each structure with the publicly available Bioclipse soft-
ware (Spjuth et al. 2007, 2009) and the previously selected 61 
descriptors were calculated using the rcdk package in R. Pre-
processing of the data (range from 0–1) was performed with 
the same parameters used for the development and external 
validation datasets. Predictions on the permeability of the mol-
ecules were performed with the ensemble model EnsembleNN, 
and the results together with data on the molecules´ activity 
(when available) are presented in Supporting Information S1, 
sheets S1.6 and S1.7.

Both Rapidfire and fluorescence assays were used to meas-
ure the bioactivity of the molecules. The reported  IC50 values 
(uM) represent the average over multiple dose–response runs 
of the molecules in each assay (https:, , github.com, postera-ai, 
COVID_moonshot_submissions. xxxx; Lu et al. 2016).

The structures of selected molecules (47 out of 1561) 
exhibiting inhibitory activity against  Mpro with  IC50 < 100 
uM in both assays, along with their predicted logPe, are 
depicted in Supporting Information 2.

Fig. 9  Combined plot depicting the standard deviation (sd) values 
calculated according to Eq. (4) for the train, test and external valida-
tion data versus the root square error (rse_ens) between the respective 
observed logPe values and the predictions made by the EnsembleNN 
model for each one of the molecules. The applicability domain (AD) 
threshold for the EnsembleNN is ~ 3*maxSDTrain (~ 0.69) (Mount 
and Zumel 2020). For new samples with sd values larger than the 
threshold, the logPe predictions are likely to be inaccurate. Indeed, 
it is clearly shown that for the molecule with sd > 1 that the differ-
ence between the observed and predicted logPe values is considerable 
(rse_ens > 1.5), and had it been a new sample the prediction would 
rightly not have been considered valid.
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4  Discussion

The fact that a drug’s transport via passive diffusion is 
strongly connected to certain physicochemical properties 
has been previously shown by Lipinski (Lipinski 2000; 

Lipinski et  al. 2001). Lipinski and later Veber (Veber 
et al. 2002) suggested “rules of thumb” to be followed 
by medicinal chemists, concerning the accepted mar-
gins of property values (nHBDon < 5, nHBAcc < 10, 
MW < 500, XlogP < 5, TPSA < 140  A2) that ensure oral 
bioavailability. Indeed, across the two methods (ANN and 

Fig. 10  Plot depicting the Pearson correlation (%) of the experimentally observed logPe values of the molecules in the external validation set 
versus the values predicted by the base models NN1 (86%) and NN2 (86%) and the stacked regression model EnsembleNN (89%) (Table 2D)



Network Modeling Analysis in Health Informatics and Bioinformatics (2023) 12:16 

1 3

Page 15 of 22 16

single decision tree) used to model logPe, the topologi-
cal descriptor tpsaEfficiency—representing the polar sur-
face area of a molecule expressed as a ratio to molecular 
size—ranked first on the list of features evaluated as most 
relevant (Supporting Information1, S1.5). In the decision 
tree, tpsaEfficiency is depicted as the root node, as well as 
the second and third node (Fig. 11). The list of high rank-
ing descriptors invariably included—although in different 
order depending on the method selected—features related 

to lipophilicity (octanol/water partition coefficients XlogP 
and AlogP) and the number of hydrogen bond donors in 
a molecule (nHBDon). A clear path in the decision tree 
indicated by the nodes 1, 2, 5, 10, 11 and 22 suggests that 
for acidic compounds (nAcid >  = 0.44)—shown to have 
“lower permeability”—charge is influential, whereas for 
the non-acidic molecules (nAcid <  = 0.44) lipophilicity 
and the number of hydrogen bond donors are decisive. 
The results from both modelling methods suggesting 

Fig. 11  Single decision tree created on the whole dataset (190 mol-
ecules) using the 61 descriptors selected by recursive feature elimi-
nation (RFE) with random forest. The descriptors’ values are scaled 
and centred. The decision path clarifies which features are asso-
ciated with every decision as well as the threshold values of the 
top descriptors that are responsible for a molecule having high/low 
effective permeability (logPe) at pH 7.4. The results are presented 
in mean values of logPe, along with the number and percentage of 
molecules corresponding to these values. The logPe values of the 190 

molecules are depicted progressively from white (low permeability) 
to deep blue (high permeability). According to the rough classifica-
tion scheme introduced in the section “Permeability Measurements 
and Experimental Setup” where the cut-off logPe value is − 6.2 (Chi 
et  al. 2019), the tree classifies 94 molecules as having “higher per-
meability” (logPe ≥ -− 6.2) and 96 as having “lower permeability” 
(logPe < -− 6.2), whilst 92 and 98 molecules are experimentally 
shown to have high/low permeability, respectively, according to the 
PAMPA assay results

Table 5  Modelling the effective membrane permeability (logPe) of compounds (190)

A. Creation of the linear regression model and performance evaluation on the train set (141), ( 20-fold cross-validation with three repeats)

Model ‡R2
CV R2

CV RMSECV Resubstitution

LM 0.43 0.31 0.20 Pearson correlation = 0.64
rmse = 0.20
Rsquare = 0.41
R2 = 0.41

B. Evaluation of Model’s Performance on the Test Set (33)

Model ‡R2 R2 RMSE Pearson correlation

LM 0.53 0.47 0.18 0.73

C. Evaluation of model’s performance on the external validation set (16)

Model ‡R2 R2 RMSE Pearson correlation

LM 0.39 0.38 0.20 0.64
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that non-polar, lipophilic and uncharged molecules are 
more likely to penetrate the highly hydrophobic intes-
tinal cell membranes chime with previous reports (Chi 
et al. 2019; Oja and Maran 2015a, b, c, 2016a, b, 2018). 
However, given the pH variation in the intestinal environ-
ment (Avdeef 2001), measuring membrane permeability 
at only neutral pH (7.4) may eliminate compounds with 
good absorption characteristics at other pH values (Oja 
and Maran 2015a, 2015b, 2016a). Acidic compounds like 
valsartan or salicylic acid (IDs 186 and 144, Supporting 
Information 1, S1.1) show good permeability in acidic pH 
(5) only (logPe values – 5.99 and –5.53, respectively) (Oja 
and Maran 2015b).

4.1  Importance of descriptors

Unlike previous attempts mostly depending on the combi-
nation of few “Lipinski-like” properties to explain the per-
meability of molecules, the present work aims to highlight 
the importance of additionally using meaningful structural 
information in modelling LogPe. Indeed, in Sect. 3.3 of 
the manuscript, we have shown that a set of six structural 
descriptors could capture approximately 41% of the variation 
in our data. Most interestingly, the BCUT descriptors are 
previously reported to allow for reversible decoding (Masek 

et al. 2008). While the combination of Lipinski-like descrip-
tors may carry sufficient information to deduce substructural 
features, the high precision coordinates in BCUTs reveal a 
high level of detail from which a unique chemical structure 
or closely related analogues can be derived (Masek et al. 
2008). The BCUT metrics introduced by Pearlman (Pearl-
man and Smith 2022) are whole-molecule descriptors that 
combine two or more measures of atom-based properties 
into a single value and are significant in measuring molecu-
lar diversity (Stanton 1999). Being extensions of previously 
developed parameters (Burden 1989), they further expand 
the number and types of atomic features that can be consid-
ered and provide a greater variety of proximity measures 
and weighting (Stanton 1999). Currently, three weighting 
schemes are employed: atomic weight (BCUTw), partial 
charge (BCUTc) and polarizability (BCUTp). In Fig. 12 the 
negative relationship between BCUTc1h and LogPe ( perme-
ability) as well as between BCUTc1 and XLogP (lipophilic-
ity) is presented.

Each dot on both sides of the line represents an observa-
tion, i.e. a molecule with an observed logPe and a calcu-
lated BCUTc1h value. In each scatterplot, the dots are sized 
according to a third variable, i.e. the structural descriptor 
BCUTw1h. It can be observed that more than one structural 

Fig. 12  The negative relationship between BCUTc1h and LogPe (per-
meability) as well as between BCUTc1 and XLogP (lipophilicity) is 
presented. In each scatterplot, the dots are sized according to a third 

variable, i.e. the structural descriptor BCUTw1h. It can be observed 
that more than one structural combinations could lead to the same 
LogPe and XlogP values
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combinations could lead to the same LogPe and XlogP 
values.

The geometric descriptor FNSA.3, which combines the 
surface area and partial charge information (charge weighted 
partial negative surface area/total molecular surface area) 
was estimated by the ANN models as highly significant, 
which is in accord with previous reports (14–19). In Fig. 5, 
where the correlation of the top 6 out of 61 most impor-
tant descriptors along with the modelled end point logPe 
is presented, we can see that a positive linear association is 
observed between the descriptor FNSA.3 and logPe. This is 
better shown in Fig. 13, where a general illustration of the 
relationship between the two variables is provided. Each dot 
on both sides of the line represents an observation, i.e. a 
molecule with an observed logPe and a calculated FNSA.3 
value. The overall pattern of the graph suggests that higher 
FNSA.3 values are generally associated with increased 
permeability (approximately logPe ≥ -6.2). In each scatter-
plot, the dots are sized according to a third variable, i.e. 
the descriptors nHBDon, XlogP and TopoPSA (topologi-
cal polar surface area), respectively, to explore their influ-
ence on the observed permeability. It can be clearly seen 

that an increase of FNSA.3 combined with low nHBDon 
and TopoPSA values and high XlogP (> 0, < 6) result in 
increased permeability.

In Table 6, structures of the ten best performing mol-
ecules (out of the 1561, PostEra) in terms of their activity 
against  Mpro  (r_avg_IC50 < 1uM) are presented, along with 
their logPe as predicted by the model EnsembleNN. The 
“Lipinski-like” properties of the synthesized compounds 
are compliant with the rule of five and high permeability 
is predicted for the majority of them. Electron-withdrawing 
sulphonyl functional groups in molecules 1145 and 1245 
appear to have negative effect on their membrane permeabil-
ity. Although the presence of sulphonyl groups increases the 
number of hydrogen bond acceptors and enhance the binding 
affinity of drugs with target proteins through hydrogen bond 
interactions, they also increase polarity and affect solubility 
and acid–base properties (Fei et al. 2016), features already 
shown to be highly relevant for the membrane permeability 
of molecules.

Fig. 13  Illustration of the relationship between the descriptor FNSA.3 
and the observed LogPe. Each dot on both sides of the line represents 
an observation, i.e. a molecule with an observed logPe and a calcu-
lated FNSA.3 value. The overall pattern of the graph suggests that 
higher FNSA.3 values are generally associated with increased perme-
ability (approximately logPe ≥ -− 6.2). In each scatterplot, the dots 

are sized according to a third variable, i.e. the descriptors nHBDon, 
XlogP and TopoPSA (topological polar surface area), respectively, to 
explore their influence on the observed permeability. It can be clearly 
seen that an increase of FNSA.3 combined with low nHBDon and 
TopoPSA values and high XlogP (> 0, < 6) result in increased perme-
ability
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5  Conclusions

In the present work, we employed a “stacked regression” 
ensemble approach to model the effective membrane 

permeability coefficient LogPe of 190 compounds, meas-
ured by the PAMPA assay at pH 7.4. On the whole, built on 
the set of 61 selected descriptors, our ensemble ANN model 
provides a method for the quantification of drug-likeness, 

Table 6  Structures of the ten 
best performing molecules 
(out of the 1561) in terms 
of their activity against the 
main protease  Mpro (r_avg_
IC50 < 1uM) are presented, 
along with their logPe as 
predicted by the model 
EnsembleNN
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particularly useful for drugs that move beyond the traditional 
rule of five space to access challenging targets (Alex et al. 
2011). Unlike Lipinski’s rule, used for filtering large datasets 
of molecules and achieving no other discrimination of com-
pounds beyond a qualitative pass or fail, our model allows 
for the optimization of relevant physicochemical properties 
of new molecules of interest—even before they are synthe-
sized—through careful multi-criteria evaluation and control.

6  Data, software and code availability

Publicly available permeability data (Chi et al. 2019) con-
taining the SMILES strings of 190 structurally diverse drug 
or drug-like molecules with recorded effective permeability 
(logPe) values were used for creating the QSAR models in 
the present work. The data—carefully curated by Chi et al. 
(Chi et al. 2019) and based on previous reports by Oja et 
Maran (2015a, b, c, 2016a, b, 2018)—were generated with 
the same experimental protocol and were therefore highly 
homogenous. A single 3D conformation was created for each 
structure using the publicly available Bioclipse software 
(Spjuth et al. 2007, 2009). Data analysis and QSAR model-
ling were performed using the publicly available R Statisti-
cal Programming Language (version 3.5.1, 64bit and 4.0.3, 
64BIT) (R Core Team 2018). R is both a language and an 
environment for statistical computing and graphics, provid-
ing a wide variety of statistical (linear and nonlinear model-
ling, classical statistical tests, time-series analysis, classifi-
cation, clustering) and graphical techniques and is highly 
extensible. R is designed around a true computer language 
allowing users to add additional functionality by defining 
new functions. Extended functionalities are added to R by 
installing a number of packages, including Machine Learn-
ing algorithms implemented as third party libraries. The fol-
lowing R packages were used for the analysis: rcdk (Guha 
2007), randomForest (Liaw and Wiener 2002), caret (Kuhn 
2019, 2008), rpart (Therneau and Atkinson 2018), rpart.
plot (Milborrow 2019), caretEnsemble (Deane-Mayer and 
Knowles 2016), tidyverse (Wickham et al. 2019a), mlbench 
(Leisch and Dimitriadou 2010), corrplot (Wei and Simko 
2017), neuralnet (Günther et al. 2010), and dplyr (Wickham 
et al. 2019b), magrittr (Bache and Wickham 2014), WVPlots 
(Mount and Zumel 2020). The R code, a file detailing the 
versions of all R packages and individual subsets saved as 
CSV files for reading into the R modelling workflows have 
been made available on Zenodo (Gousiadou 2021), along 
with a README file explaining their contents and guid-
ance on how to reproduce results via running the available 
code files.

The model has been implemented as a web service in the 
Jaqpot 5 modelling platform (Sarimveis 2019; ) and is avail-
able at the following URL: https:// app. jaqpot. org/ model/ 

NDmy6 udCm9 UjmEM q0Zaq under the NanoCommons 
organization. In the “overview” tab, details about the model 
are presented. For accessing the model, the interested user 
should first register in Jaqpot 5 and then become a member 
of the NanoCommons organization by sending an e-mail to: 
E-mail: hsarimv@central.ntua.gr.

7  Supporting information

Supplementary material for this work is included in the 
Supporting Information 1, as different sheets of an Excel 
workbook (also including the SMILES strings of all the 
compounds) and in the Supporting Information 2 where 
the structures of 47 most bioactive molecules (out of 1561 
downloaded from the PostEra site with recorded bioactivity 
against  Mpro) along with their recorded  IC50 and predicted 
LogPe values are depicted.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13721- 023- 00410-9.
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