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Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. 
However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as 
feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also 
referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is 
represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We 
survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally 
define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We 
also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further 
state some promising research directions in the area. Main results of this study include a systematic review of fundamental 
temporal network problems and their algorithmic solutions considered in the literature, in particular those having application 
in computational biology and medicine. We also include the main software developed in this context.

1 Introduction

Networks are commonly used for modelling association 
among the building blocks of complex systems in biology 
and medicine Cannataro et al. (2010). Models are often built 
from available data; thus, the availability of static data has 
lead to the introduction of simple static models (Aittokallio 
and Schwikowski 2006; Parthasarathy et al. 2010; Dondi 
et al. 2021a). Due to technological advances, the production 
of more sophisticated data has shed light into quantitative 
and time-varying relationships among biological entities 
in a given organism (Murugan et al. 2021; Mattsson and 
Takes 2021; Shawn et al. 2022). Therefore, researchers have 
introduced more complex models able to gather such infor-
mation and to reuse them to produce relevant knowledge. 
Examples of these models are: temporal networks modelling 
cellular components, or spreading processes, like the spread 

of information and disease (Russell et al. 2020; Petrizzelli 
et al. 2022; Cinaglia and Cannataro 2022).

We here focus on temporal (or time-varying) networks. 
A temporal network is a network whose edges are present 
only at certain points (called timestamps) in a discrete time 
domain, so it may be seen as a sequence of static networks, 
one for each timestamp, as represented in Fig. 1. Each edge 
may also be weighted or labelled, to carry more information. 
Temporal networks are a special kind of dynamic networks, 
which are graphs that from an initial state may change due 
to different events, not only to edges, but also to nodes (node 
addition and deletion, node splitting, and node merging) in 
a continuous evolution Kazemi et al. (2020).

After the introduction of these models, it has been clear 
that novel ad-hoc algorithms developed for the analysis of 
such networks were necessary. First approaches were based 
on the reductionist approach involving the aggregation of 
different dimensions (or timestamps) into a single network 
discarding all the information related to time. This approach 
enabled the reuse of the large plethora of existing methods 
but caused the loss of all the important information related 
to temporal evolution.

Consequently, to overcome this limitation, novel methods 
have been introduced. Many of these methods were based 
on the analysis of each single timestamp independently via 
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the existing methods for static network analysis Kumar Das 
et al. (2021). Then, results were aggregated by means of 
time-series analysis. Nevertheless, it was clear that the best 
option was the analysis of the network using an holistic 
approach integrating the different snapshots.

Natural and social systems show a behaviour that can 
be described as temporal networks, where interactions are 
observed only intermittently Li et al. (2017). This happens 
for example in cellular metabolic networks Almaas et al. 
(2004), protein structure networks Ortuso et al. (2021) or in 
brain networks William and Peter (2016).

Holme and Saramaki presented in Holme and Saramäki 
(2012) the first review paper related to temporal graph in 
2012. Main contribution of this seminal work was to define 
clearly the temporal graph data structure and main problems 
(Holme and Saramäki 2012, 2019; Masuda and Lambiotte 
2016)

The survey in Michail (2016) focuses on algorithm 
design. It highlights several issues related to path problems, 
Menger’s Theorem, dissemination, local and global proper-
ties, and network design.

In this paper, we present a systematic literature review 
of the main temporal network problems and their algorith-
mic solutions. The main aims of this paper are to introduce 
basic concepts of temporal networks and to review main 
algorithms for their analysis, as well as main applications 
in biology and medicine. We also include the main software 
developed in this context, with the goal of highlighting also 
the tools available to analyse temporal networks.

Some of these problems (for example, dense subgraph 
and colored motif discovering, graph covering) have not 
been analysed by other surveys and this represents a novel 
contributions of our survey. A second contribution is the 
focus on biological and medicine applications, which is not 

deepen in the previous surveys. Finally, a third novel con-
tribution is the presentation of software tools for the anal-
ysis of temporal networks, while other survey are mainly 
theoretical.

The rest of the paper is organised as follows. In Sect. 2, 
we define the main concepts related to temporal networks. 
In Sect. 3, we introduce some network measures that have 
been introduced to evaluate the relevance of nodes/edges 
in a temporal networks or general properties of a temporal 
network. In Sect. 4, we consider the main graph problems 
and the main computational results, including methods for 
temporal networks traversing, such as path finding and con-
nectivity, and for covering and finding dense subgraphs in 
temporal networks.

In Sect. 5, we discuss motif search in temporal networks, 
that is the core operation in several network analysis meth-
ods, such as network alignment and network embedding.

In Sect. 6, we recall the main software tools for temporal 
networks analysis, that are key elements for the application 
of fundamental methods to solve concrete problems.

In Sect. 7, we review the main problems in biology and 
medicine that have been modelled with temporal graphs, 
such as brain connectome, protein–protein interaction net-
works, and epidemiology.

In Sect. 8, we report a summary of the main contributions 
of the paper.

Finally, in Sect. 9, we discuss open problems and future 
research directions.

1.1  Methodology

The reporting of this systematic review was guided by the 
standards of the Preferred Reporting Items for Systematic 

Fig. 1  Figure depicts three tem-
poral snapshots of a temporal 
network
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Review and Meta-Analysis (PRISMA) Statement Sarkis-
Onofre et al. (2021).

2  Basic concepts of temporal networks

A graph G = (V ,E) is a pair of sets, where V is a set of nodes 
or vertices, and E is a set of edges (directed or undirected). 
A multigraph G = (V ,E,D) consists of three sets, where D is 
a class of dimension sets, that allows to define properties to 
edges of the multigraph. A temporal graph is a special case 
of multigraph, where D is a set T of discrete and ordered 
timestamps. We present next the formal definition of tem-
poral graph (see Fig. 1).

Definition 1 A temporal graph G = (V ,E, T) is defined over 
three sets: 

1. V, a set of nodes
2. T, an ordered set of timestamps t1 < t2⋯ < tM
3. E, a set of temporal edges, where each temporal edge is 

a triplet (u, v, t), with u, v ∈ V  and t ∈ T .

Notice that in a temporal graph, edges may change from 
one timestamp to the other, while the set of nodes is not 
changing. In the following, we denote by n the number of 
nodes, by m the number of temporal edges, and by tM the 
number of timestamps.

We denote by G(t) = (V ,E(t)) , where t ∈ T  , the static 
graph induced by the active edges E(t) defined at times-
tamp t. G(t) is called the snapshot of G at timestamp t. The 
temporal graph G can be seen as a sequence of snapshots 
(G(1),G(2),… ,G(tM)) , where tM is the maximum timestamp 
in T. In Fig. 1, we have presented an example of a temporal 
graph consisting of three snapshots.

We denote by A(t), where t ∈ T  , the adjacency matrix 
(also called connectivity matrix) of a snapshot G(t) at 
timestamp t. A(t) is a V × V -matrix, where A(t)u,v = 1 if 
(u, v, t) ∈ E(t) and u ≠ v (there is an edge between nodes u 
and v at timestamp t); otherwise, A(t)u,v = 0 . Notice that the 
diagonal entries of A(t) are equal to 0, that is, A(t)v,v = 0 for 
any v ∈ V .

A temporal graph can be seen also as an edge-labelled 
graph (see Fig. 2), where labels associated with an edge 
represent the timestamps where that edge is available (or 
active).

Next, we present the definition of underlying graph of a 
temporal graph. Informally, the underlying graph represents 
the relations and the structure of a temporal graph, no mat-
ter in which timestamp, and can be seen as the union of the 
snapshots (see the right part of Fig. 2) where the edges are 
not labelled by timestamps.

Definition 2 Given a temporal graph G = (V ,E, T) , the 
underlying static graph Gs = (V ,Es) of G is defined on the 
same node set V, while the set Es of edges is defined as 
follows:

Notice that while a snapshot is a static graph that contains 
only the edges defined in a specific timestamp, the underly-
ing graph contains all the edges defined in some timestamp 
of the time domain.

An extension of the definition of temporal graph has been 
given in Huanhuan et al. (2014), called extended temporal 
graph, where each temporal edge is denoted by a quadruple 
(u, v, t, �) , with u, v are two nodes, t is a timestamp, and � is 
the traversal time to go from u to v (see Fig. 3). Essentially, 
it represents a weighted version of the definition of temporal 
graphs, where if (u, v, t, �) is a temporal edge, then starting 

Es = {(u, v) ∶ (u, v, t) ∈ E, for some t ∈ T}.

Fig. 2  (1) A representation of 
the temporal graph of Fig. 1 as 
a labelled graph and (2) the cor-
responding underlying graph G
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from node u at time t, it is possible to traverse the edge from 
u to v and arrive at time t + � in v. Notice that in some appli-
cations, the weight/traversal time of an edge may change 
over time, and possibly, there could be different traversal 
time to go from u to v at the same time t.

One of main concept that has been extended from static 
graphs to temporal graphs is that of traversing a graph with 
a walk or a path. We start to give the definition of temporal 
walk (see the example of Fig. 4).

Definition 3 Given a temporal graph G = (V ,E, T) , a tem-
poral walk in G is a sequence w = ⟨v1 e1 v2 e2 … eq−1 vq⟩ 
of nodes vi , 1 ≤ i ≤ q , and temporal edges ei , 1 ≤ i ≤ q − 1 , 
such that the following properties hold:

• For each i, with 1 ≤ i ≤ q − 1 , ei = (vi, vi+1, ti) , for some 
timestamps ti of T

• For each i, with 1 ≤ i ≤ q − 1 , consider the temporal 
edges ei = (vi, vi+1, ti) and ei+1 = (vi+1, vi+2, ti+1) , then 
ti < ti+1 (or in some case ti ≤ ti+1).

The starting time of w is t1 , then ending time is tq−1.
Now, we can define the related concept of temporal path, 

trail, and circuit (see Fig. 5 for an example of a temporal 
path in a temporal path and Fig. 3 for an example of a tem-
poral path in an extended temporal graph).

Definition 4 Given a temporal graph G = (V ,E, T).

• A temporal path is a temporal walk where all the vertices 
are distinct.

• A temporal trail r = ⟨v1 e1 v2 e2 … eq−1 vq⟩ is a walk, 
such that each edge is traversed at most once, that is, for 
each ei = (vi, vi+1, ti) and ej = (vj, vj+1, tj+1) , then (vi, vi+1) 
is different from (vj, vj+1).

• A temporal circuit is a temporal walk that starts and ends 
from a same node.

Another fundamental concept of static graphs that has 
been considered in temporal graphs is the node degree. Next, 
we introduce the definition of temporal node degree.

Definition 5 Given a temporal graph G = (V ,E, T) , a tem-
poral degree of node v over time interval [ti, tj] in G, where 
ti < tj is given by

(1)degv(ti, tj) =
∑

u∈V⧵{v}

tj∑

t=ti

�(v, u, t),
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Fig. 3  An extended temporal graph, where edges are labelled by pair 
(t, �) , where t is a timestamp and � the time required to traverse the 
labelled edge at time t. In bold, a temporal path from Node 1 to Node 
4 that starts a t time 1 and arrives at time 5
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Fig. 4  An example of temporal walk in a temporal graph from Node 
1 to Node 3. The thick edges belong to the walk; notice that the 
timestamps in bold satisfy the time constraint
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edges belong to the path and each node on the path is traversed once; 
notice also in this case that the timestamps in bold satisfies the time 
constraint
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where u ∈ V ⧵ v , and �(v, u, t) is equal to 1 if there is a tem-
poral edge between nodes v and u at timestamp t; otherwise, 
�(v, u, t) is equal to 0.

Notice that degv(t) is the temporal degree of v in times-
tamp t, which is defined as in Eq. 1 where ti = tj = t.

Notice that we can define the function �(v, u) for the 
underlying static graph as follows. If there is at least one 
edge between nodes v and u (where u ∈ V ⧵ v ) in a times-
tamp t, with t = 1, 2,… , tM , �(v, u) is equal to 1, otherwise 
�(v, u) is equal to 0. Formally, �(v, u) is defined as follows:

Now, we define inter-contact time between two nodes. It 
measures the difference between two consecutive times-
tamps where a certain temporal edge appears. Given two 
nodes connected by at least two temporal edges, the defini-
tion of inter-contact time is defined as follows.

Definition 6 Given two nodes v and u connected by z ≥ 2 
temporal edges, the inter-contact time �v,u between v and u 
is a list of size z − 1 , where each value of the list is defined 
as follows. Assume that the i-th temporal edge connecting v 
and u, 1 ≤ i ≤ z − 1 , is in timestamp ta , the i + 1-th temporal 
edge connecting v and u is in timestamp tb > ta , then the i-th 
value of �v,u is defined as tb − ta.

Consider the example of Fig. 6, the inter-contact time 
between nodes v and u is the list [2, 1].

Next, we define the concept of optimal path and opti-
mal distance in a temporal graph. Unlike in static graphs, in 

(2)𝜙(v, u) =

�
1 if

∑tM
t
𝜙(v, u, t) > 0

0 if
∑tM

t
𝜙(v, u, t) = 0.

temporal graphs, an optimal temporal path can be defined 
in several ways, based on different criteria such as arrival 
time, overall traversal time, and number of traversed edges. 
Therefore, here, we define optimal temporal path between 
two nodes u and v as a temporal path that starts in u, arrives 
in v, where u and v are distinct, and that minimizes one of 
the measures defined in Sect. 4.1. The measure can be the 
arrival time (leading to foremost temporal path), the overall 
traversal time (leading to fastest temporal path), or the num-
ber of traversed edges (leading to shortest temporal path). 
The optimal distance between u and v, denoted by �u,v , is the 
measure of an optimal temporal path in a temporal graph 
G. We denote by �I

u,v
 , the optimal temporal distance in the 

temporal graph defined over time interval I = [ti, tj] , where 
ti ≤ tj . Notice that, if t = ti = tj , �I

u,v
 is the optimal temporal 

distance in G(t).

3  Temporal network measures

Temporal network measures have been widely applied to 
represent local properties of nodes or global properties of 
the entire network.

3.1  Centrality measures

Centrality measures defined in static graphs have been 
extended to temporal graphs. In graph analysis, centrality 
measures are important concepts and have been widely used 
to identify important nodes in a graph. Centrality has been 
defined with different metrics and each of them shows the 
importance of a node from a different perspective. Here, 
we define three important centrality measures: degree cen-
trality, closeness centrality, and betweenness centrality in a 
temporal graphs.

Degree centrality of a node shows the importance of the 
node based on the number of its interactions. A node with 
higher number of interactions can be a good candidate to 
pass information to large part of the nodes in a network. 
Degree centrality in a temporal graph is calculated, similarly 
to static case, with an additional sum across timestamps. 
More precisely, temporal degree centrality of node v in a 
temporal graph is calculated as the sum of the degrees of v in 
each snapshot. Following Thompson et al. (2017), Temporal 
Degree centrality TD(v) of node v is given by

where recall that degv(t) is the degree of node v in snapshot 
G(t).

The second centrality measure of a node that we con-
sider is the temporal closeness centrality which shows the 

TD(v) =

tM∑

t=1

degv(t),

Node v

Node u

t1

Node v

Node u
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Node v

Node u

t3

Node v

Node u

t4
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Fig. 6  A simple example of a temporal network with two nodes v and 
u and five timestamps that illustrates the concept of the inter-contact 
time. The inter-contact time �

v,u between nodes v and u is a list of size 
2, since there exist three temporal edges connecting v and u. �

v,u is 
equal to [2,1], where the first value is the difference between times-
tamps of second and first temporal edge connecting v and u, that is 
timestamps 3 and 1; the second value of the vector is the difference 
between timestamps 4 and 3 (the timestamps of the third and second 
temporal edge connecting v, u)
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importance of a node by measuring how fast other nodes 
are reachable from it in a temporal graph Pan and Saramäki 
(2011). Temporal closeness centrality of a node v is obtained 
by averaging the sum of the inverses of the optimal distances 
between v and other nodes of the temporal graph. Indeed, 
temporal closeness centrality TC(v) of node v is defined by

where recall that �v,u is the optimal distance for any v, u ∈ V  
where v ≠ u . Therefore, the node with higher closeness cen-
trality is an ideal node to transmit quickly an information to 
all other nodes in a network.

Betweenness centrality measures the importance of a 
node based on the number of times that the node appears 
in an optimal temporal path between any pair of nodes. 
Nodes with high betweenness centrality are crucial for the 
commutation in a network, since they connect with optimal 
paths many nodes with each other. Betweenness centrality 
has been used in many applications such as social network 
analysis Tang et al. (2009), machine learning Şimşek and 
Barto (2008), and neuroscience van den Heuvel et al. (2010). 
Temporal betweenness centrality TB(v) of node v in a tem-
poral graph is defined as

where �s,u is the number of optimal paths between nodes s 
and u in the temporal graph and �s,u(v) is the number of opti-
mal paths between nodes s and u which pass through node 
v in the temporal graph.

3.2  Other temporal network measures

In network mining, burstiness shows the distribution of the 
temporal structure of connectivity Thompson et al. (2017). 
Therefore, in temporal network analysis, burstiness meas-
ure is an important property of many processes (Barabási 
2010; Vazquez et al. 2007; Vázquez et al. 2006; Barabasi 
2005; Min et al. 2011). Burstiness measure in temporal 
networks has been used in several applications, including 
communications (Barabasi 2005; Eckmann et al. 2004; Jo 
et al. 2012), spreading of diseases Vazquez (2013), epidem-
ics Takaguchi et al. (2013), and neuroscience William and 
Peter (2016). Burstiness measure is introduced by Goh and 
Barabási (2008) and defined in Holme and Saramäki (2012) 
as follows:

TC(v) =
1

n − 1

∑

u∈V⧵v

1

�v,u
,

TB(v) =
∑

s≠v≠u∈V

�s,u(v)

�s,u
,

Bv,u =
�(�v,u) − �(�v,u)

�(�v,u) + �(�v,u)
,

where �v,u is a vector of inter-contact times between nodes 
v and u such that u ∈ V ⧵ v (see Definition 6), and � and � 
are, respectively, standard deviation and mean of �v,u . Bursti-
ness belongs to the range [−1, 1] , where Bv,u = 1 indicates 
completely bursty sequence, Bv,u = 0 corresponds to a natu-
ral sequence, and Bv,u = −1 shows a completely periodic 
sequence. Bursts can be defined either for nodes or for edges. 
Here, the number of bursts are calculated per edge and can 
be extended to a nodal measure by summing over the bursty 
coefficients across all edges for a given node.

Fluctuability is an important measure which provides 
information about the global properties of a temporal net-
work. Fluctuability measure quantifies the temporal variabil-
ity of connectivity Thompson et al. (2017) and it is defined 
as follows ( � is defined in Sect. 2):

where v and u are two distinct nodes in V. Fluctuability 
Measure can be at most 1, when every edge is defined in a 
single timestamp of the time domain.

Volatility Measure is a global measure of a temporal net-
work which indicates how many changes, on average, are 
observed between two consecutive timestamps. Following 
Thompson et al. (2017), volatility is defined as:

where recall that A(t) is the connectivity matrix of the snap-
shot G at time t, tM is the overall number of timestamps in 
the time domain, and D is the Hamming distance function 
which quantifies the difference between connectivity matrix 
at times t and t + 1 (notice that in undirected graphs, each 
edge is considered only once).

Reachability Latency Measure is another global measure 
of a temporal network. Reachability measures the time needs 
to reach nodes in a temporal network. Reachability Latency 
Measure quantifies the optimal distance to reach a fraction 
r of the nodes in a network.

Temporal Efficiency Measure is a global measure of a 
temporal network. Similar to reachability, Efficiency esti-
mates temporal properties based on optimal paths. Follow-
ing Thompson et al. (2017), to obtain the Temporal Effi-
ciency Measure first, we need to calculate at each timestamp 
the inverse of the optimal distance for all nodes. Then, the 
inverse optimal distance are averaged across timestamps. 
Formally, Temporal Efficiency Measure is defined as

F =

∑
v

∑
u �(v, u)∑

v

∑
u

∑
t �(v, u, t)

,

Vol =
1

tM − 1

tM−1∑

t=1

D(A(t),A(t + 1)),

H =
1

tM(n
2 − n)

∑

v,u,t

1

�I
v,u

, v ≠ u.
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Notice that the global temporal efficiency measure could be 
computed at a nodal level as well.

4  Fundamental problems in temporal 
networks

In this section, we present fundamental problems related to 
temporal graphs that have been considered in the literature. 
We start with problems related to paths, walks, and connec-
tivity, which have been the focus on many research works, 
and then, we consider other problems, the identification of 
dense subgraphs, and graph covering.

4.1  Path, walk, and circuit problems

Finding walks or paths is a topic that have been extensively 
studied in computer science, with several applications in 
biology (for example finding chain of activation of proteins) 
or epidemiology (finding a chain of contagions). The topic 
has been extensively studied from the introduction of tem-
poral networks, since the temporal constraint adds in some 
cases a level of difficulty in algorithm design.

Given two vertices u and v, a foremost temporal path (or 
earliest-arrival time path) p starting from timestamp t is a 
temporal path that (1) starts from u and arrives in v; (2) the 
starting time of p is in a timestamp t′ greater or equal than t; 
(3) the arrival time is minimized.

A foremost temporal Path from a starting vertex u to 
any other node of a temporal graph can be computed in 
O(ntM + m) time Mertzios et al. (2019). The algorithm for 
this problem (FTPA) given in Mertzios et al. (2019), simi-
larly to the classic breadth-first search algorithm (Cormen 
et al. 2009; Dondi et al. 2019) for static graphs, explores the 
temporal edges in increasing order of timestamps.

Other basic temporal path problems from a node u to 
a node v have been considered in Huanhuan et al. (2014), 
given two timestamps t1 and t2 in T, with t1 ≤ t2 : 

1. Latest-departure path: a temporal path from u to v that 
has the largest departure time after t1 and that has ending 
time before t2

2. Fastest path: a temporal path from u to v that starts after 
t1 and ends before t2 and that requires the minimum time, 
defined as the difference between the arrival time and 
the starting time

3. Shortest path: a temporal path from u to v that starts 
after t1 and ends before t2 and that consists of the mini-
mum number of traversed edge (or has minimum weight 
for temporal weighted graphs).

Latest Departure path can be solved in O(n + mtM) time 
Huanhuan et al. (2014), using an algorithm that applies the 

same strategy of the FTPA algorithm, but considering tem-
poral edges in reverse order of timestamps.

Fastest path can be solved in O(|S|(n + mtM) , where S 
is the set of outgoing edges from the starting node having 
a timestamp between t1 and t2 Huanhuan et al. (2014). The 
Fastest Path can be solved using the FTPA algorithm, iterat-
ing the algorithm for each starting time t in S and observing 
that, among the fastest paths from u to v that start at time 
t, a fastest path reaching node v is a foremost path. This 
algorithm can be improved to O(min n|S|, n + mtM) time by 
pruning unnecessary paths.

A similar approach can be considered for the Shortest 
path problem, observing that a prefix of a shortest path must 
be a shortest path to an intermediate node within a given 
timestamp; notice that the property does not hold if the given 
timestamp is not considered. Then, by applying a strategy 
inspired by Djikstra’s Algorithm Cormen et al. (2009) and 
by pruning some unnecessary paths, shortest path problem 
can be solved in O(n +M log dmax) time, where dmax is the 
largest degree of a node in G Huanhuan et al. (2014).

Another path problem has been introduced in Casteigts 
et al. (2021), which adds constraints that the path has to 
respect. In particular, the problem looks for a restless tem-
poral path from u to v, which is defined as a temporal path 
from u to v if each pair of consecutive edges in the path are 
traversed within a time Δ.

The restless path problem is a decision problem that asks 
whether there exists a restless path from a node u to a node 
v of a temporal graph. The complexity of the problem has 
been analysed for many temporal graph classes (Casteigts 
et al. 2021; Zschoche 2022). The Restless Path problem is 
NP-complete Casteigts et al. (2021), even if it is restricted 
cases: (1) for all finite Δ ≥ 1 when the time domain consists 
of Δ + 1 timestamps, even when each edge is active in one 
timestamp; (2) for temporal graphs whose underlying graphs 
have all but one edge; (3) for temporal graphs whose under-
lying graphs have degree bounded by six.

The problem has been considered also in the parameter-
ized complexity framework and it is known to be W[1]-
hard when parameterized by distance to disjoint paths, for 
all Δ ≥ 1 , even if each temporal edge is active in at most 
one time stamp. The Restless Path problem admits a fixed-
parameter algorithm when parameterized by a parameter 
introduced in Casteigts et al. (2021), called timed feedback 
vertex number. Other complexity results have been given for 
the problem considering properties of the underlying graph 
Casteigts et al. (2021).

A variant of the restless path problem introduced in 
Casteigts et al. (2021) is the Short Restless Path problem, 
that looks for a restless path of length at most k between 
two nodes. The Short Restless Path problem is NP-hard 
Casteigts et al. (2021), but it admits a fixed-parameter 
tractable probabilistic algorithm of time complexity 
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O(2ktM|(V| + |E|)) based on the multilinear monomial 
detection technique. The algorithm can be derandomized 
obtaining a deterministic algorithm of time complexity 
2O(k)O(tM|(V| + |E|)) . The problem admits also a fixed-
parameter randomized algorithm of time complexity 
O∗(4k−pmin ) where pmin is the minimum length of a temporal 
path between nodes u and v Zschoche (2022).

A classical (static graph) problem is computing whether 
a graph is Eulerian, that is, it contains a circuit or a walk 
where each edge is traversed exactly once. A temporal 
Eulerian circuit in a temporal graph is a temporal circuit 
(that is, it respects the constraint that timestamps of con-
secutive edges are increasing or non-decreasing) and it is 
an Euler circuit in the associated underlying static graph.

While finding whether a static graph contains an Eule-
rian circuit is solvable in polynomial time, finding whether 
a temporal graph contains a temporal Eulerian circuit is 
NP-complete even when each temporal edge is active in 
at most three timestamps Bumpus and Meeks (2021). The 
result is proved by showing an interesting relation of find-
ing an Eulerian circuit to the Travelling Salesman problem 
on temporal stars.

The problem of finding an Eulerian trail is NP-complete 
even when the time domain consists of two timestamps 
Marino and Silva (2021). The result is proven with a com-
plex reduction from the Not All Equal 3-SAT problem.

A number of variants of path and walk problems have 
been considered in the literature. A notable example is the 
robustness of the network to delays Füchsle et al. (2022), 
where the delays may be known in advance or online.

4.2  Connectivity and Menger’s theorem

Menger’s Theorem is a well-known result in graph theory. 
Given two nodes u and v of a static graph, the theorem 
states that the maximum number of node disjoint paths 
from u to v is equal to the minimum number of nodes that 
have to be removed to separate u from v. Menger’s Theo-
rem does not hold for temporal graphs, in particular even 
for single-labelled temporal graphs, where each edge is 
associated with a single timestamp (Berman 1996; Kempe 
et al. 2002) (see the example in Fig. 7).

The results is not only of theoretical relevance, but it 
has consequences on path computation problem. In par-
ticular, computing the maximum number of node disjoint 
paths from u to v, which can be solved in polynomial 
time on static graphs, is an NP-hard problem for temporal 
graphs (Kempe et al. 2002; Ibiapina et al. 2022).

Although the Menger’s theorem cannot be directly 
extended to temporal graphs, two modifications of the 
theorem have been proved:

• For single-labelled temporal graphs, replacing in 
Menger’s Theorem node disjointness with edge dis-
jointness. This leads to the property that the maximum 
number of edge disjoint temporal paths from u to v is 
equal to the minimum number of temporal edges that 
has to be removed to separate u from vKempe et al. 
(2002).

• Replacing in Menger’s Theorem node disjointness with 
departure time disjointness and node removal with time 
removal. Two temporal paths are time disjoint when they 
leave each node at different timestamps. A node-time-
removal consists of removing all the temporal edges inci-
dent in a node x which are active in a given timestamp t 
(notice that for an undirected graphs, an edge (u, v) has 
to be replaced by two antiparallel arcs and the node-time-
removal causes the deletion only of one the two parallel 
arcs). Mertzios et al. (2019) proved that the maximum 
number of departure disjoint temporal paths from u to v 
is equal to the minimum number of node-time-removal 
needed to separate u from v.

If, instead of departure time disjointness, we consider tem-
poral node disjointness (two paths/walks cannot traverse 
a node at the same time), then the maximum number of 
temporal node disjoint temporal walks from u to v is equal 
to the minimum number of node-time-removal needed to 
separate u from vMertzios et al. (2019). The same property 
does not hold if we consider temporal paths instead of tem-
poral walks Ibiapina et al. (2022). Notice that in this case, 
Menger’s Theorem holds only for one temporal path and a 
node separator of size 1 Ibiapina et al. (2022). In particular, 
the result in Ibiapina et al. (2022) shows that computing of 
the maximum number k of temporal node disjoint paths can 
be computed in polynomial time when k = 2 and NP-hard 
for k ≥ 3.
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Fig. 7  The example give in Kempe et  al. (2002) that shows that 
Menger’s theorem does not hold for temporal graphs. There exists 
only one temporal vertex disjoint path from s to t, while the removal 
of one of the vertices in {a, b, c} does not disconnect s from t 
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A connectivity problem that has recently been applied to 
PPI network Jimmy et al. (2019) is a temporal extension of 
the Steiner Tree problem. Given a weighted temporal graph 
and a set of k demands, where each demand is a protein pair 
or a set of proteins, the problem looks for a subgraph of min-
imum weight, such that the nodes of each demand are con-
nected in some timestamp. Different versions of the problem 
have been considered, varying the definition of demands, 
that can be connections between pairs of nodes or between 
all pairs of a given set. The variants of the problems are 
not only NP-hard, but also NP-hard to approximate within 
a nontrivial approximation factor (that is solving in each 
timestamp independently) Jimmy et al. (2019). On the other 
hand, when the input graph grows monotonically on the time 
domain (E(i), 1 ≤ i ≤ tM − 1 , is contained in E(i + 1) ), a bet-
ter approximation factor can be achieved. Moreover, several 
variants of the problem can be solved with Integer Linear 
Programming, an approach that is validated also on real PPI 
networks Jimmy et al. (2019).

Other connectivity properties of temporal graphs have 
been considered in the literature, including connected com-
ponents of a temporal graphs and Edmond’s Theorem (the 
maximum number of arborescences in a graph is equal to 
the minimum cut).

4.3  Dense subgraphs in temporal networks

Detection of cohesive subgraphs, such as communities, is 
one of the fundamental problems in network mining. The 
community detection problem has been used in differ-
ent biological analysis, such as gene expression and drug 
interaction analysis (Fratkin et al. 2006; Saha et al. 2010). 
Moreover, many different definitions of cohesive subgraphs 

have been considered in the literature, such as cliques and 
s-plexes. One of the most applied definition of cohesivity is 
based on density (ratio between number of edges and num-
ber of nodes). Given an input graph, the dense subgraphs 
problem looks for a subgraph of maximum density. The 
densest subgraph problem is solvable in polynomial time 
using Goldberg’s algorithm Goldberg (1984) and can be 
approximated in linear time with Charikar greedy algorithm, 
which has a 1

2
-approximate factor (Asahiro et al. 2000; Chari-

kar 2000). The densest subgraph problem has been recently 
extended to find a set of densest subgraphs, for example the 
K-Densest Subgraphs approach (Galbrun et al. 2016; Dondi 
et al. 2021b), which asks for a collection of k densest, dis-
tinct subgraphs.

Densest subgraph have been studied also for temporal net-
works (Coscia et al. 2011; Fortunato 2010; Rozenshtein et al. 
2020; Riccardo and Mehdi 2021a; Zhang et al. 2022). In 
particular, a dense subgraph problem in a temporal network, 
called k-Densest-Episodes problem, has been introduced in 
Rozenshtein and Gionis (2019); Rozenshtein et al. (2020). 
The k-Densest-Episodes problem considers a temporal graph 
G = (V ,E, T) , with a positive integer k ≥ 1 , and asks for a 
set S of k temporal subgraphs S = {G[T1,V1],… ,G[Tk,Vk]} , 
which belong to disjoint time intervals ( T1,… , Tk ) (see the 
example in Fig. 8, for k = 1 ). Notice that two sets Vi , Vj , 
1 ≤ i, j ≤ k and i ≠ j , may be overlapping. The objective 
function of the problem aims to maximize the sum of the 
densities of the k subgraphs in S.

The problem is solvable with polynomial-time algorithm 
(Rozenshtein and Gionis 2019; Rozenshtein et al. 2020). 
Rozenshtein and Gionis (2019) combines (1) a dynamic pro-
gramming to find a segmentation into not overlapping time 
intervals, and (2) Goldberg’s algorithm to compute a densest 

Fig. 8  An example of a 
temporal graph with a densest 
subgraph induced by nodes 
{1, 2, 3, 4, 6} of density 7
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subgraph in the graph defined in each interval. Due to time 
complexity of the dynamic programming and Goldberg’s 
algorithm, the algorithm is not suitable for large networks. 
Hence, the work in Rozenshtein et al. (2020) introduced a 
heuristic, called KGAPPROX, based on approximate 
dynamic programming (ApproxD) and an approximate algo-
rithm for the densest subgraph problem (ApprDens). The 
KGAPPROX has a running time of O( k2

�1�
2
2

|tM|mlog2n) , 
where �1 and �2 are, respectively, approximation parameters 
of ApproxD and ApprDens. Moreover, the work in Rozen-
shtein et al. (2020) proposed a post-processing step which 
possibly shrinks intervals of the solution when the density 
is not decreased. The authors of Rozenshtein et al. (2020) 
introduced another problem called k-Densest-Episodes-EC 
with the goal of obtaining larger covering of nodes. The 
objective function of k-Densest-Episodes problem includes 
the sum of densities and a function of the fraction of covered 
nodes. Unlike the k-Densest-Episodes problem, the k-Dens-
est-Episodes-EC is NP-hard Rozenshtein et al. (2020).

Another attempt to solve k-Densest-Episodes problem is 
given by Riccardo and Mehdi (2021a), where a fast heuristic 
called Local-search Temporal Densest Subgraphs (LSTDS) 
is presented. LSTDS start with an initial segmentation com-
puted considering the distribution of active edges in time 
domain. Then, a local search approach is applied to improve 
the density of the solution by modifying the intervals of the 
segmentation. The work in Castelli et al. (2020) introduced 
a different approach, called Temporal Densest Genetic Algo-
rithm (TDGA), for the k-Densest-Episodes problem. TDGA 
considers candidate solutions obtained by changing the end-
points of intervals and by applying the Charikar’s greedy 
algorithm to compute a dense subgraph in each interval. In 
Dondi et al. (2022), it is proposed a different approach that, 
given a solution of k-Densest-Episodes, aims at identifying, 
for each subgraph Gi , 1 ≤ i ≤ k , a new subgraph G′

i
 with 

density close to that of Gi and defined over a subinterval of Ii.

4.4  Graph covering

Covering a static graph with a minimum cardinality set of 
nodes is a well-known and fundamental problem, called 
Node Cover or Vertex Cover, in computer science. Vertex 
Cover has been considered by a number of papers, due to 
its relevance in practice and due to its importance in graph 
theory, theoretical computer science, and algorithm design. 
Recently, this problem has been considered for temporal 
graphs, where different formulations have been proposed.

We recall that, in a static graph H = (U,A) , a set C of 
nodes covers H if, for each edge (u, v) ∈ A , u ∈ C or v ∈ C.

The first temporal variant of Vertex Cover has been 
introduced in Akrida et al. (2020). Given a temporal graph 
G = (V ,E, T) , a (non-temporal edge) e = (u, v) is temporally 

covered by a pair (a, t), with a ∈ V  and t ∈ T  , if a is one of 
the endpoints of e (that is a = u or a = v ) and e is active in 
timestamp t. In a temporal graph G = (V ,E, T) , a temporal 
vertex cover is a subset C ⊆ V × T  , such that edge (u, v) is 
temporally covered by some pairs (a, t) ∈ C . The Temporal 
Vertex Cover problem asks for a temporal vertex cover of 
minimum cardinality.

The sliding window temporal vertex cover problem pro-
posed in Akrida et al. (2020) is a variant that imposes the 
covering of each edge in intervals (called sliding windows) 
where the edge is active. The Sliding Window Temporal 
Vertex Cover problem asks for a subset C ⊆ V × T , such that 
each edge (u, v) active in a sliding window is covered by a 
pair (a, t), where t is a timestamp of the sliding window and 
a is equal to u or v.

Temporal vertex cover is known to be NP-hard and 
also hard to approximate with factor (1 - � ) unless NP 
has a nO log log n-time deterministic algorithm Akrida et al. 
(2020). On the positive side, the problem can be approxi-
mated via a reduction to the Hitting Set problem, achieving 
an approximation factor of Hn−1 −

1

2
 , where Hn−1 , where 

Hn =
∑n

i=1

i

i
≈ ln n Akrida et al. (2020).

Sliding Window Temporal Vertex Cover is also NP-hard 
Akrida et al. (2020) and it can be solved via dynamic pro-
gramming in O(tMΔ(n + m) ⋅ 2nΔ) time Akrida et al. (2020), 
where Δ is the size of the sliding window. Furthermore, even 
for Δ = 2 , with maximum degree of the underlying graph 
G at most 3, every connected component of every snapshot 
containing at most seven vertices, the problem is APX-hard 
Akrida et al. (2020).

Sliding window temporal vertex cover admits approxima-
tion algorithms, with respect to various parameters. More 
precisely, it admits approximation factors: (1) ln n + lnΔ +

1

2
Akrida et al. (2020; p. 2) 2k, where k is the maximum num-
ber of times that each edge can appear in a sliding window 
Akrida et al. (2020;p. 3) d − 1 , with d the maximum vertex 
degree at every snapshot Hamm et al. (2022). Furthermore, 
complexity lower bounds for the two problems have been 
proved in Akrida et al. (2020).

The problems have been considered also in sparse graphs 
Hamm et al. (2022). More precisely, Sliding Window Tem-
poral Vertex Cover is NP-hard even when the underlying 
graph is a cycle or a path, for every Δ ≥ 2 , while Tempo-
ral Vertex Cover can be solved in polynomial time in these 
cases Hamm et al. (2022). Sliding Window Temporal Vertex 
Cover admits a PTAS on temporal paths and cycles Hamm 
et al. (2022). Different exponential algorithms have been 
considered for Sliding Window Temporal Vertex Cover, in 
particular a fixed-parameter algorithm where the parameter 
is the size of a temporal vertex cover Akrida et al. (2020).

A different formulation of temporal graph cover has 
been proposed in Rozenshtein et al. (2021) for summariz-
ing event timelines in temporal networks. The problem aims 



Network Modeling Analysis in Health Informatics and Bioinformatics (2023) 12:10 

1 3

Page 11 of 22 10

at defining the activity interval of each node of the graph, so 
that, for each temporal edge (u, v, t), at least one of u or v is 
active in an interval that includes t. In this case, we say that 
the defined activity intervals cover E.

Four variants of this problem have been proposed in 
Rozenshtein et al. (2021) and they differ for the interval 
activity definition (it can be a single interval or a sequence of 
more non overlapping intervals) and the objective function 
(the minimization of the sum of node activities or the mini-
mization of the maximum activity of a node). The length of 
an activity interval [t1, t2] is t2 − t1.

In the first variant, called MinTimeLineCover, given 
a temporal graph G = (V ,E, T) , the goal is to find activ-
ity intervals for the nodes in V, so that they cover E and 
the sum of node activity lengths is minimized. A second 
variant, called MinMaxTimeLine, given a temporal graph 
G = (V ,E, T) , aims at finding activity intervals for the nodes 
in V, so that they cover E and the objective function is the 
minimization of the maximum length of an activity inter-
val. In Fig. 9, we give an example of covering a temporal 
graph. Notice that the solution represented in Fig. 9 is a 
solution both of MinTimeLineCover and MinMaxTimeLine. 
The objective function of MinTimeLineCover has value 2 
(two nodes have an activity interval of length 1), while the 
objective function of MinMaxTimeLine has value 1 (the 
maximum length of an activity interval is 1).

MinTimeLineCoverK, given a temporal graph 
G = (V ,E, T) and an integer K ≥ 2 , asks for the definition 
of activity intervals, at most K for each node in V, so that 
they cover E and the sum of node activity interval lengths 
is minimized. MinMaxTimeLineK, given a temporal graph 
G = (V ,E, T) and an integer K ≥ 2 , asks for the definition 

of activity intervals, at most K for each node in V, so that 
they cover E and the maximum span of a node (defined as 
the sum, for a node, of the lengths of its activity intervals) is 
minimized. Notice that some of the intervals may be empty, 
when they are not needed to solve the problems.

MinTimeLineCover, MinTimeLineCoverK, and MinMax-
TimeLineK are all NP-hard Rozenshtein et al. (2021), even if 
the time domain consists of exactly two timestamps Froese 
et al. (2022) (for one timestamp, all the problem variants 
are trivial, since all the solutions have a cost equal to 0). 
Surprisingly, MinMaxTimeLine can be solved by a polyno-
mial time algorithm, more precisely in O(n log n) via binary 
search and via a polynomial reduction to the 2-SAT problem 
Rozenshtein et al. (2021). Moreover, MinTimeLineCoverK 
and MinMaxTimeLineK cannot be approximated within 
any factor, unless P = NP, since deciding if these two prob-
lems admits a solution of cost 0 is an NP-complete problem 
Rozenshtein et al. (2021).

The computational and parameterized complexity of 
MinTimeLineCover, MinTimeLineCoverK and MinMax-
TimeLineK has been deeply analysed (Froese et al. 2022; 
Dondi 2022). MinTimeLineCover is NP-hard even in very 
restricted cases Dondi (2022): (1) when at most one tempo-
ral edge is defined in each timestamp; (2) when each vertex 
is incident in at most two temporal edges, for each times-
tamp, and the time domain is defined over three timestamps.

Fixed-parameter algorithms have been defined for the 
problem MinTimeLineCover. When the time domain 
consists of two timestamps, MinTimeLineCover is fixed-
parameter tractable for parameter cost of the solution, via a 
parameterized reduction to the Min 2-SAT problem Froese 
et al. (2022). We recall that the Min 2-SAT problem, given 

Fig. 9  An example of a cover 
of a temporal graph, as defined 
by MinTimeLineCover and 
MinMaxTimeLine, where the 
grey areas represent the interval 
activities of nodes. Nodes 1 
and 3 have an activity interval 
of length of 1, since they are 
active in timestamp 1 and 2, 
and the remaining vertices have 
an activity interval of length 0, 
since they are active in a single 
timestamp
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a Boolean formula in conjunctive normal form, asks for the 
removal of the minimum number of clauses that lead to a 
satisfiable formula. A fixed-parameter tractable algorithm 
for the problem is given for parameters (1) the maximum 
number of nodes with temporal edges in a timestamp and (2) 
the maximum length of an interval where a node has inci-
dent temporal edges. The algorithm is based on a dynamic 
programming approach that considers, for each timestamp t, 
the possible activity intervals of nodes having active edges 
in timestamp t.

MinTimeLineCoverK and MinMaxTimeLineK, for 
K ≥ 2 , are NP-hard if we are seeking for a solution of cost 
0, even for temporal graphs containing three identical lay-
ers Froese et al. (2022). For cost equal to 0, MinTimeLine-
CoverK and MinMaxTimeLineK are both fixed-parameter 
tractable when parameterized by n using Integer Linear 
Programming Froese et al. (2022). MinMaxTimeLineK is 
W[1]-hard when parameterized by n for cost equal to 1, 
while MinTimeLineCoverK parameterized by n plus the 
cost of a solution admits a fixed-parameter algorithm based 
on dynamic programming Froese et al. (2022). This lat-
ter result is obtained by splitting the activity of nodes into 
two sets, having cost 0 (solvable for the case cost equal to 
0) and having cost at least 1. Interestingly, it is shown that 
this latter set induces an interval graph, and the number of 
possible interval graphs is upper bounded by a function of 
n and the cost of a solution. Finally, MinTimeLineCoverK 
and MinMaxTimeLineK are fixed-parameter tractable 
when parameterized by n + K . For MinTimeLineCoverK, 
the result is achieved by dynamic programming, while for 
MinMaxTimeLineK using a bounded search tree algorithm 
Froese et al. (2022).

Efficient heuristics based on solving restricted variants 
of MinTimeLineCoverK and MinMaxTimeLineK have been 
designed and evaluated experimentally on synthetic and real 
datasets (extracted from Twitter) Rozenshtein et al. (2021).

5  Searching motifs in temporal networks

Detecting interesting subgraphs with a given property or 
with a statistically significance is a fundamental problem in 
graph mining. Here, we consider some approaches that have 
been considered in temporal graphs.

5.1  Graph motifs

A graph (or a network) motif is defined as a subgraph of 
limited size that appears with a statistically significance in 
the input graph. Finding motifs is fundamental to understand 
network structural properties. Identifying triangle (cliques 
of size three) is used for example to compute clustering 
coefficients.

Different definitions of temporal motifs have been 
introduced in the literature, based on different temporal 
properties: 

1. A first definition defines a motif as an ordered set of 
temporal edges, so that the static graph induced by the 
edges is connected and (a) two consecutive (defined by 
the order) temporal edges occur at a time bounded by 
parameter ΔC ; (b) the temporal edges incident on a node 
of the motif must be consecutive temporal edges in the 
motif Kovanen et al. (2011)

2. A second approach Song et al. (2014) defines a motif as 
an ordered set of temporal edges, so that the first and the 
last temporal edge of the motif are at a temporal distance 
at most ΔW

3. A third definition Hulovatyy et al. (2015) relaxes prop-
erty (b) of the first definition and asks only for induced 
subgraphs (that is, all the temporal edges of nodes con-
necting nodes of the subgraph have to be considered in 
the motif)

4. A fourth definition Paranjape et al. (2017) relaxes prop-
erty (b) of the first definition and asks only for induced 
subgraphs (as the third definition) and adds the condition 
that the fist and the last temporal edge of the motif are at 
a temporal distance at most ΔW.

One of the most applied definition, proposed in Liu et al. 
(2021) and Grasso et al. (2021), states that a temporal motif 
is a connected subgraph whose edges’ temporal edges 
e1 = (v1, v2, t1),… , ez = (vz, vz+1, tz) can be ordered, so that 
ti < ti+1 ≤ ti + 1 (or for ti ≤ ti+1 simultaneous events).

An occurrence of a temporal motif M in a temporal graph 
T is a subgraph H of T, such that there exists a mapping f 
between the nodes of M and the nodes of H which is bijec-
tive and such that (1) if there exists a temporal edge between 
two nodes u, v in M, in some timestamp t of T, then there 
exists a temporal edge between two nodes u, v in H, in some 
timestamp t′ of T; (2) the chronological order between edges 
of the motif is respected in the occurrence of the motif; (3) 
the temporal edges in H are active in a time interval of length 
Δ.

5.2  Colored motif

A well-known problem in computational biology and, more 
generally, in computer science, is the quest for colored 
motifs inside a network (Lacroix et al. 2006; Bruckner et al. 
2010; Betzler et al. 2011). The problem has application in 
metabolic networks and PPI networks (Lacroix et al. 2006; 
Bruckner et al. 2010), where the goal is to identify func-
tional motifs. Given a multi-set of colors, called motif, rep-
resenting functionalities, the goal is to identify a connected 
component in a graph whose vertices match the motif. The 
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problem has been recently considered also for temporal 
networks, mainly adding the constraint that the connected 
component should be a temporal path Thejaswi et al. (2020). 
Several variants of the problem have been considered, show-
ing that they are NP-hard (except for the case when a specific 
ordering on the colors is defined in the motif), but admit 
fixed-parameter algorithms based on multilinear monomial 
detection technique Thejaswi et al. (2020). The approxima-
tion complexity of an optimization variant of the problem 
that asks for the maximum number of colors included in a 
solution (so the subgraph may contain only some colors of 
the motif) has also been considered, showing that it cannot 
be approximated within factor O(n

1

2
−�
) , for any 𝜀 > 0 , unless 

P = NP Riccardo and Mehdi (2021b). For the same variant 
of the problem, a heuristic based on local search has been 
designed Riccardo and Mehdi (2021b).

5.3  Temporal network comparison

Network comparison aims at the identification of cor-
respondence among two or more networks. For static 
networks, the alignment can be defined as follows Guzzi 
and Milenković (2018). Given two input networks G1 and 
G2, the problem of finding an alignment between the two 
networks may be translated into the search for a mapping 
between nodes of G1 and nodes of G2, with the aim of the 
maximization of a quality score. The computational hard-
ness of this problem arises from the NP-completeness of 
the underlying subgraph isomorphism problem Cannataro 
et al. (2010). When considering temporal networks with k 
timestamps, the problem becomes more complicated, since 
we have to deal with k temporal subgraphs.

The subgraph isomorphism problem in this context 
becomes the Temporal Subgraph Isomorphism problem 
Liu et al. (2021) (TSI). From a practical point of view, TSI 
is the search from meaningful time-ordered patterns in a 
sequence of timestamps. These patterns can be expressed 
as the search of correspondences of a query graph Gq in a 
temporal graph Gt.

As evidenced in Redmond and Cunningham (2016, 
2013), there exist three approaches for solving the problem. 
A first approach (extract and test) is based on the extensive 
extraction of all the subgraphs with some specific temporal 
properties (as specified in the query), and then performing 
isomorphism test on each subgraph. A second approach (test 
and extract) first performs subgraph isomorphims and then 
filters results discarding those that do not have the tempo-
ral properties. A third hybrid approach leverages temporal 
information during the isomorphism test.

More recently, Liang et al. (2021) proposed a framework 
that transforms a dynamic network into a set of snapshots. 
This approach is a trade-off between the approaches that do 
not consider the dynamic evolution of the networks and the 

previous algorithms that focus on the separate evolution of 
two networks. In this approach, the dynamic of the two con-
sidered network is considered as two separate sequence of 
snapshot. Then, the authors propose a framework for align-
ing each pair of corresponding snapshots. An extension of 
the previous approach is applied to multirelational temporal 
network in Chen and Liang (2022).

An approach to the alignment of temporal networks has 
been proposed in Elhesha et al. (2019). Given two tempo-
ral graphs, the goal is the definition of an alignment func-
tion that maps all the nodes of the first graph in a subset of 
the nodes of the second graph, such that it maximizes an 
objective function that includes (1) A similarity between 
the corresponding pair of nodes minus (2) the sum number 
of connected components in each snapshot.

5.4  Representation learning for temporal networks

Network representation learning (or network embedding) 
Guzzi and Zitnik (2022) is a common way for applying 
machine learning on graph data, to get benefit from both. 
Classical embedding algorithms focused on static networks 
and they transformed a network into a low-dimensional vec-
tor space to analyse the network itself (Nelson et al. 2019; 
Shawn et al. 2022; Guzzi et al. 2022; Veltri et al. 2007). 
Currently, there exist many algorithms and many classifica-
tion attempts that are categorised and described in some 
previous surveys (Cui et al. 2018; Chang et al. 2020; Nelson 
et al. 2019; Goyal and Ferrara 2018; Hamilton et al. 2017; 
Cannataro et al. 2013).

These algorithms receive as input an unweighted graph 
G = (V ,E) represented by its associated adjacency matrix 
A and a real-valued matrix X containing node attributes 
X ∈ Rmx|V| . The goal of each algorithm is to map each node 
into a vector z ∈ ℝ

d where d < |V|.
Some recent surveys (Cui et al. 2018; Chang et al. 2020; 

Nelson et al. 2019; Goyal and Ferrara 2018; Hamilton et al. 
2017; Cannataro et al. 2013) present an overview of exist-
ing methods that may be categorised in shallow embedding 
methods and graph neural methods. Algorithms belonging to 
the first class encode each node ( vi ∈ G ) into a single vector 
through the use of a simple encoding function defined as

where M is a matrix containing the embedding vectors and 
vi is a vector used for selecting the column. Algorithms 
belonging to the second class learn a graph neural network 
for representing nodes and presents the main advantage of 
being inductive, i.e., they can easily learn the representation 
of a novel node without processing the whole graph Guzzi 
et al. (2022).

(3)ENC(vi) = Mvi,
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More recently, the rising of temporal network has gener-
ated the need for the introduction of novel embedding meth-
ods for temporal networks.

Definition 7 Given a temporal network graph G = (V ,E, T) , 
the task of time-varying network embedding is to learn a 
mapping function f ∶ V → K ⊆ Rd, d << ‖V‖ which maps 
each node of the graph into a low-dimensional space by pre-
serving both node proximity and temporal constraints. Two 
nodes are close in the vector space if they are topologically 
close and there exists a temporal proximity between them.

In Mohan and Pramod (2022), authors designed a random 
surfing model based on an adaption of Markov chains to 
represent node similarity. Then, a deep auto-encoder is used 
to perform non-linear dimensionality reduction. Generated 
embeddings are then evaluated using a temporal link predic-
tion benchmark.

The work by Goyal et al. (2020) has a similar goal. Given 
a temporal graph represented by the temporal snapshot, a 
method for learning a representation of nodes at each time 
step is presented. Then, the obtained representation is used 
for predicting future links among nodes. The algorithm 
called dyngraph2vec is based on multiple multilayered non-
linear networks to analyse each network. Then, recurrent 
networks are used to learn the structure of the temporal 
transitions.

6  Software tools for temporal networks

As we introduced, temporal network analysis is currently 
an hot topic in research. Consequently, as we presented 
in this survey, many different problems and algorithms to 
solve them have been introduced. Here, we first present 
software tools used for specific problems for temporal net-
works, which are implementations of different algorithms 
proposed to solve the problems that have been discussed 
in the previous sections. Moreover, more recently, even 

comprehensive libraries are available. In Table 2, we pre-
sented some softwares and their functions. The last row of 
the table contains the link of a page of the GitHub portal 
showing the whole set of softwares of GitHub tagged as 
temporal networks.

6.1  Software tools for specific problems

Table 1 shows software tools that have been used for spe-
cific temporal network problems.

In particular, Elhesha et al. (2019) implemented tempo 
algorithm for temporal network alignment, Aparício et al. 
(2019); Nassa et al. (2011) provided user-friendly inter-
face and implementation source for GoT-WAVE algorithm 
for temporal global pairwise network alignment problem, 
Rozenshtein et al. (2021) implemented algorithms for ver-
tex cover problems (k-Inner, k-Budget, and k-Baseline), 
Grasso et al. (2021) implemented MODIT as a method 
for counting motifs (of any size) in a temporal network 
for motif discovery problem, Thejaswi et al. (2020); Chow 
et al. (2021); Ren et al. (2021) implemented variants of 
node colored motif discovery, constrained to be paths, in 
temporal graphs (Temporal-patterns-mk2), Rozenshtein 
et al. (2020) applied KGAPPROX algorithm for k-Dens-
est-Episode problem, and Riccardo and Mehdi (2021b) 
implemented CTPLS algorithm for maximum colorful 
path in a temporal graph (Max CPTG) problem.

6.2  General purpose software tools

Here, we present some general purpose software tools that 
address general problems in network analysis. In Table 2, 
we presented some softwares and their functions. The last 
row of the table contains the link to a page of the GitHub 
portal showing the whole set of softwares of GitHub 
tagged as temporal networks.

Table 1  Software tools used for specific problems for temporal networks

Problem Language URL

Alignment problem C++ https:// www. cise. ufl. edu/ relhe sha/ tempo ral. zip– url not available
Global pairwise network alignment C++/Python https:// www. dcc. fc. up. pt/ got- wave/
Vertex Cover problems Python https:// github. com/ polin apoli na/ the- netwo rk- untan gling- probl em
Motif discovery problem Java https:// github. com/ Rober toGra sso96/ MODIT
Node colored motif discovery problem C https:// github. com/ suhas theju/ tempo ral- patte rns- mk2
k-Densest-Episode problem Python https:// github. com/ polin apoli na/ segme ntati on- meets- dense st- subgr aph
Maximum Colorful Path in a Temporal Graph 

problem
Python https:// github. com/ mehdi hosse inzad eh/ Color Path_ TG

Data Structures Python https:// github. com/ hilsa beckt/ hybri dtemp struct

https://www.cise.ufl.edu/relhesha/temporal.zip
https://www.dcc.fc.up.pt/got-wave/
https://github.com/polinapolina/the-network-untangling-problem
https://github.com/RobertoGrasso96/MODIT
https://github.com/suhastheju/temporal-patterns-mk2
https://github.com/polinapolina/segmentation-meets-densest-subgraph
https://github.com/mehdihosseinzadeh/ColorPath_TG
https://github.com/hilsabeckt/hybridtempstruct
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7  Applications of temporal networks 
in biology and medicine

Temporal networks have been applied to different biological 
and medical problems. We will focus on four main applica-
tions: analysis of brain connectome, protein–protein inter-
action networks, and epidemics modelling applications to 
single cell technologies.

7.1  Brain connectome

Several studies have analysed the human brain using tempo-
ral graph theory, where neural units are nodes extracted, for 
example, from MRI (Magnetic Resonance Imaging) data, 
and interactions between nodes change over time Thompson 
et al. (2017). An edge between two nodes is defined when 
there is an anatomical connectivity or a synchronized func-
tional activity is observed. The identification of neural units 
that are structurally connected in clusters or modules led to 
better understand neurophysiological processes.

Structural and functional connectome properties have 
been studied in several work that applies the temporal net-
work framework. Node centrality measures provide infor-
mation on how the relevance of nodes inside the brain net-
work. In Thompson et al. (2017), centrality measure has 
been applied to analyse which nodes and correspondent 
brain regions are central in the brain network dynamics, 
using temporal degree centrality and closeness centrality, 
for example illustrating the relevance of visual region, fron-
toparietal attention, dorsal attention, and default mode.

The contribution given in Thompson et  al. (2017) 
includes also insights into the burstiness of inter-contact 

time and its relation with specific tasks, the application of 
fluctuability and volatility, and reachability latency (related 
to a given task).

Another application of temporal centrality measures in 
connectome is due to van den Heuvel et al. (2010), where it 
is explored the communication between different regions of 
the brain. In particular, van den Heuvel et al. (2010) showed 
that schizophrenia impacts global network connectivity of 
frontal and temporal brain regions. They found significant 
reduction of betweenness centrality of frontal regions hubs 
of patients showing a less central hub role of these regions 
in the brain network. A similar approach has been proposed 
in Fransson and Thompson (2020), where betweenness is 
applied to identify hubs in brain networks.

Connectivity is a fundamental property of networks and 
in particular of brain network. The functional connectivity 
of brain network and the learning of brain network struc-
ture have been considered in Kim et al. (2021); Kong et al. 
(2021).

7.2  Protein–protein interaction networks

Protein–Protein Interaction Networks (PPIN) are undirected 
graphs, whose nodes represent proteins, more precisely a 
gene coding protein; edges represent interaction between 
two proteins, mainly co-expressed proteins. Since proteins 
can become active or inactive, their interactions usually 
change over time, and thus, a natural extension to PPIN is 
to consider a temporal representation Przytycka et al. (2010), 
that is a temporal graph.

A well-known problem that has been considered for PPI 
networks is the identification of paths representing processes 

Table 2  A synopsis of some 
selected softwares.

In Visualization column: Y and N, respectively, indicate if the software supports visualization
In analysis column: IO Network Input Output, S Network Statistics, P PathAnalysis, C Clustering, ME 
Module Extraction, EM Network Embedding.
a https:// gitlab. com/ tgpub lic/ tglib
b https:// github. com/ wiheto/ teneto
c https:// progr ammin ghist orian. org/ en/ lesso ns/ tempo ral- netwo rk- analy sis- with-r
d https:// netwo rkx. org
e https:// apps. cytos cape. org/ apps/ timen exus
f https:// github. com/ SkBlaz/ py3pl ex
g https:// github. com/ topics/ tempo ral- netwo rks

Software Language Analysis Visualization

Temporal network  analysisa Python/C++ IO-S-P Y
Teneto - Temporal centrality network  Measureb Python IO-S Y
TGLibc R IO-S-P N
NetworkX Hagberg et al. (2008)d Python IO-NS-CA-C-ME-EM Y
TimeNexuse Cytoscape App IO-PA Y
Py3Plex Skrlj et al. (2019)f Python IO-NS-CA-C-PA Y
General collection of packages on  GitHubg Python N N

https://gitlab.com/tgpublic/tglib
https://github.com/wiheto/teneto
https://programminghistorian.org/en/lessons/temporal-network-analysis-with-r
https://networkx.org
https://apps.cytoscape.org/apps/timenexus
https://github.com/SkBlaz/py3plex
https://github.com/topics/temporal-networks
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that, starting with the activation of a protein, leads to the 
activation of another protein (Cannataro et al. 2010; Jimmy 
et al. 2019). These paths are associated with the maximiza-
tion of an objective function which is the probability of the 
chain of interactions represented by the path. An extension 
of this problem looks for a collection of paths associated 
with chains of activation interactions, instead of a single 
path Jimmy et al. (2019).

A similar problem for PPI networks is the inference of the 
way receptor signaling propagates and how it affects tran-
scription factors Khodaverdian and Yosef (2022). This prob-
lem is modeled as finding a walk in a temporal graph (where 
vertices can be present only in some timestamp, while edges 
are present only when both endpoints are present) from a 
source node to a target node that starts in the first timestamp 
and ends in the last. Furthermore, the walk must satisfy a 
constraint that one of its edges connects two nodes in the 
same snapshot or in consecutive snapshots (timestamps i 
and i + 1 ). The problem of finding a shortest walk can be 
solved in polynomial time when the time domain consists 
of two timestamps Khodaverdian and Yosef (2022), while in 
general is NP-hard and cannot be approximated within factor 
|tM |
2

 , when there at least tM ≥ 3 timestamps Khodaverdian and 
Yosef (2022).

Another relevant problem of PPIN is the identification 
of groups of co-expressed protein as they represent sets of 
protein related to a same functionality (Han et al. 2004; 
Cannataro et al. 2010; Ou-Yang et al. 2014). This may lead 
to clustering problems (partition of networks into groups 
of cohesive subgraphs) or to the identification of the top k 
cohesive subgraphs (possibly overlapping and with some 
uncovered nodes). The identification of relevant groups of 
protein may lead also to subgraph query, that is, the identi-
fication of whether a subgraph belongs to a larger graph. In 
some cases, graphs can be colored, where colors represent 
functionalities and the goal is to look if there is a group of 
elements that represent a given multi-set of functionalities.

The identification of protein complexes (sets of proteins 
related to some biological functions) with temporal networks 
is a problem addressed in Li et al. (2020). First, a tempo-
ral network is built by taking into account spatial informa-
tion and gene expression data. Then, a clustering algorithm 
(Markov Clustering) is applied on the temporal network 
constructed to identify protein complexes.

Temporal centrality measures have been applied also 
for the analysis of protein–protein interaction networks. In 
Meng et al. (2022), hubs, which are fundamental to ana-
lyse protein–protein interaction networks, are identified by 
degree centrality.

Analysing of the yeast protein–protein interaction net-
work regulated both in time and in space is reported in Han 
et al. (2004). In particular, Han et al. (2004) considers a 
significant proportion of proteins as ‘hubs’, in which hubs 

are classified into two types based on expression with their 
partners on same/different time or space.

The work in Lebre et al. (2010) addresses the time-vary-
ing networks of gene regulation in systems biology. Given 
time course gene expression data, authors analyse gene by 
gene and find the topology of regulatory network and the 
changing over time.

7.3  Temporal graphs for epidemics modelling

Spreading of diseases may be trivially modelled using a 
temporal network. Nodes of the network are the individu-
als, while edges their contacts. A set of node labels is used 
to model the status (i.e., Healthy, Suscepted, Infected, 
Recovered) (Masuda et al. 2021; Guzzi et al. 2022), while 
the temporal evolution of the contacts is represented by the 
temporal snapshot of the network itself. The rationale behind 
this representation is that the structure (and in particular 
its dynamic counterpart) of these networks may model and 
predict the epidemic propagation Guzzi et al. (2022). Tem-
poral networks have been introduced some years ago in the 
literature, and their use is increased during the COVID-19 
pandemic. Common applications of temporal networks cover 
a broad range, from epidemic modelling, to evaluation of 
measures for epidemic controlling.

The use of networks in epidemiology help researchers to 
describe the dynamics of spreading focusing on interactions 
between individuals or groups, where the spreading process 
is driven by contacts in the network Balcan et al. (2009). 
Main limitation of the use of network is the requiring of 
mobility and contact data to feed network models.

Humphries et al. (2021) introduced a framework for mod-
elling and analysing spreading. The framework enables the 
analysis of spreading considering both an individual and 
a pair-based perspective of modelling. For the contagion 
process, they consider the susceptible-infected-recovered 
(SIR) model, built on top of a network with time-varying 
edges. Petrizzelli et al. presented the benefits of a topology-
aware versus an age-based vaccination strategy to mitigate 
the spreading of the virus Petrizzelli et al. (2022).

A fundamental problem of the SIR model is the iden-
tification of chain of interactions via the identification of 
restless paths in temporal graphs (Casteigts et al. 2021; 
Zschoche 2022) (see Sect. 4). In this approach, nodes rep-
resent individuals and a contact between two individuals 
at time t is represented with a temporal edge at timestamp 
t between the corresponding nodes. In this case, a chain of 
infections involving different individuals is a temporal path. 
To represent the time when an individual can spread the 
infection (hence, it is not recovered), a time constrained is 
added to the path, that is, a contact must be observed in a 
time window.
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The importance of temporal networks for epidemics has 
been considered in Enright and Kao (2018). When consider-
ing the spreading process, the concept of temporal path is 
useful to define nodes that can be reached by the infection. 
Consider a time interval. A network/graph is temporally 
strongly connected when each pair of nodes is connected 
by a temporal path in the considered interval. A network is 
temporally connected if, for every pair of nodes, at least one 
is reachable by a temporal path starting from the other in the 
considered interval. A network is temporal contagion con-
nected when there exists at least one node, such that there 
exist temporal paths starting from that node and reaching 
all the other nodes of the graph in the considered interval. 
These concepts are introduced to define a spreading that 
starts from some node of the networks and reaches/infects 
the other nodes in some time. When considering the spread-
ing of a disease, setting, some variants of the previous con-
cepts can be defined, considering for example when a node 
can possibly spread a contagion.

Temporal Subgraph Isomorphism between temporal net-
works has also been considered for comparing the spreading 
process of two diseases Enright and Kao (2018).

7.4  Temporal graphs and single cell technologies

Due to the fast growing variety of single cell technologies 
and datasets accessible, numerous single cell approaches 
utilizing temporal networks have been proposed. We report 
here two examples of applications of temporal graphs to 
Single Cell data. The first example is the Temporal Net-
work Flow Entropy (TNFE) method introduced in Gao et al. 
(2022) to detect the critical states during a disease. The work 
constructs a temporal network on two timestamps for each 
sample (individual) considered based on gene expression 
matrix. Then, via a comparison of the differences between 
the snapshots of the two timestamps, they construct a static 
network (called differential network). They calculate the 
Network Flow Entropy (NFE) on the differential network 
at each timestamp. This measure is used to characterize the 
network fluctuation of molecules from each individual sam-
ple against a given reference sample to identify the crucial 
stages of disease progression on an individual basis. The 
experimental work of Gao et al. (2022) is applied on a simu-
lated dataset and six datasets associated with real diseases 
taken from the NCBI GEO and The Cancer Genome Atlas 
(TCGA) databases.

Another contribution is presented in Wang et al. (2022), 
where the network of mitochondria in a cell is analysed. 
This network undergoes quick alterations through fission, 
fusion, and motility. Fusion and fission are structural pro-
cesses that disperse mitochondria over the cell and create 
densely linked networks. The work of Wang et al. (2022) 
proposes a software for Mitochondrial Temporal Network 

Tracking (MitoTNT), where the temporal network is built 
considering live-cell fluorescence microscopy data in four 
dimensions (space dimensions and time). Wang et al. (2022) 
applies MitoTNT for three tasks: high-resolution investiga-
tion of the dynamics of mitochondrial network, node-level 
study of mitochondrial fission/fusion, and analysis of the 
mitochondrial temporal network.

8  Discussion

As discussed so far, temporal network analysis is currently 
a hot topic in research. In particular, in the biological and 
biomedical scenario, the possibility to model the intrinsic 
variability of the biological systems has increased the inter-
est of researchers. This has led to the definitions of several 
problems, which show, from a computational point of view, 
similarities and differences with respect to the static cases.

The interest of research of the algorithmic community 
has initially focused on finding paths or walks. In fact, as 
discussed in Sect. 4, the temporal evolution leads to several 
combinatorial problems; for example, it has to be pointed 
out the difference between fastest and shortest path. The 
interest on paths and walks problem is motivated also by the 
several applications of these problems, from transportation 
to epidemics (see Sect. 7), and for the definitions of central-
ity measures (see Sect. 3).

Main fundamental problems in temporal networks show 
complexity ranging from polynomial (P) to non-polynomial 
(NP-hard) complexity; thus, in Fig. 10, we present the clas-
sification of the complexity of the fundamental problems 
related to paths, walks, circuits, and trails. Notice that all the 
problems which are NP-hard for temporal graphs are in P for 
static graphs (when they can be defined in this latter model).

In this survey, we consider also other other fundamental 
problems for temporal graphs (connectivity, identification 
of dense subgraphs, covering temporal edges, motif, and 
colored motif identification), due to their practical relevance 
and to their interesting properties, different from static cases. 
Some of these problems have already found application in 
biology and medicine, others, for example covering tem-
poral edges, are promising approaches that may find future 
applications, due also to their relevance of the corresponding 
problem on static graphs.

Notice that although we have considered fundamental 
problems for temporal graphs, several other problems have 
been considered in the literature. For example, Feedback 
Edge Set Haag et al. (2022), Maximum Matching (Baste 
et al. 2020; Mertzios et al. 2020), and Coloring Marino and 
Silva (2022), have been considered also for temporal graphs.

Another example is the identification of cohesive subgraphs 
in a temporal graph. We have considered in Sect. 4 a model of 
cohesive subgraph based on density (called dense subgraph), 
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since it is a fundamental primitive in graph mining with sev-
eral applications Bahmani et al. (2012). Other models of cohe-
sive subgraphs have been considered for temporal graphs, like 
cliques Himmel et al. (2017), k-plexes Bentert et al. (2019), 
and k-cores (Wu et al. 2015; Liu et al. 2022).

Another direction that has been considered in the literature 
is the network design. Given a static graph which represents an 
underlying graph, network design aims at defining timestamps 
where edges are active, so that we obtain a temporal graph 
that respects some connectivity property and that minimizes 
some objective function, like the maximum number of times-
tamps defined for an edge, or the overall number of timestamps 
assigned Mertzios et al. (2019).

Another aspects of temporal graphs that have been recently 
considered is the definition of models, similarly to what has 
been done for static graphs. In particular, the work in Casteigts 
et al. (2021) has introduced a random temporal graph model 
similar to the Erdos–Renyi random graph model, studying the 
connectivity properties of the resulting temporal graphs.

9  Conclusions and future research

In this section, we summarize the main contribution of our 
work and we point out some future directions as well as 
some open problems in temporal networks.

After introducing basic concepts, definitions, and meas-
ures of temporal networks, we recalled fundamental prob-
lems of temporal networks, such as those regarding paths, 
walks, circuits, and connectivity, with special focus on 
finding dense subgraphs and on graph covering. Then, we 
reviewed main algorithms regarding the search of motifs 
in temporal networks and temporal network comparison 
(network alignment). An introduction of the role on rep-
resentation learning (network embedding) has been also 
provided.

Moving from an abstract layer (problem formulation 
and basic algorithms), to a concrete layer (software and 
applications), the paper discusses main software tools and 
applications for temporal networks. In particular, some of 
the discussed algorithms that have been implemented in 
open source software tools are briefly described in a dedi-
cated section. Emerging applications of temporal networks 
in medicine (brain connectome), biology (protein–protein 
interaction networks), and public health (epidemics model-
ling) are also described.

Several contributions have been given on the algorith-
mic/complexity analysis of problems in temporal net-
works. Comparing with the case of static graphs, there 
is a need for the implementations/development of novel 
algorithms/software tools that are able to solve many 
problems on temporal networks (for example for the many 
variant of temporal paths considered in literature). A first 
contribution in this direction is Teneto Thompson et al. 
(2017), an open-source library for temporal network analy-
sis, supporting centrality and connectivity measures and 
temporal network generation, and the TGlib library Oetter-
shagen and Mutzel (2022), an open-source library which 
includes the computation of temporal centrality measures 
and statistics, and the implementation of temporal path 
algorithms.

Considering the problems on temporal networks, although 
many variants of the path problems have been considered 
due to their application in epidemiology and transportation, 
the problem could be further investigated for practical appli-
cations, for example by considering a minimum contact time 
for the transmission of virus.

From an algorithmic point of view, one of the most inter-
esting problem is the parameterized complexity of MinTime-
LineCover, when parameterized by the cost of the solution 
(that is the number of vertices that are active in more than 
a single timestamp). MinTimeLineCover admits a fixed-
parameter algorithm for the parameter cost of the solution, 
when the time domain consists of exactly two timestamps 
Froese et al. (2022), but it is not known whether it is a fixed-
parameter for larger time domains. Finally, it should be noted 
that the introduction of parallel and high performance algo-
rithms may significantly impact the field Guzzi et al. (2013).

Fig. 10  Classification of the main problems related to paths, walks, 
circuits, and trails in temporal graphs, according to their complexity. 
Notice that Restless path is a decision problem (and it is NP-com-
plete), while the others are all optimization problems
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