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Abstract
Network-based models are apt for understanding epidemic dynamics due to their inherent ability to model the heterogeneity 
of interactions in the contemporary world of intense human connectivity. We propose a framework to create a wire-frame that 
mimics the social contact network of the population in a geography by lacing it with demographic information. The frame-
work results in a modular network with small-world topology that accommodates density variations and emulates human 
interactions in family, social, and work spaces. When loaded with suitable economic, social, and urban data shaping patterns 
of human connectance, the network emerges as a potent decision-making instrument for urban planners, demographers, and 
social scientists. We employ synthetic networks to experiment in a controlled environment and study the impact of zoning, 
density variations, and population mobility on the epidemic variables using a variant of the SEIR model. Our results reveal 
that these demographic factors have a characteristic influence on social contact patterns, manifesting as distinct epidemic 
dynamics. Subsequently, we present a real-world COVID-19 case study for three Indian states by creating corresponding 
surrogate social contact networks using available census data. The case study validates that the demography-laced modular 
contact network reduces errors in the estimates of epidemic variables.

Keywords Demography · Modular network · Network topology · Small-world network · Social contact network · Urban 
geography

1 Introduction

The study of infectious disease dynamics is known to be a 
challenging area of research. The dominant underlying rea-
son is that, apart from the biology of contagion, the patterns 
of human connectance considerably influence the progres-
sion of infectious diseases. Since human connectivity plays 
a key role in the diffusion of contagion, two key factors, viz., 
density and demography of the population in a geography, 
have attracted serious attention from the research commu-
nity. The definitive role played by these factors in spreading 

the COVID-19 pandemic is vindicated by recent studies 
(Balbo et al. 2020; Faziera et al. 2020; Jamshidi et al. 2020; 
Kang et al. 2020; Rahman et al. 2020; Arauzo-Carod 2021; 
Teller 2021; Von Seidlein et al. 2021).

1.1  Background and motivation

Since the onset of the COVID-19 pandemic, computer 
scientists, statisticians, and mathematical epidemiologists 
have riveted attention on accurate short- and long-term 
predictions for health care professionals and administrators 
(Agrawal et al. 2021, 2020; Ferretti et al. 2020; Giordano 
et al. 2020; Hamzah et al. 2020; Harsha et al. 2020; Ji et al. 
2020; Li et al. 2020a; Liu et al. 2020; Mandal et al. 2020; 
Mao et al. 2020; Menon et al. 2020; Roy and Kar 2020; 
Schueller et al. 2020; Senapati et al. 2021; Shi et al. 2020; 
Small and Cavanagh 2020; Wynants et al. 2020). These 
works employ variants of compartmental models to forecast 
relevant epidemic variables, viz. peak day, peak cases, and 
epidemic span, to guide public health policy planners and 
epidemic management.

 * Sharanjit Kaur 
 sharanjitkaur@andc.du.ac.in

 Kirti Jain 
 kjain1@cs.du.ac.in

 Vasudha Bhatnagar 
 vbhatnagar@cs.du.ac.in

1 Department of Computer Science, University of Delhi, 
Delhi 110007, India

2 Acharya Narendra Dev College, University of Delhi, 
Delhi 110019, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13721-022-00402-1&domain=pdf
http://orcid.org/0000-0003-0792-2617
http://orcid.org/0000-0002-9706-9340
http://orcid.org/0000-0002-9437-5633


 Network Modeling Analysis in Health Informatics and Bioinformatics (2023) 12:14

1 3

14 Page 2 of 23

Taking stock of the performance of the COVID-19 
models so far, eminent scientists have scrutinized and 
questioned the efficacy and accuracy of predictions of 
these models (Holmdahl and Buckee 2020; Ioannidis 
et al. 2020; Kuhl 2020; Saltelli et al. 2020). Despite their 
limitations, there is a general agreement that epidemic 
models are indispensable tools for public health policy 
planning. However, several measures are recommended 
for improving the quality of predictions. These include 
revisiting the forecasting methodology and models (Ioan-
nidis et al. 2020; Kuhl 2020), prudently balancing the 
accuracy and complexity of models (Saltelli et al. 2020), 
advancing the theory of handling uncertainty (Ioannidis 
et al. 2020; Saltelli et al. 2020; Smith et al. 2020), and 
integrating individual behavior with disease dynamics 
(Jain et al. 2022).

Differential equation-based compartmental models, 
with the ambient assumption of a well-mixed and homo-
geneous population, are inadequate to model epidemic 
spread. Contagions often navigate through populations 
with heterogeneous social contacts, which are determined 
by their spatial distribution and demography. Network-
based1 approach is an alternative to equation-based mod-
eling and is notably attractive for studying the spread of 
infectious diseases (Danon et al. 2011; Pellis et al. 2015; 
Small and Cavanagh 2020). Since it emulates direct con-
tact between individuals in a population, network func-
tions as an apposite apparatus to simulate the transmis-
sion of diseases and offers a platform to tune policies for 
mobility restrictions. Drawing substantially from the solid 
foundations of the compartmental models, the network-
based approach is competent in modeling the social con-
tact patterns of the population and estimating the size and 
span of an epidemic.

In a network-based approach, the structure of the 
underlying wire-frame for simulating the epidemic spread 
is a dominant factor influencing the quality of estimates. 
In this research, we study the role of a modular contact 
network2 and its structure on the epidemic dynamics. We 
create the wire-frame to proxy the modular contact net-
work of a population by considering the spatial structure 
and demography of a geography. Since these two aspects 
directly impact human interactions, running simulations 
on a density- and demography-aware social contact net-
work has a strong potential to deliver realistic estimates 
of epidemic variables.

The current proposal for creating a demography-laced 
contact network for simulating the epidemic spread draws 
from two lines of research. The first one is related to the 

study of epidemic dynamics on interconnected networks aka 
network-of-networks (Hui and Zi-You 2007; Dickison et al. 
2012; Saumell-Mendiola et al. 2012; Wang et al. 2013). Sec-
ond is the set of studies that explore associations between 
epidemic dynamics, population density, and demography 
(Neiderud 2015; Faziera et al. 2020; Hamidi et al. 2020; 
Kang et al. 2020; Mueller and Papenhausen 2020; Rahman 
et al. 2020; Arauzo-Carod 2021; Bhadra et al. 2021; Von 
Seidlein et al. 2021).

Earlier works simulating epidemic spread over intercon-
nected networks concur that these modular networks cap-
ture contagion dynamics realistically (Hui and Zi-You 2007; 
Saumell-Mendiola et al. 2012; Dickison et al. 2012; Li et al. 
2014; Wang et al. 2014; Liu et al. 2015; Bhattacharyya and 
Vinay 2020). Most of these works study epidemic dynam-
ics on a small-sized network consisting of a few modules 
(Hui and Zi-You 2007; Saumell-Mendiola et al. 2012; Wang 
et al. 2013). Studies also reveal that the strength and nature 
of the coupling between the constituent networks affect the 
epidemic dynamics (Dickison et al. 2012; Saumell-Mendiola 
et al. 2012). Ingraining the network with spatial information 
extends its ability to model population mobility and under-
stand epidemic dynamics for different scenarios of mobility 
restrictions (Riley et al. 2015; Arauzo-Carod 2021).

The COVID-19 pandemic has spurred several location-
based empirical investigations about the association of pop-
ulation density and demography with the evolution of the 
epidemic (Arauzo-Carod 2021; Bhadra et al. 2021; Faziera 
et al. 2020; Hamidi et al. 2020; Jamshidi et al. 2020; Kadi 
and Khelfaoui 2020; Kang et al. 2020; Rahman et al. 2020; 
Von Seidlein et al. 2021). Some studies related to localiz-
ing the spatial distribution of a region furnish evidence of a 
positive correlation between density and COVID-19-posi-
tive cases (Bhadra et al. 2021; Faziera et al. 2020; Kadi and 
Khelfaoui 2020). However, some findings that examine the 
association between population density and epidemic spread 
yield inconclusive signals (Hamidi et al. 2020; Jamshidi 
et al. 2020). A recent review of the pandemic-era literature 
that relates urban density and epidemic dynamics observes 
the lack of scientific consensus about the effect of density 
on epidemic spread (Teller 2021).

1.2  Contributions and organization

Our framework extends the small-sized city network pro-
posed by Bhattacharyya and Vinay (2020) by fortifying the 
network with interaction patterns commensurate with the 
local demography of the population. Specific contributions 
to the research are listed below. 

 i. We propose a framework for creating a census-cal-
ibrated modular contact network for a geography 
divided into zones (Sect. 2.1). The proposed frame-

1 Also referred to as an individual-based modeling approach.
2 Interconnected network/network-of-networks.
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work is grounded in parsimony and uses basal demog-
raphy data from the census. We estimate the inter-
action patterns by explicitly modeling family, social, 
and work contacts that arise due to population density 
variations and demography. The network thus created 
purports a wire-frame for simulating the epidemic 
spreading process.

 ii. Systematic study of synthetic modular network aka 
network-of-networks: 

a. We affirm the small-world topology of the con-
structed network by quantifying its small-world-
ness, and verify the Poisson degree distribution of 
the network (Sect. 4.1.1).

b. We experiment to understand the impact of zone 
structuring, density variations, and population 
mobility of a geography on the epidemic spread by 
constructing a synthetic modular network. Working 
with synthetic networks permits focused scrutiny 
of the factors being examined under the controlled 
environment (Sects.  4.1.2–4.1.4). Though these 
factors are decisive determinants of human con-
nectance, to the best of the authors’ knowledge, this 
is the first systematic attempt to explicitly examine 
their relationship with the epidemic spread while 
dissociating from the complexities of other socio-
economic factors.

c. We perform an ablation study by systematically 
adding demographic parameters in the network and 
observing epidemic variables. Our results reveal 
noticeable variations in epidemic dynamics as 
demographic parameters are gradually introduced 
into the network. The observations affirm our con-
jecture that incorporating demography in real-world 
epidemiology studies yields more realistic predic-
tions (Sect. 4.1.5).

 iii. We present a real-world case study for three Indian 
states, viz., Delhi, Goa and Odisha, by creating their 
surrogate social network-of-networks using census 
data3 (Sect. 4.2). 

a. We affirm the small-world topology of the networks 
constructed for three Indian states (Sect. 4.2.1).

b. We demonstrate that the demography-laced modu-
lar contact network improves the estimates of epi-
demic variables compared to synthetic network 
(Sect. 4.2.2).

Though we use SEIHRD4 epidemic model to study the 
COVID-19 pandemic as a backdrop, our framework for con-
structing a demography-laced modular network is generic, 
and the network is suitable for simulating any epidemic 
spread model.

2  Methods

2.1  Framing census‑calibrated social contact 
network

The network of interconnected networks is a pertinent model 
for representing interconnections among individuals in the 
spatial structure of geography. We represent the contact pat-
terns of the population in a geographical unit (state/city/
town) as an interconnection of multiple networks (modules), 
each corresponding to a sub-unit (zone) of the geography. 
Nodes in a module denote individuals in the zone, and the 
edges denote interactions (contacts) between individuals.

Example 1 Consider a geography of a toy city U compris-
ing six zones as shown in Fig. 1a. The corresponding social 
contact network of U is modeled as an interconnection of 
six networks (Fig. 1b).

Modules corresponding to zones are modeled as small-
world networks with edges representing interactions between 
individuals in home space. Additional edges are added to 
each module, representing interactions outside the house-
hold in social space. The modules are then interconnected 
to model interactions in work space involving travel to (pos-
sibly) different zones.

Each module is impregnated with the corresponding 
demographic details of the zone, thereby capturing heteroge-
neity in the overall structure of the social contact network of 
the geography. Since family interactions represent contacts 
in the home space, the distribution of family size primar-
ily dominates  the number of edges in the network module. 
The size of the working-age population in a zone determines 
the number of work edges in the module. Interactions out-
side the household to meet day-to-day social and shopping 
needs, medical assistance, etc., generate social contacts. 
Thus, diligent use of the demographic information of the 
zone approximates contact patterns akin to the real-world 
social contact network of the population.

2.1.1  Topology of a module

In a comprehensive account of networks and epidemiol-
ogy of the infectious diseases, Danon et al. (2011) state that 
small-world-ness of the network has clear implications for 
disease spread and its control. Earlier, Shirley and Rushton 

3 https:// censu sindia. gov. in/ 2011c ensus/.
4 S: susceptible, E: exposed, I: infected, H: hospitalized, R: recovered 
and D: deceased.

https://censusindia.gov.in/2011census/
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(2005) empirically demonstrated that the dimension of the 
base lattice of a small-world network significantly affects 
the size and span of an epidemic. The dimension of the base 
lattice governs the topological properties of the network, 
which ultimately impacts the epidemic dynamics.

In this context, we make use of an important result given 
by Newman (2000), which relates  clustering coefficient, 
average degree, and dimension of the lattice. In a small-
world network with base lattice of dimension d and average 
degree k, the clustering coefficient (CC) is related to k and 
d as follows.

The clustering coefficient of the network tends to zero when 
k ⟶ 2d , implying that the lattice loses its clustering prop-
erty as the average degree approaches twice the dimension 
of the lattice. We, therefore, carefully choose the dimension 
of the base lattice while taking into account the population 
density, which influences the average degree and clustering 
coefficient of the curated network.

2.1.2  Embedding demography in modules

Consider a geography U divided into m zones {z1,… , zm} 
with compatible population vector P⃗ , density vector Δ⃗ , 
household vector H⃗ , and vector K⃗ denoting mean household 

(1)CC =
3(k − 2d)

4(k − d)
.

size of zones. Element pi in P⃗ denotes the population of zone 
zi , �i in Δ⃗ denotes its population density, hi in H⃗ denotes 
its  number of households, and ki in K⃗ denotes its  mean 
household size.

We generate small-world networks {G1,… ,Gm} corre-
sponding to zones {z1,… , zm} , with number of nodes equal 
to their respective populations. The degree of the regular 
base lattice for Gi is set to ki (mean household size), and 
the dimension is decided based on the population density 
�i of zi . According to the United Nations and Social Affairs 
(2017) global population survey, the average household size 
ranges from fewer than three persons per household to more 
than six in countries across the continents. Considering this 
range of household size, the dimension of the base lattice of 
a module is limited to {1, 2} , so that the average clustering 
coefficient and average path length are compatible with the 
small-world network.

Modeling interactions in family space: We define a func-
tion M ∶ Δ⃗ ⟶ D⃗ to map the population density of a zone 
to the dimension of the base lattice of the corresponding 
small-world network (module) as follows.

where Δavg denotes the average density of m zones in the 
geography. Small-world networks thus created correspond-
ing to the m zones embody variation in the spatial density 

(2)di = M(�i) =

{
1 if �i ≤ Δavg

2 otherwise,

Fig. 1  a Illustration of a geography U with six zones, b Modular social contact network of geography U modeled as an interconnected network 
of six networks
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of the geography U. Notably, mapping M can be defined 
by the user to appropriately inlay family contacts in accord-
ance with the social culture and ground realities of different 
zones of the geography. In geographies with no significant 
density variations, the dimensions for all modules  may be 
set uniformly.

The regular base lattice of dimension di (using Eq. 2) is 
created with pi nodes of degree ki , and is rewired with prob-
ability � to yield a small-world module Gi . In this way, we 
obtain m networks, each infused with the basic demographic 
information of the corresponding zones in U, with edges 
ensconcing interactions in home space. The network is sub-
sequently loaded with edges representing contacts in social 
and work spaces.

Modeling interactions in social space: Realistic depiction 
of social interactions in a network is an arduous task because 
of the gamut of complexities arising out of social and eco-
nomic processes prevalent in the geography. Moreover, 
measuring and modeling social interactions poses formida-
ble challenges because of their change with space and time.

We take an elemental view of the problem and consider 
social interactions as a function of the number of households 
in zone zi . Element hi in vector H⃗ denotes the number of 
households in zone zi . Since social interactions in geography 
are influenced by culture, demography, seasons, etc., socia-
bility index � provides the handle to capture these nuances 
in the wire-frame. Accordingly, � is used as a multiplier to 
determine the number of social edges ( � × hi ) in Gi.

Modeling interactions in work space: Next, we connect the 
modules (corresponding to zones) to create a social contact 
network-of-networks for U. Following Liu et al. (2015), we 
use the coupling density vector Q⃗ of size m to interconnect 
modules. Demographically, Q⃗ denotes the size of the work-
ing population that mobilizes within and across zones for 
livelihood. Element qi denotes the fraction of individuals 
in zi traveling for work, thereby modeling contacts in work 
space. Hadamard product P⃗⊗ Q⃗ fixes the number of inter-
connecting edges for Gi corresponding to zone zi . The edges 
are added to Gi such that they have one endpoint in Gi and 
the other endpoint lies in any of the m modules (including 
Gi ). The inter-and intra-modular edges thus created represent 
interactions in the work space.

The resulting network, with small-world topology, serves 
as the wire-frame for simulating the spread of an epidemic. 
Variation in the demography of the zones induces heteroge-
neity in connectance patterns in the modules. We designate 
this wire-frame as surrogate social contact network-of-net-
works (SSCN) of the geography U.

Example 2 Consider the following demographic information 
for a toy urban space U with four zones, mapping M as 
defined in Eq. 2 and sociability index � = 1 . 

 i. P⃗ = {25, 10, 12, 16} - Population vector,
 ii. Δ⃗ = {5, 2, 3, 4} - Density vector,
 iii. K⃗ = {6, 6, 6, 6} - Mean household size vector,
 iv. H⃗ = {4, 2, 3, 3} - Household vector,
 v. Q⃗ = {0.2, 0.3, 0.25, 0.25} - Coupling density vector

Average density ( Δavg ) of U being 3.5, we obtain 
D⃗ = {2, 1, 1, 2} as the resultant dimension vector. Modules 
created with the designated dimension of the base lattice 
and degree are rewired with probability � = 0.01 to gener-
ate edges in home spaces (solid gray lines). Social edges 
are added using H⃗ and the sociability index � . Finally, the 
modules are interconnected by work edges using P⃗⊗ Q⃗ . 
The final surrogate social contact network of U is shown 
in Fig. 2. Modules { G1,G2,G3,G4 } correspond to zones 
{ z1, z2, z3, z4 }, with the number of nodes equal to their 
respective populations (shown in different colors). G2 and 
G3 have one-dimensional base lattice, and G1 and G4 have 
two-dimensional base lattice structure. Social contacts are 
shown with dash lines within the modules. Work contacts 
for a module are shown with the same color as that of the 
module.   ◻

Fig. 2  Illustration of a toy modular social contact network. The net-
work has two 1D modules ( G

2
 , G

3
 ) and two 2D modules ( G

1
 , G

4
 ). 

Solid gray edges within each module denote family contacts. Social 
contacts within each module are shown with gray dash lines. Work 
contacts (intra-and inter-module connections) are shown with the 
same color as that of the module
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The methodology for constructing the wire-frame exploit-
ing census data is inexpensive and generic compared to 
alternatives that infer contact patterns from human-mobility 
data obtained from smartphone-based GPS technology or 
by digital contact tracing (Ferretti et al. 2020; Huang et al. 
2016; Ma and Lipsitch 2020).

2.1.3  Enriching the wire‑frame

The framework described above induces a basic wire-frame 
to systematically study contagion dynamics in a geographi-
cal unit with varying demographic factors. The framework 
is versatile enough to accommodate employment, socio-eco-
nomic, and behavioral data to simulate close-to-real social 
contact patterns. The prospects of enriching the wire-frame 
rise with the availability of quality demography data. We 
envisage possible enrichment of the wire-frame in one (or 
more) of the following ways, based on the data availability: 

 i. The availability of detailed age distributions for the 
population allows for embedding more nuanced 
contact patterns in the network. Geographies with 
an aging population have fewer social contacts per 
household, while those with a younger population 
tend to have more social contacts. Sociability index 
� , which abstracts the extent of societal interactions 
in the population, can be set suitably to reflect the 
age distribution and regulate the number of edges in 
social space. Recent data collection exercise carried 
out by Koltai et al. (2022) to construct age-contact 
matrices with the high temporal and spatial resolution 
is a promising idea to obtain closer-to-representative 
contact networks.

 ii. Availability of land use data and employment-related 
data5 for zones admits mobility patterns closer to 
reality. Employment-related data for the population 
of the zones promote more realistic interconnections 
between modules. Detailed mobility data, if avail-
able, can be assimilated in the wire-frame by instan-
tiating m × m interaction matrix to add interconnect-
ing (work) edges between the modules. Zones with 
industrial and residential land use exhibit distinctly 
different patterns of social contacts compared to urban 
spaces with mixed land use. Thus, embedding land use 
data can refine the overall topology of the wire-frame 
by suitably grading the social and work contacts in a 
geography.

 iii. Zone-wise data for compliance with the recommended 
behavior and imposed restrictions can be incorporated 
into the network by appropriately altering contact pat-

terns, thereby enabling empirical testing of behavioral 
and social conjectures that influence human interac-
tions during the spread of epidemics. This accom-
modates the recent recommendations to align social 
and behavioral sciences with the epidemic spreading 
models (Van Bavel et al. 2020; Jain et al. 2022).

 iv. Network model of the social contacts in the population 
is potent to accommodate mobility restrictions like 
lockdown and curfew. Recently, Pung et al. (2022) col-
lected high-resolution contact data among passengers 
and crew on cruise ships to examine the impact of 
combined interventions on the social contacts arising 
in different activity settings. Ingraining data for vari-
ous interventions helps to study the effect of mobil-
ity restrictions between zones during the spread of an 
epidemic.

 v. The basic wire-frame considers all network modules 
at the same level. In case zones in the geography are 
divided further for administrative convenience (say, 
wards), the availability of the data for sub-units can 
extend the design of the network to two levels. The 
hierarchical network-of-networks provides a mecha-
nism for examining several “what–if” scenarios at a 
micro-level and facilitates the focused study of the 
dynamics of local disease outbreaks.

It is important to note that temptation to introduce real-
ism in the wire-frame to understand and explain epidemic 
dynamics in the real world may incur higher computational 
costs (Xia et al. 2015; Bhattacharyya and Vinay 2020). Such 
parameter-intensive models are more prone to errors and 
may produce results contrary to expectations.

2.2  Epidemic spread model

We simulate the spread of an epidemic in the population 
and study its dynamics to assess the effectiveness of the sur-
rogate social contact network. Though any epidemic model 
viz., SI, SIR, and SIRS (Britton 2010) can be used for this 
purpose, we use a variant of the SEIR model to examine the 
role of demography in social contact networks using real 
data for the COVID-19 pandemic.

SEIR is a classical compartmental model consisting 
of four epidemiological classes, viz., S (susceptible), E 
(exposed), I (infected), and R (recovered). Several extensions 
of the classical SEIR epidemic process have been employed 
to study COVID-19 pandemic (Agrawal et al. 2020; Menon 
et al. 2020; Shi et al. 2020; Venkateswaran and Damani 
2020; Wang et al. 2020; Senapati et al. 2021). We adopt a 
variant (SEIHRD) that splits class I into two compartments, 
viz., asymptomatic ( Ia ) and symptomatic ( Is ). The model 
also compartmentalizes hospitalized (H) and deceased indi-
viduals (D), as shown in Fig. 3.

5 Casual vs. organized sector, unskilled vs. skilled, blue-collared vs. 
white-collared jobs.
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Individuals in compartment E may develop symptoms 
and progress to the symptomatic infected ( Is ) compartment 
with probability r in time period t. Due to their highly con-
tagious state, these individuals are quarantined to curb the 
pathogen’s spread through direct contact. However, there is 
a small, finite probability �s that a symptomatic individual 
may pass the contagion to a susceptible individual through 
accidental contact. Even after the latency period (l), some 
exposed individuals do not exhibit symptoms and move to 
the asymptomatic infected ( Ia ) compartment. Unaware of 
their infected status, they intermix freely in the population, 
infecting susceptible contacts with a high transmission prob-
ability �a ( ≫ 𝛽s ). Asymptomatic individuals are unidentified 
and hence are instrumental in the spread of infection (Yu and 
Yang 2020; Agrawal et al. 2021).

Individuals in compartment Ia who are asymptomatic 
recover naturally over time ( ra ) and transit to the recov-
ered compartment (R). Some symptomatic individuals may 
recover after a mild illness, while others get very sick and 
require hospitalization. The health of some symptomatic 
individuals worsens (in time ts ), and they move to the hospital 
compartment (H) with probability h. The remaining transit to 
compartment R after recovery within period rs . Hospitalized 
individuals either recover from illness in period rh and move 
to compartment R or unfortunately die within period dh and 
move to compartment D. Isolation of symptomatic and hos-
pitalized individuals connotes a quarantine state.

Initialization of the spreading process: We mark the seed 
node(s) as symptomatic infectious ( Is ) and set all the neigh-
bors as asymptomatic ( Ia ). We also expose (E) all the neigh-
bors of nodes in Ia compartment, assuming they exposed the 
susceptible contacts unknowingly. Finally, we simulate the 
spreading process and note the active cases to derive three 
epidemic variables: peak day, peak active cases, and span 
of the epidemic.

2.3  Implementation of non‑pharmaceutical 
interventions

We implement non-pharmaceutical interventions (NPIs) by 
removing edges (contacts) from the network and restoring 

them when the intervention is rolled back. Assuming that 
public behavior is never perfect, the level of compliance 
required for lockdown is simulated by controlling the 
removal of edges. Since NPIs do not disrupt family contacts, 
the action of addition and removal of edges is restricted to 
work and social contacts only. Compliance parameters are 
set according to the derived notion of an appropriate NPI 
strategy. To implement lockdown observed with p% compli-
ance, for example, (100 - p)% edges are kept in the network.

3  Materials

3.1  Parameters for synthetic modular network 
and epidemic simulation

Experiments use a synthetic modular social contact net-
work that mimics a city with a population of size N = 100 K 
(N = Σipi ), divided into m equi-sized zones (population of 
each zone  pi =

100K

m
 ). The demography for all zones is iden-

tical, i.e., all zones have the same household size ( ki  = 6), 
the same number of households ( hi = 0.01*pi ). Since the 
population density of a zone determines the dimension of the 
base lattice for the corresponding module, we use a dimen-
sion vector D⃗ to model the connectance pattern arising due 
to population density, which is set as per the experimental 
objective. For simplicity, the sociability index � is set to 1. 
Assuming the same working-age population for all zones, 
we use coupling density, qi = 0.01 for all modules unless 
specified explicitly. Each module is a small-world network 
rewired with probability � = 0.016. Table 1 summarizes the 
parameters for the construction of the demography-laced 

Fig. 3  SEIHRD Model: state transition pathways for an infected indi-
vidual

Table 1  Parameters for creating a synthetic network for a geography 
with a population of size 100K (N) and m zones (modules). Each 
parameter vector is of size m and contains the specified demographic 
information, which is the same for all zones (modules). The number 
of modules m and dimension vector D⃗ for modules are set as per the 
experiment objective and value of x may be either 1 or 2

Parameter 
Vector

Description Value

P⃗ Population size {
N

m
,
N

m
,
N

m
,…}

D⃗ Dimension of the base 
lattice

{x, x, x,…}

K⃗ Mean household size {6, 6, 6,…}

H⃗ Number of households {
N

m
∗ 0.01,

N

m
∗ 0.01,

N

m
∗ 0.01,…}

Q⃗ Coupling density {0.01, 0.01, 0.01,…}

6 Our choice of � is based on the observation that small rewiring 
probability � ranging from 0.001 to 0.1 maintains small-world prop-
erty in the base lattice (Menezes et al. 2017).
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synthetic network. We initiate the SEIHRD spreading pro-
cess with one random seed node. The parameters for the 
spreading model are given in Table 2.

3.2  Parameters for surrogate modular network 
and epidemic simulation

This section describes the demography data used to cre-
ate a surrogate social contact network (SSCN) for the three 
Indian states (Delhi, Goa, and Odisha), the parameters of 
the spreading process, and simulation details. The selection 
of states is motivated by the diversity in the rural–urban 
agglomeration and population density. Delhi is the capital of 
India and the largest metropolitan city-state, with high urban 
agglomeration. Among small states, Goa has the largest 
urban population. Odisha has a predominantly rural popula-
tion with lower wages and fewer job opportunities, primarily 
engaged in farming, fishing, and forestry, as per the report 
by Asian Development Bank (2017). We use demography 
estimates extrapolated from the 2011 Indian census for our 
study because the census scheduled for the year 2021 could 
not be held in India due to the COVID-19 pandemic. Actual 
active cases for Delhi, Goa, and Odisha are retrieved from 
COVID-19, India (2019).

3.2.1  Zones and demography

Delhi, the national capital of India, is a densely populated 
metropolis with an estimated population of 19.6 million, 
as per the census estimate for 2021. Since the basic demo-
graphic data for 2011 is available, we extrapolate the popu-
lation of the nine zones and construct the SSCN of Delhi 
with nine modules. Each module is parametrized with the 
corresponding demographic data presented in Appendix A 
(Table 6).

Goa, an Indian coastal state, has an estimated current 
population of 1.528 million. There are two districts, North 
Goa and South Goa, which are further divided into six and 
five sub-districts, respectively. The SSCN of Goa is accord-
ingly constructed with 11 modules, each parametrized with 
the corresponding demographic data shown in Table 7 of 
Appendix A.

Odisha, the 8th largest state by area is the 11th largest state 
with an estimated current population of 45.42 million. There 
are 30 districts, with 83% of the population living in rural 
areas. The SSCN of Odisha is constructed with 30 modules, 
each parametrized with the corresponding demographic data 
detailed in Appendix A (Table 8).

Table 3 summarizes the basal details of three states.

3.2.2  Parameters for the spreading process

Epidemiologists strive to estimate � (probability of trans-
mission) from the epidemic statistics and use it to predict 
the course of an epidemic for a relatively short term, with 
automatic course correction when prediction error increases 
beyond a threshold. Techniques used to estimate � span over 
the biological, statistical, and computational methods (Read 
et al. 2020; Mohamadou et al. 2020).

Table 2  Parameters used for simulation of SEIHRD epidemic spread process

Parameter Description Value Reference

�
a

Probability of transmission from asymptomatic individual 0.42 (Menon et al. 2020)
�
s

Probability of transmission from symptomatic individual 0.015 (Menon et al. 2020)
r Rate of progression from exposed to symptomatic compartment 0.25 (Sarkar et al. 2020)
h Probability of hospitalization 0.044 (Agrawal et al. 2020)
l Latency period 3-5 days (Venkateswaran and Damani 2020)
t Symptom development period 2-3 days (Venkateswaran and Damani 2020)
pi Period of infectivity 7 days (Cevik et al. 2021)
t
s

Hospitalization period 3-7 days (Venkateswaran and Damani 2020)
r
a

Recovery period of asymptomatic individual 7-10 days (Venkateswaran and Damani 2020)
r
s

Recovery period of symptomatic individual 9-16 days (Venkateswaran and Damani 2020)
r
h

Recovery period of hospitalized individual 9-16 days (Venkateswaran and Damani 2020)
d Mortality rate of hospitalized individual 0.15 (Bhattacharyya and Vinay 2020)
d
h

Days of hospitalization for deceased individual 1-20 days (Bhattacharyya and Vinay 2020)

Table 3  Three Indian states and their demographic details as per Cen-
sus 2011

State Population Area ( km2) Population Den-
sity (people/km2)

Urban 
Agglomera-
tion (%)

Delhi 16,787,941 1,483 11,320 97.50
Goa 1,458,545 3,702 394 62.17
Odisha 41,974,218 155,707 270 16.69
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We simulate the epidemic spread in four phases, where 
parameters for the initial phase are the same as given in 
Table 2. We use estimates from the SUTRA model, which 
is hailed as a supermodel for India-specific predictions 
(Agrawal et al. 2021). SUTRA model estimates parameters 
for Indian states (from May 2020 to October 2021) in the 
next three phases as described in Appendix D. We draw the 
remaining parameters for simulation of the epidemic process 
from compatible India-specific studies7, the details of which 
are given in Table 2. The timeline of non-pharmaceutical 
interventions (NPIs) imposed by the Government of India 
is given in Appendix C (Table 10). The initiation process for 
simulation is explained below. 

 i. Delhi simulation: We initiate simulation on SSCN of 
Delhi with real data of seven patients (reported on 14 
March 2020 (COVID-19, India 2019)) as discussed 
in Sec. 2.2. We run epidemic spread simulations for 
Delhi, considering the initial phase of 14 March to 27 
May 2020, using India-specific infectivity rate ( �a ) 
drawn from early studies. We use the estimates from 
the SUTRA model for the next three phases. Thus, 
the transmission probabilities used for simulation are 
�a = (0.42, 0.0978, 0.1353, 0.1182).

 ii. Goa simulation: Seven cases of COVID-19 were 
confirmed in Goa on 4 May 2020 (COVID-19, India 
2019). We infect as many nodes in SSCN of Goa and 
initiate the spreading process as described in Sec. 2.2. 
We consider the initial phase for Goa epidemic spread 
simulations from 4 May 2020 till 27 May 2020 using 
India-specific infectivity rate ( �a ). For the next three 
phases, we use the estimates from the SUTRA model. 
Thus the transmission probabilities used for simulat-
ing infection spread by the asymptomatic cases in four 
phases are �a = (0.42, 0.1654, 0.1953, 0.1564).

 iii. Odisha simulation: Five cases of COVID-19 were con-
firmed in Odisha on 2 April 2020 (COVID-19, India 
2019). We infect five nodes in SSCN of Odisha and 
initiate the spreading process as described in Sec.  2.2. 
We simulate epidemic spread in Odisha during the 
initial phase (2 April 2020 to 27 May 2020) using 
India-specific infectivity rate ( �a ). For the next three 
phases, we use the estimates from the SUTRA model 
with the transmission probabilities in four phases as 
�a = (0.42, 0.2014, 0.2034, 0.1496).

4  Results and discussion

We assess the merit of the basic wire-frame for understand-
ing the role of demography on epidemic dynamics using syn-
thetic networks. Though synthetic networks are antitheses of 
surrogate networks, their use accords options to scrutinize 
the impact of one control parameter while keeping others 
static. The COVID-19 case study for three Indian states indi-
cates the validity of the conjecture that demography-laced 
networks realistically capture real-world epidemic dynamics.

We simulate the epidemic process and note the peak epi-
demic size, peak day, and span of the epidemic. Peak epi-
demic size is the maximum number of active cases (symp-
tomatic and hospitalized) on a given day. The day when the 
active cases are maximum is the peak day. The span of an 
epidemic denotes the period between when the first and last 
cases were reported. All reported results are averaged over 
ten runs to mitigate the effect of randomness. In the plots, 
we show the epidemic curves with standard deviation as 
shaded regions. We use Python (64bits, v 3.7.2) to imple-
ment the SEIHRD model and create networks using the 
Igraph library. Programs are executed on Intel(R) Core(TM) 
i7, CPU @1.80GHz with 16GB RAM.

4.1  Epidemic dynamics in demography‑laced 
synthetic modular networks

We confirm the small-world property of the wire-frame 
created by the proposed methodology in Sec. 4.1.1 before 
embarking on the detailed experimentation. We study the 
epidemic dynamics with variation in zone structure of a 
geographical unit in Sec. 4.1.2. Experiments reported in 
Sec. 4.1.3 demonstrate that high population density pro-
motes the spread of infection. In Sec. 4.1.4, we validate that 
higher coupling density (population mobility) in the network 
expedites the epidemic spread, and network construction 
does not alter general principles of the epidemic spread.

4.1.1  Small‑world‑ness of wire‑frame

Small-world networks are characterized by high clustering 
coefficients and small average path lengths. The clustering 
coefficient (CC) is the proxy for the quantitative assessment 
of locally dense regions, with high values typical of lattice-
based regular networks. The average path length (APL) 
indicates the efficiency of transmission in the network, 
with shorter lengths typical of random networks. Thus, 
short APL accelerates the epidemic spread, while high CC 
retards it by limiting the ability of infected individuals to 
infect their local neighborhoods. Therefore, small-world-
ness of social contact networks exhibits interesting epidemic 

7 Since the epidemic process simulated by the SUTRA model is dif-
ferent from ours, we lose the benefit of using other model parameters 
predicted by it.
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dynamics because of the antithetical action of the two net-
work properties.

Small-world-ness coefficient:Humphries and Gurney 
(2008) propose a metric to quantify the small-world-ness 
property based on APL and CC of the network. Let APLx 
and CCx be the average path length and average clustering 
coefficient of network x, where x = R for the random net-
work and x = G for the network under investigation with the 
same size and order. Network G is considered to be small-
world network iff S(G) > 1 , where small-world-ness (S) of 
network G is quantified in Eq. 3 (Humphries and Gurney 
2008).

We generate two sets of synthetic modular networks belong-
ing to two categories. The first category of networks has all 
modules with a one-dimensional base lattice (M-1D), and 
the second category of networks has all modules with two-
dimensional base lattice (M-2D). We consciously model net-
works (geographies) with the same population and uniform 
population densities in all zones to reduce two degrees of 
freedom. This gives us the opportunity to examine the effects 
of zoning (by varying the number of modules), population 
mobility (by varying coupling density), and topology on the 
epidemic dynamics for different population densities. We 
compute the average clustering coefficient and average path 
length for each network (Table 4). To allay the randomness 
of the generated networks, we report measurements averaged 
over ten runs along with standard deviations. It is observed 
that average clustering coefficients and average path lengths 
are higher for M-1D networks than M-2D networks due to 
the difference in the connectance patterns of the underlying 
base lattice. Further, the clustering coefficient remains nearly 
the same for each category despite increasing the number of 

(3)S(G) =
CCG ∗ APLR

CCR ∗ APLG

modules. However, the average path length increases with 
increasing modules for both categories.

We present the value of the computed small-world-ness 
coefficient (S) for all networks using Eq. 3 in Table 4. The 
large positive values of S in the table affirm the small-
world-ness of the wire-frames created by the proposed 
methodology. The value of coefficient S decreases notice-
ably due to increased path length for networks with the 
increase in the number of modules in both categories. The 
investigation positively indicates that the wire-frame dis-
plays small-world-ness property.

Degree distribution: Small-world networks approxi-
mately follow Poisson degree distribution (Zafarani et al. 
2014). Consider a random variable X ∼ Poisson(�) denot-
ing the degree of a node. The probability mass function 
PX(x) and cumulative distribution function FX(x) of X are 
given as follows.

A Poisson random variable Y is said to be doubly truncated 
if the extreme values of the variable are either missing or 
unobserved. The probability distribution of Y(�l ≤ Y ≤ �r) 
is given in Eq. 6 (Zafarani et al. 2014).

In the context of a social contact network of a population, it 
is realistic to assume that no individual is entirely isolated. 

(4)PX(x) =
e−��x

x!
; x = 0, 1, 2,…

(5)FX(x) =

x∑
i=0

P(X = i); x = 0, 1, 2,…

(6)PY (y) =

⎧⎪⎨⎪⎩

0 y < 𝛼l
e−𝜆𝜆y

y!
[FX(𝛼r) − FX(𝛼l − 1)]−1 𝛼l ≤ Y ≤ 𝛼r

0 y > 𝛼r

.

Table 4  Topological properties 
of M-1D and M-2D networks 
with population N = 100K , 
average degree ≈ 6 . m: number 
of modules, CC: average 
clustering coefficient, APL: 
Average path length, S: small-
world-ness coefficient

m CC APL S

M-1D M-2D M-1D M-2D M-1D M-2D

1 0.5539 ± 0.00039 0.3693 ± 0.00024 19.56 ± 0.082 13.79 ± 0.030 3031.99 2866.69
2 0.5534 ± 0.00056 0.3691 ± 0.00039 19.90 ± 0.109 14.25 ± 0.059 2977.66 2773.66
10 0.5538 ± 0.00042 0.3693 ± 0.00032 21.29 ± 0.099 15.50 ± 0.058 2784.5 2551.04
20 0.5538 ± 0.00038 0.3691 ± 0.00021 22.10 ± 0.117 16.10 ± 0.026 2682.85 2454.51
30 0.5541 ± 0.00031 0.3693 ± 0.00020 22.78 ± 0.051 16.6 ± 0.048 2603.97 2382.46
40 0.5535 ± 0.00025 0.3692 ± 0.00037 23.12 ± 0.114 16.96 ± 0.073 2563.47 2330.71
50 0.5539 ± 0.00037 0.3694 ± 0.00046 23.64 ± 0.128 17.40 ± 0.067 2508.47 2273.01
60 0.5543 ± 0.00047 0.3693 ± 0.00040 24.29 ± 0.115 17.68 ± 0.050 2443.13 2236.54
70 0.5542 ± 0.00059 0.3697 ± 0.00024 24.59 ± 0.084 18.23 ± 0.061 2413.57 2171.78
80 0.5544 ± 0.00039 0.3696 ± 0.00033 25.15 ± 0.098 18.43 ± 0.068 2359.09 2147.63
90 0.5541 ± 0.00053 0.3698 ± 0.00033 25.25 ± 0.198 19.03 ± 0.042 2349.88 2080.72
100 0.5539 ± 0.00036 0.3698 ± 0.00019 25.62 ± 0.090 19.24 ± 0.037 2314.57 2058.33
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Further, anthropology and sociology studies have confirmed 
a well-defined limit to the number of social contacts an aver-
age individual can retain in the physical world (De Ruiter 
et al. 2011). Ergo, the degree of nodes in the social con-
tact network, is bounded at both ends (�l ≤ X ≤ �r) , and we 
expect the degree distribution of the constructed wire-frame 
to be doubly truncated Poisson distribution.

Let x1,… .xN denote the empirical degree distribution 
obtained from the network with N nodes and let x̄ be the 
empirical mean. Considering it as a doubly truncated 
sample from Poison distribution, we estimate �̂� , the mean 
degree of the network, using the maximum likelihood 
estimator (MLE) proposed by Cohen (1954). Note that 
the degree of the base lattice is the theoretical mean � of 
the small-world network, which is the same (six) for all 
networks. The likelihood function of a random sample of 
N observations from a Poisson population with a mean � 
may be written as Eq. 7.

The following estimated equation is obtained by differentiat-
ing the log-likelihood function L and equating it to zero (See 
Cohen (1954) for details).

Since there is no closed form, �̂� is computed by elementary 
iterative procedure to maximize dL

d�
.

We compute the degree distributions of M-1D and M-2D 
networks. Since the average degree for the base lattice and 
other construction parameters for both categories of net-
works are the same, all networks display similar empirical 
degree distributions with N = 100K, an empirical mean 
x̄ = 6.04 , �l = 3 and �r = 9 (Fig. 4). We estimate the mean 
degree using �̂� = 6 as the first approximation and �̂� = 7 as 
the next. Table 5 shows the iterative refinement of MLE, 
with �̂� = 6.2355 as the estimated mean degree of the cre-
ated wire-frames. This estimate is very close to the degree 
of the base lattice and the empirical average degree of 6.04 
of the network.

With two characteristics, viz., small-world-ness and 
Poisson degree distribution verified, it is reasonable to 
deduce that the generated M-1D and M-2D networks are 
small-world networks and mimic topological properties of 
real-world social contact networks.

(7)

P(x1,… , xN) = [FX(�r) − FX(�l − 1)]−N

e−N��
∑N

1
xi

�
N�
1

xi!

�−1

.

(8)
dL

d𝜆
=

x̄

𝜆
− 1 −

PX(𝛼l − 1) − PX(𝛼r)

FX(𝛼r) − FX(𝛼l − 1)
= 0.

4.1.2  Zoning of urban spaces and epidemic spread

With rapid urbanization in developing countries, adequate 
city planning and surveillance are potent tools to miti-
gate the spread of infectious diseases and improve public 
health (Neiderud 2015). Zoning of urban spaces, which 
is an important strategy for urban planning and govern-
ance, helps contain the epidemic and guides planners and 
administrators in imposing zone-wise travel restrictions in 
a graded fashion without shutting down the entire geog-
raphy. We observe the effect of zoning on epidemic vari-
ables by focusing our attention on the number of zones and 
density for fixed population size. Keeping the population 
density uniform in all zones for both categories of net-
works insulates the spreading process from the effects of 
density variations. We simulate the epidemic spread over 
the networks generated earlier and note the active cases to 
derive the peak day, peak active cases ( Is + H ), and span 
of the epidemic as three epidemic variables.

Figure 5 shows the impact of variation in the number of 
modules (zones) in both categories M-1D and M-2D, on 
the epidemic variables. We observe that all three variables 
show similar trends for both categories with an increasing 
number of modules. Peak days arrive faster for smaller 
values of m, albeit comparatively earlier for M-2D net-
works. Peak active cases are higher for M-2D networks 

Fig. 4  Empirical degree distribution of the generated networks as   
doubly truncated Poisson distribution with �

l
= 3 and �

r
= 9

Table 5  Iterative refinement of MLE of mean degree � for the syn-
thetic network to determine the estimated value �̂� , for which dL

d�
= 0

� 6 6.2 6.2355 6.3 7

dL

d�
+0.0381 +0.0056 0.0000 − 0.0099 − 0.1058
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due to higher connectance in the underlying structure of 
the base lattice. Peak active cases, on the other hand, show 
a decreasing trend with an increase in modules in both cat-
egories. Fewer modules lead to biassed mobility between 
the modules, accelerating the spread of an epidemic, which 
results in higher peaks, earlier peak days, and a decreased 
span. Thus, despite the same average degree and average 
clustering coefficient in M-1D and M-2D networks, the 

difference in contagion dynamics is attributable to higher 
connectivity in M-2D networks.

Figure 5 alludes to the negative relationship between peak 
day and peak active cases for networks in both categories, 
which is confirmed by high values of R2 (0.9239 for M-1D 
and 0.892 for M-2D networks) as shown in Fig. 6. The color-
coded data points and the regression line confirm that as the 
number of modules in the network (the number of zones in 
the geography) increases, peak active cases correlate nega-
tively with the peak day for networks in both categories.

Fig. 5  Variation in peak day, 
peak active cases, and epidemic 
span in the M-1D and M-2D 
networks. The number of mod-
ules m varies from 1 to 100

Fig. 6  Relationship between peak day and peak active cases with m in demography-laced synthetic modular networks. The number of modules 
(m) varies from 1 to 100 and is denoted by color-coded data points
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Since the average path length (APL) in a social contact net-
work is an important antecedent of the epidemic spread, we also 
investigate the relationship of APL with peak day and peak active 
cases for M-1D and M-2D networks for the different number of 
modules (Fig. 7). We plot APL on the X-axis, peak day values 
on the left Y-axis, and peak active cases on the right Y-axis. The 
average path length shows a strong linear relationship with both 
peak days and peak active cases, aligning with the theory. An 
increase in APL due to an increase in the number of modules 
(Table 4) negatively affects the transmission of contagion in the 
network, thereby causing the epidemic spread to slow down. This 
extends the peak day, resulting in a more restrained peak in both 
types of networks. On the other hand, a lower APL in networks 
with fewer modules induces rapid spread and higher peak active 
cases, matching the intuition that speedy transmission brings 
about a large-sized epidemic that quickly reaches its maximum 
size. This explains the rapid epidemic spread in M-2D networks 
compared to their M-1D counterparts.

The stated observations are in tandem with earlier 
results showing that modular networks stagger the spread 
of epidemics (Dickison et al. 2012; Hui and Zi-You 2007; 
Saumell-Mendiola et al. 2012; Wang et al. 2014, 2013), 
thereby vindicating the proposed methodology for construct-
ing the modular social contact network. Observations also 
indicate that if the urban space is divided into fewer zones 
(smaller m), peak cases are higher, and peak day arrives 
earlier in the event of an epidemic. Hence, the zoning of 
urban space is constructive not only for governance but also 
favorable for public health. Further, the choice of the dimen-
sion of the base lattice for creating a small-world network for 
a zone has a noticeable influence on the disease dynamics.

4.1.3  Density variations and epidemic spread

Demographic and socio-economic factors often override 
the role of population density in a geography on the spread 
of an epidemic. Higher-density regions in a geography are 
potential hot spots for the rapid spread of infection due to 
higher connectivity between inhabitants, thereby increas-
ing the likelihood of transmission. Variations in population 
density and demography of zones in a city accord a unique 
heterogeneous structure, which manifests as distinct patterns 
of social contacts and are captured by the basic wire-frame. 
This motivates scrutiny of the impact of heterogeneity in 
population density on the epidemic spread.

We create a hybrid network with 1D and 2D modules to 
model heterogeneous population densities. The network 
(M-HD) has m = 10 modules (zones)8, with half of the zones 
with lower density and the rest with higher density. We use 
M-1D and M-2D with ten zones to model cities with uniform 
densities for all ten zones. All reported results are averaged 
over ten simulations, and the curves are shown with standard 
deviation as shaded regions in the plot. Figure 8 (a) shows 
the epidemic curves for three networks (M-1D, M-HD, and 
M-2D). The trajectory of the epidemic for the M-HD network 
lies in between those for the M-1D and M-2D networks. The 
comparison of peak day, peak active cases, and epidemic span 
shown in Fig. 8 (b) complies with the observation. Networks 
modeling the homogeneous density of zones either underes-
timate (in the case of M-1D) or overestimate (in the case of 
M-2D) the epidemic variables.

Fig. 7  Relationship between average path length, and peak day and peak active cases in M-1D and M-2D networks of size 100K. The number of 
modules (m) varies from 1 to 100 and is denoted by color-coded data points

8 Choice of m=10 gives us a reasonable population size of 10K 
nodes in each module.
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This result asserts that variations in connectivity patterns 
due to heterogeneous population density in geography per-
ceptibly alters the course of the epidemic. Therefore, accom-
modating these variations is imperative for improving the 
quality of the prediction of epidemic trajectories. The pro-
posed wire-frame thus facilitates the empirical study of the 
impact of density on epidemic dynamics by insulating the 
study from other environmental variables.

4.1.4  Population mobility and epidemic spread

The work-related mobility of individuals between zones 
influences disease dynamics significantly. This experiment 
studies the impact of coupling density (population mobility) 

between zones in heterogeneous networks on disease dynam-
ics. We create M-HD wire-frame with ten modules to model 
population density variations (as in Sec. 4.1.3). The wire-
frame has uniform coupling density for all modules. We 
repeat the simulation of the epidemic spread over M-HD 
networks varying coupling density q = {0.01, 0.1, 0.2, 0.3}.

As expected, the epidemic spreads rapidly across the 
entire network in strongly coupled modules, resulting in a 
higher number of active cases and shorter epidemic spans 
(Fig. 9). The values of the epidemic variable are shown in 
the inset table in Fig. 9. Low coupling density confines the 
outbreak to the module and delays its spread. Since intercon-
necting edges are added randomly, networks with strongly 
coupled modules exhibit a higher degree of randomness and 
reshape epidemic dynamics.

We find that epidemics in interconnected small-world 
networks spread with velocity in tandem with popula-
tion mobility (coupling density) as observed in real-world 
populations, thereby vindicating the network construction 
methodology.

4.1.5  Demography and epidemic spread

This section compares the epidemic dynamics over two 
wire-frames of comparable size and order, but distinctly 
different connectance patterns. In the first one, social and 
work edges (contacts) are added systematically as per the 
demography. In contrast, the same number of edges are 
added randomly among the modules in the second network. 
Thus, the population size and the total number of social 
contacts are the same in both networks, yet the topology is 
different. Networks with random social and work edges have 
comparatively lower average path lengths.

Fig. 8  Impact of density variations in demography-laced synthetic modular networks (M-1D, M-HD and M-2D) on epidemic dynamics

Fig. 9  Epidemic curves for M-HD networks with varying coupling 
density q. Note that each network has a uniform coupling density for 
all modules
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We generate three pairs of modular networks with ten 
modules each: M-xD(Dem) and M-xD(Rand), for x = {1, 
2, H}. Networks M-1D(.) and M-2D(.) represent geogra-
phies with uniform density zones, while M-HD(.) models 
an equal number of high- and low-density zones. The num-
ber of social and work edges is computed using demogra-
phy data as described in Sect. 2.1.2. These edges are added 
randomly in M-xD(Rand) and as per the framework in 
M-xD(Dem). Thus, M-xD(Dem) networks are synthetic but 
laced with demography, while M-xD(Rand) networks are 
purely synthetic.

We run the simulation on all six networks and plot the 
epidemic curves in Fig. 10 (a-c). The shape of the curves 
for epidemic simulation over wire-frames laced with demog-
raphy is distinctly different from those with random social 
contacts. When social and work edges are added randomly 
in the network (curves in dashed lines in the figure), the 

epidemic size is clearly overestimated; peak days arrive ear-
lier, and spans are shorter.

Creating purely synthetic modular networks that depict 
populations with random contacts for simulating epidemic 
processes may not deliver reliable estimates, even though 
they may bear small-world properties. Demography data 
implanted in the wire-frame adds nuances that manifest as 
altered contagion dynamics.

4.2  COVID‑19 case study for three Indian states

This section describes a case study for three Indian states, 
viz. Delhi, Goa and Odisha. Delhi is the city-state with 
nine9 zones and a high population density, while Goa has 
a lower population density. Odisha has a predominantly 

Fig. 10  Comparison of epidemic trajectories in M-xD(Dem) and M-xD(Rand) modular networks, size N=100K and number of modules m=10. 
The inset table in each sub-figure shows the values of epidemic variables

9 As per the 2011 Census.
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rural population with a lower population density. In this 
case study, we prove the validity of our conjecture that a 
demography-laced surrogate modular network delivers bet-
ter estimates than one with random patterns of connectance. 
The generated wire-frames for states can be productively 
used as a tool for studying zonal outbreaks, mobility restric-
tions, vaccine administration, and other socio-economic and 
behavioral scenarios to aid policy planners and administra-
tors in general.

4.2.1  Degree distribution

Before simulating the epidemic spread, we show that the 
wire-frames for the two states follow the degree distribution 
of small-world networks. 

 i. Estimating mean degree for Delhi: The network has 
19.6 million nodes, with mean degree x̄ = 7.338 . 
The degree distribution of SSCN of Delhi is shown 
in Fig. 11a. Considering it as doubly truncated Pois-
son distribution at �l = 3 , �r = 24 , we estimate the 
mean degree �̂� (Eq. 8). Using �̂� = 6 and 8 as the first 
and next approximation, we estimate mean degree 
�̂� = 7.2082 for the Delhi network, which is very close 
to the empirical mean of 7.338.

 ii. Estimating the mean degree for Goa: SSCN of Goa has 
N=1.52 million nodes, �l = 3 , �r = 16 , and empiri-
cal mean degree x̄ = 7.277 . The degree distribution 
of SSCN of Goa is shown in Fig. 11b. We estimate the 
mean degree �̂� = 7.1575 of the Goa network, which is 
close to the observed mean degree of 7.277.

 iii. Estimating mean degree for Odisha: SSCN of Odi-
sha has N=45.42 million nodes, �l = 1 , �r = 19 and 

Fig. 11  Doubly truncated poisson degree distribution of (a) Delhi SSCN with N = 19.6 million, �
l
= 3 and �

r
= 24 (b) Goa SSCN with 

N = 1.52 million, �
l
= 3 and �

r
= 16 and (c) Odisha SSCN with N = 45.41 million, �

l
= 1 and �

r
= 19
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empirical mean degree x̄ = 6.958 . The degree distri-
bution of SSCN of Odisha is shown in Fig. 11c. We 
estimate the mean degree �̂� = 6.9134 of the Odisha 
network, which is close to the observed mean degree 
of 6.958.

Iterative refinements for the estimation of the mean 
degree of SSCN of Delhi, Goa, and Odisha are shown in 
Appendix B.

4.2.2  Epidemic simulations on SSCN

This experiment aims to demonstrate that epidemic simu-
lation on a demography-based network and a comparable 
modular network with random connectivity reveals distinct 
contagion dynamics. We create three networks without 
embedding demography, one each for Delhi, Goa, and Odi-
sha. Social and work edges are added randomly among the 
modules in these networks. These networks are denoted by 
SSCN(Rand). SSCN and SSCN(Rand) are comparable in 
the number of nodes and edges, but have different contact 
patterns.

We simulate epidemic spread over six networks for three 
states, implementing non-pharmaceutical interventions (see 
Appendix C for the timeline), and noting confirmed cases 
( Is+H+R+D)10. Cumulative confirmed cases predicted by 
the simulation are plotted against actual confirmed cases 
(COVID-19, India 2019) for the three states in Fig. 12 (a, b, 
and c). Events are marked with different colors in the figures 
to show NPIs imposed for the observed period (Table 10 in 
Appendix C). Black-dotted vertical lines in the figures mark 
the end of different phases (Table 11 in Appendix D).

For all three states, the cumulative case curves for 
SSCN are closer to the actual curves than the SSCN (Rand) 
curves. This observation is in agreement with the results for 
demography-laced synthetic and purely synthetic networks 
presented in Sec. 4.1.5. This bolsters our confidence in the 
framework and strengthens our hypothesis that mimicking 
social contact patterns in the wire-frame is advantageous and 
gives better predictions.

We further strengthen the supposition by computing the 
errors for predicted variables by SSCN and SSCN(Rand) 
wire-frames. We compute mean absolute percentage error 
(MAPE) for the two sets of epidemic variables for SSCN and 
SSCN(Rand) and display values in the inset table in Fig. 12. 
We observe that error for the predicted epidemic spread in 
SSCN is lower in the initial phases, which are relatively 
short. The error for Phase III, which spans more than a year 
and represents a full-blown pandemic, is also lower than 
SSCN(Rand) for all three states.

Epidemic dynamics in the real world trigger multiple waves 
due to modulating public behavior (Funk et al. 2015; Li et al. 
2020b; Van Bavel et al. 2020; Jain et al. 2022) and possibly 

Fig. 12  Epidemic curves for actual confirmed cases and those pre-
dicted by demography-based SSCN and SSCN(Rand) of Delhi, Goa, 
and Odisha. Values of mean absolute percentage error (MAPE) for 
the phases are shown in the inset tables

10 Recovered individuals from I
S
 compartment are counted as con-

firmed cases.
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changing biology of the contagion (Smith et al. 2020), both of 
which are not captured by compartmental models. Due to this 
characteristic of the epidemic spread process, we do not expect 
accurate predictions of epidemic variables for chosen states. Fur-
ther, we emphasize that the objective of the experiment is not 
to flaunt the quality of predictions but to draw attention to the 
fact that demographic-infused wire-frame results in noticeable 
variation in the epidemic dynamics. Our observations motivate 
further investigation in this direction.

Comparison of the epidemic curves on SSCN and 
SSCN(Rand) wire-frames testifies that demography-laced sur-
rogate social network for a geography delivers better estimates 
than the one with random patterns of connectance. SSCN(Rand) 
overestimates the confirmed cases and saturates faster in com-
parison to SSCN, as expected. The estimates of epidemic vari-
ables from the simulation over the demography-based SSCN 
display lower errors when compared with the actual data for the 
current COVID-19 pandemic. Consequently, differences in the 
shape of the two curves are attributable solely to the difference 
in the connectance patterns in the two networks.

5  Conclusions

In this paper, we show that epidemic dynamics in a census-
calibrated modular contact network is distinctly different 
from those in a network with random connectance patterns. 
We propose a framework for creating a surrogate social con-
tact network for a geography. The network embodies the 
social contact patterns arising from the variations in popula-
tion density and demography of the constituent zones in a 
geography. Each zone is represented as a small-world net-
work and is impregnated with interactions in family, social 
and work spaces. The resulting network is a manifestation 
of the patterns of connectance in the population of the geog-
raphy and exhibits small-world properties. It also obeys the 
theoretical results for modular networks and the correspond-
ing empirical observations.

We simulate the spread of the epidemic on the network 
and observe the epidemic dynamics as demography and 

density vary across a geography. We observe that increas-
ing the number of zones in a geography retards the spread of 
an epidemic. We also demonstrate that synthetic networks, 
when ingrained with demographic information, alters the 
epidemic dynamics. Connectivity patterns arising due to 
heterogeneous population density and demography in a 
geography affect  the epidemic substantially. A case study 
using the geography and demography of three Indian states 
is presented to prove the efficacy of the proposed modular 
network for studying the epidemic dynamics.

The proposed wire-frame, which is a synthetic social con-
tact network embedding the demography of a geography, is 
a potent tool for understanding the impact of density and 
demographic parameters on contagion dynamics. The wire-
frame can be easily adapted for a variety of applications, 
including planning vaccination strategies and understand-
ing the impact of mobility restrictions on epidemic dynam-
ics. Behavioral and social conjectures that influence human 
interactions during the epidemic can also be empirically 
tested over the wire-frame.

The proposed framework has a few limitations, which warrant 
advanced investigation. The framework does not use location-
based detailed data, which has a strong potential to improve 
the model resolution and its accuracy. Currently, the model 
assumes static population and fixed epidemic parameters over 
the course of the epidemic to keep the computational cost under 
control. Simulations using compute-intensive agent-based mod-
eling techniques can further improve the quality of the result.

Appendix A: Material for surrogate network 
of three Indian states

We extrapolate the demography data of Delhi, Goa, and Odi-
sha for the current year using the ratio method. We compute 
the multiplier � =

2020 census estimate population

2011 census population
 to extrapolate 

demography parameter P as follows.

(A1)P2020 = � ∗ P2011.

Table 6  District-wise 
demography data for nine 
districts in Delhi. † extrapolated 
parameter, ‡ computed as per 
Eq. 2

District P⃗† K⃗ Δ⃗†
D⃗‡ H⃗† Q⃗†

North West 4,269,026 6 9,636 1 855,741 0.3250
South 3,189,539 6 12,912 1 664,150 0.3384
West 2,969,248 6 22,839 2 619,322 0.3438
South West 2,677,039 6 6,358 1 573,853 0.3469
North East 2,617,106 8 42,211 2 472,461 0.2950
East 1,995,669 6 31,676 2 417,001 0.3391
North 1,036,718 6 16,995 1 204,055 0.3338
Central 679,861 6 32,374 2 134,368 0.3561
New 165,790 6 4,736 1 37,419 0.4193
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The demography data of Delhi, Goa, and Odisha for sur-
rogate social network construction are shown in Tables 6, 7 
and 8, respectively. It is noteworthy that K⃗ (mean household 
size) is not extrapolated. Its value is rounded off to the next 

higher even number and used as the degree of the base lattice 
in the module corresponding to the zone. Also, note that, for 
Delhi, we have extrapolated data for nine zones as per the 
2011 census.

Table 7  Sub-district-wise 
demography data for Goa. 
† extrapolated parameter, ‡ 
computed as per Eq. 2

Sub-district P⃗† K⃗ Δ⃗†
D⃗‡ H⃗† Q⃗†

Pernem 79,536 6 319 1 18,812 0.4066
Bardez 249,301 6 955 2 58,965 0.4066
Tiswadi 182,900 6 881 2 43,260 0.4066
Bicholim 103,893 6 435 1 24,573 0.4066
Satari 66,913 6 137 1 15,826 0.4066
Ponda 173,736 6 601 2 41,092 0.4066
Mormugao 160,509 6 1,493 2 38,338 0.3948
Salcete 309,221 6 1,067 2 73,859 0.3948
Quepem 85,838 6 270 1 20,503 0.3948
Sanguem 68,915 6 79 1 16,460 0.3948
Canacona 47,232 6 136 1 11,281 0.3948

Table 8  District-wise 
demography data for Odisha. 
† extrapolated parameter, ‡ 
computed as per Eq. 2

District P⃗† K⃗ Δ⃗†
D⃗‡ H⃗† Q⃗†

Bargarh 1,603,187 4 274 1 400,790 0.4753
Jharsuguda 627,207 6 296 1 147,261 0.3949
Sambalpur 1,126,798 6 169 1 270,143 0.4489
Debagarh 338,245 6 114 1 81,662 0.4890
Sundargarh 2,265,761 6 233 1 518,547 0.3854
Kendujhar 1,950,045 6 234 1 438,632 0.3930
Mayurbhanj 2,727,154 6 261 1 634,511 0.4486
Baleshwar 2,511,547 6 660 2 576,875 0.3713
Bhadrak 1,630,333 6 650 2 331,549 0.2874
Kendrapara 1,558,926 6 589 2 348,434 0.2994
Jagatsinghapur 1,230,562 6 738 2 282,816 0.3280
Cuttack 2,840,507 6 721 2 626,845 0.3296
Jajapur 1,977,600 6 681 2 441,423 0.2792
Dhenkanal 1,290,999 6 290 1 302,360 0.3373
Anugul 1,378,677 6 216 1 321,502 0.3819
Nayagarh 1,042,042 6 268 1 247,109 0.3297
Khordha 2,437,023 6 865 2 534,893 0.3250
Puri 1,838,563 6 528 2 397,501 0.3381
Ganjam 3,819,529 6 465 2 820,685 0.3931
Gajapati 625,381 6 145 1 139,102 0.4700
Kandhamal 793,457 6 98 1 186,182 0.4478
Baudh 477,477 6 153 1 115,765 0.4596
Subarnapur 660,411 4 282 1 163,577 0.4340
Balangir 1,784,737 4 271 1 448,889 0.4037
Nuapada 660,626 4 171 1 164,739 0.4623
Kalahandi 1,706,671 6 215 1 434,280 0.4405
Rayagada 1,047,586 6 148 1 244,759 0.4459
Nabarangapur 1,321,450 6 250 1 295,930 0.4623
Koraput 1,493,215 4 169 1 365,473 0.4643
Malkangiri 663,667 6 114 1 148,925 0.4681
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Appendix B: Iterative refinement of MLE 
of the mean degree of SSCN

See Table 9.

Appendix C: Timeline 
for non‑pharmaceutical interventions

See Table 10.

Appendix D: Phases in SUTRA model

See Table 11.
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Table 9  Iterative refinement of the MLE to estimate the required value �̂� , the mean degree of SSCN of (a) Delhi, (b) Goa, and (c) Odisha

(a) Delhi

� 6 7 7.2 7.205 7.2082 7.21 7.3 8

dL

d�
+0.2050 +0.0303 +0.0012 +0.0005 0.0000 -0.0001 -0.0127 -0.1006

(b) Goa

� 6 7 7.1 7.15 7.1575 7.16 7.5 8

dL

d�
+0.1961 +0.0228 +0.0082 +0.0010 0.0000 -0.0003 -0.0464 -0.1070

(c) Odisha

� 6 6.7 6.9 6.91 6.913 6.9134 6.92 7

dL

d�
+0.1532 +0.0320 +0.0019 +0.0005 0.0002 0.0000 -0.0009 -0.0124

Table 10  Timeline for Non-Pharmaceutical Interventions (NPIs) imposed by the Government of India along with % of edges retained in the net-
work to observe the impact of interventions. W: Work contacts, S: Social contacts (as % of total contacts in each category)

Interval observed (in 2020) Event description Retained (%)

W S

25 Mar–14 Apr Lockdown 1 20 20
15–27 Apr Lockdown 2 25 30
28 Apr–3 May Relaxation 25 35
4–17 May Lockdown 3–with Relaxation 35 45
18–31 May Lockdown 4–with Relaxation 45 55
1–30 Jun Unlock 1 60 70
1–31 Jul Unlock 2 70 80
1–31 Aug Unlock 3 80 80
1–30 Sept Unlock 4 90 90

Table 11  Estimated probability of infection �
a
 for Delhi, Goa and 

Odisha in three phases of the SUTRA model starting from 28 May, 
2020. *Extended to 31 October 2021 for Odisha

Phase Delhi Goa Odisha

I (28 May–1 July 2020) 0.0978 0.1654 0.2014
II (1 July–August 1 2020) 0.1353 0.1953 0.2034
III (1 August 2020–31 July 2021*) 0.1182 0.1564 0.1496
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